- ACADEM]C Journal of Uncertain Systems

Vol.10, No.1 .10-14, 2016
H™ \orid Academic Union O-7Y NO-L, PP 1T
Online at: www.jus.org.uk

Why Modified Exponential Covariance Kernel is Empirically
Successful: A Theoretical Explanation

Olga Kosheleval'* Michael Beer?
! University of Texas at El Paso, El Paso, Texas 79968, USA
2 Institute for Risk and Uncertainty, School of Engineering, University of Liverpool
Liverpool L69 3BX, United Kingdom

Received 1 June 2015; Revised 25 June 2015

Abstract

It is known that in the first approximation, many real-life stationary stochastic processes are well-
described by an exponential covariance kernel C'(u) = exp(—a - |u|). Empirical evidence shows that in
many practical situations, a good second approximation is provided by the modified exponential covari-
ance kernel C(u) = exp(—a- |u]) - (1 —r - |u]). In this paper, we provide a theoretical explanation for this
empirical phenomenon.
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1 Formulation of the Problem

How to describe a general stochastic process. Physical quantities change with time. A natural descrip-
tion of this change, a description that takes into account that future values cannot be exactly predicted, is a
description by a stochastic process; see, e.g., [5].

In many practical situations, while the quantities themselves change, the rules that describe these changes
remain the same. Such situations are described by stationary processes.

A general stationary stochastic process S(t) can be reduced to a zero-mean unit-variance process X (t) by
an appropriate linear transformation

S(t) =0 X (1) + p,

where 1 = E[S(t)] is the mean of S(t), and o is its variance.

Thus, to describe general stationary stochastic processes, it is sufficient to study zero-mean unit-variance
processes X (t).

Each such process X (¢) can be described by its covariance function

Cu) ¥ EX(t) - X(t+ ).

In many practical situations, it is sufficient to know the covariance function. In many practical
situations, the random physical phenomenon — that we are describing by the stochastic process — is a joint
effect of many small independent effects. This is the case, for example, for the measurement errors S(t) at
different moments of time.

According to the Central Limit Theorem, under certain reasonable conditions, the distribution of the
sum of N small independent random variables tends to Gaussian when N increases. Thus, for situations
when the number N of component effects is large, it makes sense to assume that the joint distribution of the
variables S(t1), S(t2), ..., corresponding to different moments of time is Gaussian (normal). In this case, the
re-normalized random variables X (¢1), X (¢2), .. .are also normally distributed.
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To describe a normal distribution, it is sufficient to know the means and the covariances. Thus, to describe
a zero-mean normally distributed stationary process, it is sufficient to know the covariance C'(u).

A good first approximation. For many physical process, the exponential kernel C(u) = exp(—a - |u])
provides a good approximation for the actual covariance function [5].

A good second approximation. It turns out that in many practical situations, a reasonable second
approximation is provided by the modified exponential covariance kernel C(u) = exp(—a- |u])- (1 —r-|ul) [4.

Formulation of the problem. While the empirical success of the exponential covariance kernel has a good
theoretical explanation, there seem to be no good theoretical explanations for the success of the modified
exponential covariance kernel.

What we do in this paper. In this paper, we provide a theoretical explanation for the empirical success
of the modified exponential covariance kernel.

2 Theoretical Explanation of the Empirical Success of the Expo-
nential Covariance Kernel: Reminder

Let us provide such a reminder. To provide the desired theoretical explanation for the empirical success
of the modified exponential covariance kernel, let us recall the known theoretical explanation of the empirical
success of the original exponential covariance kernel.

For normal distributions, covariance has a clear meaning. We have already mentioned that in many
practical cases, we have a normally distributed stochastic process.

For zero-mean unit-variance random variables X (¢;), with mean pux = 0 and standard deviation ox = 1,
covariance C(u) between the variables X (¢) and X (t,) coincides with correlation p(u) between these two

variables:
El(X(t) — px) - (X(t+u) — px)]

ox *0x

= p(u).

For normally distributed variables, the fact that their covariance is equal to p(u) means that

Cu)=FE[X(t)- X(t+u)] =

X(t+u) = p(u) - X(8) +n, (1)
where 7 is independent from X (¢).

Resulting derivation of the exponential covariance kernel. For every two positive values u; > 0 and
ug > 0, formula (1) implies that
X(t+u1) = plur) - X(8) +m (2)

and
X((t+u1) +u2) = pluz) - X(+t1) + n2. (3)

Substituting formula (2) into the expression (3), we conclude that
X(t+u1 +ug) = pluz) - p(ur) - X(t) + 7', (4)

where 7’ def 12 + p(ug) - m1 is independent from X (¢).
On the other hand, if we directly use the formula (1) with u = u; + ug, we conclude that

X(t+ur +uz) = plur +uz) - X(t) + 1. (5)
By comparing the coefficients at X (¢) in the expressions (4) and (5), we conclude that
plur +uz) = p(uz) - p(ur). (6)

The correlation p(u) = C(u) is bounded by 1 from above and by —1 from below. It is well known that the
only bounded solution of the functional equation (6) is the solution p(u) = C'(u) = exp(—a-u) for some a > 0;
see, e.g., [1].

This explains the empirical success of the exponential covariance kernel.
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3 Our Main Result: Theoretical Explanation of the Empirical Suc-
cess of the Modified Exponential Covariance Kernel

Main idea. To describes the state of a physical system, we usually need to know the values of several physical
quantities. To describe the dynamics of these quantities, we need to consider several related random processes
S1(t), S2(t), ... We can normalize each of them, and consider the resulting zero-mean unit-variance processes
X1(t), Xa(t), ...

Let us show that in this case, an analysis similar to the one from the previous section can help us explain
the modified exponential covariance model.

How to describe several related stochastic processes. To describe these processes, in addition to
the covariances Cy;(u) = p;i(u) = E[X;(t) - X;(ty)], we also need to consider mutual covariances Cj;(u) =
E[X;(t) - Xi(t + u)].

Let us repeat all the steps of the previous derivation. To get the desired derivation, let us repeat all
the steps of the derivation from the previous section, taking into account that now we have several random
variables.

For normally distributed variables, we have

Xi(t+u) = Zpij(u) - X(t) + i, (7)

where 7; are random variables which are independent on all X;(¢). The equation (7) can be described in a
matrix form, as

X(t+u)=plu) - X(t)+n. (8)

This description is similar to the above formula (1), except that now X (¢) and n are vectors, and p(u) is a
matrix.
Similarly to the case of a single random variable, we can consider two values u; > 0 and uy > 0 and get

X(t+u1) = plur) - X(t) + 0", (9)
X((t+u1) 4 uz) = plug) - X(t+t1) + 0, (10)

hence
X(t+ur +u2) = pluz) - pur) - X(t) + 1, (11)

where 7/ Lof 13 + p(uz) - is independent from X (t).

On the other hand, if we directly use the formula (8) with u = u; + ug, we conclude that
X(t+uy +uz) = plug +uz) - X(t) + 1. (12)
By comparing the coefficients at X (¢) in the expressions (11) and (12), we conclude that

p(ur + uz) = p(uz) - p(u). (13)

In mathematical terms, this means that the matrices p(u) form a semigroup. It is known that, if we make an
additional reasonable assumption that the dependence p(u) is continuous, then the general solution to this
equation takes the form p(u) = exp(—u - A) for some matrix A; see, e.g., [3].

This expression can be further simplified if we use the known Jordan normal form representation of a
matrix A (see, e.g., [2]), as A = P~1.J. P, where P is a linear matrix, and J = diag(.Jy, Ja, . ..) is a diagonal
combination of blocks of the type

Ao 10 0 O
0o N 1 0 O
Ji = 0 0 XN 0 O ,
0 0 0 A1
0 0 0 0 X\
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where \; are eigenvalues of the matrix A (which are, in general, complex-valued).
If all the eigenvalues are different from each other, then each block is simply a 1 x 1 matrix

A 00 0 0

0 X O 0 0
J— 0 0 As 0 0 ’

0 0 0 ... A1 O

0o 0 o0 ... 0 An

In general, when we have eigenvalues with multiplicity, then the blocks corresponding to these eigenvalues are
of larger size.
In general, when a matrix A is represented in the Jordan normal form, we have exp(—u - A) = P~!.

exp(—u - J) - P. Here,
exp(—u - J) = diag(exp(—u - J1),exp(—u - Ja),...),

where each element of the matrix exp(—w-J;) is linear combinations of the terms exp(—u-A;), u-exp(—u-A;),
u? - exp(—u- Ny, ...

Each element p;;(u) of the matrix p(u) = exp(—u- A) is a linear combination of the elements of the matrix
exp(—u-.J); thus, each such element is a linear combination of expressions of the type u* - exp(—u- \;), where
k > 0 is a integer and ); is, in general, a complex number.

From the above general case to the second approximation. The first approximation corresponds to
the case when we consider a single stochastic process. Thus, a natural second approximation corresponds to
the case when we have two processes X (t) and X(t). In this case, we have three possible situations:

e If the corresponding 2 x 2 matrix p has a single eigenvalue A\ of multiplicity, then we conclude that, for
each of the variables, the covariance function C(u) is a linear combination of the terms exp(—u - A) and
w - exp(—u - A). This is exactly the modified exponential kernel that we tried to explain.

e If the matrix p has two different real-valued eigenvalues A\; < A2 then C(u) is a linear combination of
two exponential functions exp(—u - A1) and u - exp(—u - A2); asymptotically, when u is large, the second
term can be safely ignored.

e Finally, if the eigenvalues are complex, then they have the form \; = a+tw, so C(u) is a linear combination
of the terms exp(—a - u) - cos(w - u) and exp(—a - u) - sin(w - u).

4 Conclusions

In the first approximation, many real-life stationary stochastic processes are well described by the exponential
covariance kernel C(u) = exp(—a - u) (for w > 0). Empirical evidence show that in many practical situations,
a modified exponential covariance kernel C'(u) = exp(—a-u)- (1 —r-u) provides a good second approximation.

In this paper, we have shown that a natural second approximation is either a modified exponential covari-
ance, or a linear combination of two exponential covariance kernels corresponding to different values a; # as,
or a linear combination of the terms exp(—a - u) - cos(w - u) and exp(—a - u) - sin(w - u). The fact that the
modified exponential covariance kernel is one of only three possible cases explains why this kernel works well
in many practical situations.

Our analysis also helps us find the natural third, fourth, etc. approximations: namely, all such approxi-
mations should be linear combinations of the terms u* - exp(—a - u) - cos(w - u) and u” - exp(—a - u) - sin(w - u),
where k > 0 is a non-negative integer.
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