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Abstract

Recently, a video made rounds that explained that it often makes sense to assign finite values to infinite
sums. For example, it makes sense to claim that the sum of all natural numbers is equal to -1/12. This has
picked up interested in media. However, judged by the viewers’ and readers’ comments, for many viewers
and readers, neither the video, not the corresponding articles seem to explain the meaning of the above
inequality clearly enough. One of the main stumbling blocks is the fact that the infinite sum is clearly
divergent, so a natural value of the infinite sum is infinity. What is the meaning of assigning a finite value
to this (clearly infinite) sum? While the explanation of the above equality is difficult to describe in simple
terms, the main idea behind this equality can be, in our opinion, explained rather naturally, and this is
what we do in this paper.
c©2016 World Academic Press, UK. All rights reserved.
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1 Introduction

The sum of all positive integers is equal to −1/12: a statement. A recent video [8] explains that it
often makes sense to assign finite values to infinite sums. For example, it makes sense to claim that

1 + 2 + 3 + 4 + · · · = − 1

12
.

This has picked up interested in other media sources, including an article in the New York Times [7].

A clarification is needed. Judged by the viewers’ and readers’ comments, for many viewers and readers,
neither the video, not the article seem to explain the meaning of the above inequality clearly enough. One of
the main stumbling blocks is the fact that the infinite sum

1 + 2 + · · ·

is clearly divergent: as n increases, the sum

1 + 2 + · · ·+ n =
n · (n+ 1)

2

tends to infinity, so a natural value of the infinite sum is infinity.
What is the meaning of assigning a finite value to this (clearly infinite) sum?

What we do in this paper. While the explanation of the above equality is difficult to describe in simple
terms, the main idea behind this equality can be, in our opinion, explained rather naturally. This is what we
do in this paper.
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2 How can a Divergent Infinite Series Have a Finite Sum: A Simple
Example

An example. To explain how a divergent infinite series can be assigned a finite sum, let us start with trying
to define the sum of another infinite series:

1 + 21 + 22 + 23 + 24 + · · · = 1 + 2 + 4 + 8 + 16 + · · ·

If we simply keep adding these numbers, we get larger and larger values:

• we start with 1,

• then, we get 1 + 2 = 3,

• after that, we get (1 + 2) + 4 = 3 + 4 = 7,

• etc.

In the limit n→∞, the sum 1 + 22 + · · ·+ 2n tends to infinity.

Question. In what sense can we then declare some finite number to be the sum of the above infinite series?

Main idea. To be able to explain how the sum can be finite, let us do the following:

• instead of considering just the infinite series itself,

• let us consider a family of infinite series – of which includes the desired series is a particular case.

Let us apply this general idea to our simple example. For the infinite series

1 + 21 + 22 + 23 + 24 + · · · ,

a natural generalization is a family of geometric progression series

1 + q + q2 + q3 + · · ·

corresponding to different values of the parameter q:

• For q = 2, we get the desired series.

• For other values of q, we get different infinite series.

When |q| < 1, we can get an explicit expression for the sum. In particular, when |q| < 1, the sum of
the geometry progression series has a well-defined value: the limit of the values

1 + q + · · ·+ qn

when n tends to infinity.
To find this limit, we can take into account that if we multiply the sum

sn
def
= 1 + q + · · ·+ qn

by q, we get
q · sn = q + q2 + · · ·+ qn + qn+1.

So, if we subtract q · sn from sn, all the terms cancel out except for 1 and qn+1, and so we get

sn − q · sn = 1− qn+1,

from which we can conclude that

sn =
1− qn+1

1− q
.
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When n tends to infinity, then qn+1 tends to 0, so the expression for sn tends to

1

1− q
.

Thus, we get

s(q)
def
= 1 + q + q2 + q3 + q4 + · · · = 1

1− q
.

For different values of the parameter q, we get different values of this sum. In other words, the sum s(q)
is a function of q.

How can we extend this expression to the general case? Strictly speaking, the left-hand side sum is
defined only when |q| < 1, because otherwise, the series diverge. However, the expression s(q) = 1/1− q is an
analytical function of the parameter – in the sense that it can be expanded in the power series.

By using these power series, we can naturally define the values of this function s(q) = 1/1− q for the
values q for which |q| ≥ 1.

The only value of the parameter q for which we cannot produce any finite value for s(q) is is the value
q = 1, because in this case, we have 1− q = 0 and thus, the expression s(q) = 1/1− q is infinite.

Thus, for these q, we can define the sum of the corresponding infinite series as the value of the function

s(q) =
1

1− q
;

see, e.g., [4].

The resulting sum for the simple example with which we started. In particular, for q = 2, we get

s(2) =
1

1− 2
= −1.

Thus, according to to the above definition, we have

1 + 21 + 22 + 23 + 24 + · · · = 1 + 2 + 4 + 8 + 16 + · · · = −1.

3 Can We Use This Idea to Compute the Sum of All Natural
Numbers: First Attempt

Idea. How can we apply the general idea to the computation of the sum of all natural numbers?
The above geometric progression series lead to the following natural idea: let us consider the sum

1 · q1 + 2 · q2 + · · ·+ n · qn + · · ·

This series converges for |q| < 1, and for q = 1, we get exactly the desired sum of all natural numbers. So
maybe this is a way that we can get the desired sum?

Let us get an explicit expression for the sum when |q| < 1. Similarly to the case of the geometric
progression, when |q| < 1, the sum of the geometry progression series has a well-defined value: the limit of
the values

1 · q + 2 · q2 + · · ·+ n · qn

when n tends to infinity.
To find this limit, we can take into account that if we multiply the sum

sn
def
= 1 · q + 2 · q2 + · · ·+ k · qk + · · ·+ n · qn

by q, we get

q · sn = 1 · q2 + 2 · q3 + · · ·+ (k − 1) · qk + k · qk+1 + · · ·+ (n− 1) · qn + n · qn+1.
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So, if we subtract q · sn from sn, then, for each power qk with k ≤ n, we get the coefficient k − (k − 1) = 1,
and we also get the term −n · qn+1:

sn − q · sn = q + q2 + · · ·+ qn − n · qn+1,

from which we can conclude that

sn =
1

1− q
·
(
q + q2 + · · ·+ qn − n · qn+1

)
,

i.e., that

sn =
q

1− q
· (1 + q + · · ·+ qn−1)− n · qn+1

1− q
.

When n tends to infinity, then n · qn+1 tends to 0, and the geometric progression

1 + q + · · ·+ qn−1

tends to
1

1− q
.

Thus, we get

s(q)
def
= 1 · q + 2 · q2 + 3 · q3 + 4 · q4 + · · · = q

(1− q)2
.

For different values of the parameter q, we get different values of this sum. In other words, the sum s(q)
is a function of q.

We can extend this expression to the general case. Similarly to the case of the geometric progression,
we can extend the above formula to other values of q. In particular, for q = 2, we have

s(2) =
2

(1− 2)2
= 2,

and thus, get yet another finite sum for the infinite series that tends to infinity:

1 · 2 + 2 · 22 + 3 · 23 + 4 · 24 + · · · = 2.

This idea does not work for the sum of all natural numbers. There is only one value q for which this
idea does not work, and this is exactly the case q = 1 in which we are interested.

So, to compute the sum of all natural numbers, we need to come up with another general family containing
this sum.

4 Computing the Sum of All Natural Numbers: Second Attempt
and the Result

How to apply the above idea to the sum of natural numbers: need for an alternative expression.
We want to find a general family:

• that would contain the desired infinite series

1 + 2 + 3 + 4 + · · ·

as a particular case – and

• for which we would be able to extend the analytical expression to this case to get a finite answer.
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To get a convergent series, a natural idea is to raise things to the power, this will often guarantee conver-
gence. In the previous section, we have tried multiplying natural numbers by powers of some other number,
this did not work out. A natural idea is then to consider the powers of the natural numbers themselves. In
other words, let us consider the following family of infinite series:

1 +
1

2s
+

1

3s
+

1

4s
+ · · ·

For different values of the parameter s, we get different infinite series. In particular, for s = −1, each term

1

ns

takes the form
1

n−1
=

1

1/n
= n,

and the above sum

1 +
1

2s
+ · · ·

thus becomes the desired sum
1 + 2 + · · ·

Estimating the sum for different values of s. The general series converges for s > 1; the sum of this
series is known as the Riemann zeta function ζ(s); see, e.g., [1, 3, 5, 6, 9, 10, 11].

Comment. Computation of the values of this function is not as straightforward as the above computation of
the sum of the geometric progression, but for some values s, the corresponding result can be rather easily
explained. As an example, let us show how to compute the value ζ(2).

This computation is related to the fact that a polynomial

P (x) = xn + an−1 · xn−1 + · · ·+ a1 · x+ a0

of n-th degree with n different roots x1, . . . , xn can be represented as the product

P (x) = (x− x1) · . . . · (x− xn).

This expression is tailored towards polynomials in which the coefficient at the highest degree is 1. We can
easily come up with the form tailored towards the polynomials in which the constant is 1, by dividing both
sides of the above equality by the product x1 · . . . · xn. As a result, we get the expression

1 + a1 · x+ a2 · x2 + · · ·+ an · xn =

(
1− x

x1

)
·
(

1− x

x2

)
· . . . ·

(
1− x

xn

)
.

It is reasonable to expect that for limits of polynomials – i.e., for analytical functions – we get a similar
formula

1 + a1 · x+ a2 · x2 + · · ·+ an · xn + · · · =
(

1− x

x1

)
·
(

1− x

x2

)
· . . . ·

(
1− x

xn

)
· . . .

As an example, let us consider the function
sin(x)

x
.

We know how to expand sin(x) into Taylor series:

sin(x) = x− x3

3!
+
x5

5!
− · · · ,

so
sin(x)

x
= 1− x2

3!
+
x4

5!
− · · ·
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We know all the zeros of this ratio function – they are the value ±n · π corresponding to positive natural
numbers n. Thus,

sin(x)

x
=

(
1− x

π

)
·
(

1 +
x

π

)
·
(

1− x

2 · π

)
·
(

1 +
x

2 · π

)
· . . .

For each pair of roots ±n · π, we get(
1− x

n · π

)
·
(

1 +
x

n · π

)
=

(
1− x2

n2 · π2

)
.

Thus,
sin(x)

x
=

(
1− x2

π2

)
·
(

1− x2

22 · π2

)
· . . . ·

(
1− x2

n2 · π

)
· . . .

When we multiply all these polynomials, we can take into account that the only terms proportional to x2 are
terms coming from the case when all multiplied coefficients are 1s except for one of them – else we would have
a term proportional to x4 or x6, etc. In general, we have

(1 + a1 · x2) · (1 + a2 · x2) · . . . = 1 + (a1 + a2 + · · · ) · x2 + · · · ,

i.e., in our case,
sin(x)

x
= x2 ·

(
1

π2
+

1

22 · π2
+ · · ·+ 1

n2 · π2
+ · · ·

)
+ · · ·

On the other hand, we know that the coefficient at x2 is the Taylor expansion of the ration function is equal
to

− 1

3!
= − 1

1 · 2 · 3
= −1

6
,

thus,
1

6
=

1

π2
+

1

22 · π2
+ · · ·+ 1

n2 · π2
+ · · ·

Multiplying both sides of this equality by π2, we conclude that

ζ(2)
def
= 1 +

1

22
+

1

32
+ · · ·+ 1

n2
+ · · · = π2

6
.

By comparing coefficients at x4, x6, etc., we can similarly compute the values ζ(4), ζ(6), etc.

Extending this function to different values s. The function ζ(s) is analytical, and it can be extended
to values s ≤ 1.

It is interesting to mention that this extension was first discovered by B. Riemann in the 19th century
[9]. Riemann actually extended this function not just to real values s ≤ 1, but also to complex values of s.
Riemann showed that ζ(s) = 0 for s = −2, z = −4, z = −6, etc. He also noticed – but could not prove
it – that all other zeros of this function have real part equal to 0.5. This hypothesis of Riemann leads to
interesting consequences about prime numbers – but until now, no one has been able to prove or disprove this
hypothesis.

Riemann’s hypothesis is probably the most well-known open problem in mathematics [1, 2, 3, 5, 6, 9, 10, 11].
In this paper, we are interested in the value s = −1. For this s, the resulting analytical function ζ(s)

attains the value

ζ(−1) = − 1

12
.

This is the meaning behind the above equality

1 + 2 + 3 + 4 + · · · = − 1

12
.
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[9] Riemann, B., Über die anzahl der primzahlen unter einer gegebenen grösse, Monatsberichte der Berliner Akademie,
November 1859; reprinted in [2, 3, 10].

[10] Riemann, B., Gesammelte Werke, Teubner, Leipzig, 1892; reprinted by Dover Publ., New York, 1953.

[11] Titchmarsh, E.C., The Theory of the Riemann Zeta Function, Oxford University Press, Oxford, UK, 1986.


	JUS-10-1-1.pdf
	Formulation of the Problem
	Analysis of the Problem and the Resulting Algorithm
	How to Gauge Whether Activity Disruptions are Uniformly Distributed or Mainly Concentrated in Some Time Periods

	JUS-10-1-2.pdf
	Formulation of the Problem
	Theoretical Explanation of the Empirical Success of the Exponential Covariance Kernel: Reminder
	Our Main Result: Theoretical Explanation of the Empirical Success of the Modified Exponential Covariance Kernel
	Conclusions

	JUS-10-1-3.pdf
	Introduction
	How can a Divergent Infinite Series Have a Finite Sum: A Simple Example
	Can We Use This Idea to Compute the Sum of All Natural Numbers: First Attempt
	Computing the Sum of All Natural Numbers: Second Attempt and the Result

	JUS-10-1-4.pdf
	Formulation of the Problem
	Analysis of the Problem and the Main Result
	What If We Consider Average-Case Accuracy Instead of the Worst-Case One? What If We Consider Naive Approach Instead of a Guaranteed One?
	Proofs

	JUS-10-1-5.pdf
	Introduction
	How to Describe Expanding Knowledge: A Natural Simple Geometric Model
	What is the Best Research Strategy: Analysis of the Problem and the Resulting Conclusions

	JUS-10-1-6.pdf
	Formulation of the Problem
	Formulation of the Corresponding Mathematical Model
	Analyzing the Mathematical Model

	JUS-10-1-7.pdf
	Formulation of the Problem
	Description of the Case Study
	Power Law Model vs. Traditional Approach: Technical Details
	How We Compare the Two Models
	Comparison Results
	Conclusions and Future Work

	JUS-10-1-8.pdf
	Introduction
	Definitions and Results
	Proofs

	JUS-10-1-9.pdf
	Formulation of the Problem
	Let Us Describe This Setting in Terms of Utility-Based Decision Theory
	Analysis of the Resulting Problem Explains Why Awe Increases Empathy

	JUS-10-1-10.pdf
	How to Distribute Security Efforts Between Different Units of an Industrial System: Formulation of the Problem
	How to Distribute Security Efforts Between Different Units of an Industrial System: Limitations of the Existing Approach
	How to Distribute Security Efforts Between Different Units of an Industrial System: A New Proposal

	JUS-10-1-11.pdf
	Formulation of the Problem
	Analysis of the Problem
	Resulting Algorithms for Estimating Model Accuracy

	JUS-10-1-12.pdf
	Formulation of the Problem
	Analysis of the Problem
	Definitions and the Main Result
	Proof

	JUS-10-1-13.pdf
	Formulation of the Problem
	Formulating the Problem in Precise Terms
	Main Results
	Proof of the Main Results
	Auxiliary Result: In Some Reasonable Sense, the Above Result is the Best We Can Have




