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Abstract

In this paper, we focus on the problem formulation and solution procedure of the multi-objective
interval transportation problem(MOITP) where the source and destination parameters are expressed as
interval values by the decision maker. This problem is a cost varying multi-objective interval transporta-
tion problem(CVMOITP). The intervals cost coefficients of the objective functions of this problem are
determined by fixed single trip transportation costs of vehicles. After that, this problem is converted
into a classical multi-objective transportation problem(MOTP) where to minimize the interval objective
function, the order relations that represent the decision marker’s preference between interval is defined by
the right limit, centre and half-width of an interval. Finally, the equivalent transformed problem is solved
by Zimmerman’s fuzzy programming technique.
c©2015 World Academic Press, UK. All rights reserved.
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1 Introduction

Transportation problem(TP) is a linear programming problem. TP deals with the distribution of single com-
modity from various sources to various destination in such a manner that the total transportation cost is
minimized. In order to solve a transportation problem, the decision parameters such as availability, require-
ment and the unit transportation cost of the model must be fixed at crisp values but in real life applications
they are interval valued.

A interval transportation problem is such a transportation problem in which the supply, demand and cost
parameters are lied in some intervals. This problem is transformed into a classical bi-objective TP where to
minimize the interval objective function, the order relations that represent the decision marker’s preference
between interval profits is defined by the right limit, left limit, centre, and half-width of an interval.

In transportation problem unit transportation cost is constant from each source to each destination. But
in reality, it is not constant; it depends on amount of transport quantity and capacity of vehicles. If amount
of quantity is small then small(capacity) vehicle is sufficient for deliver. Where as if amount of quantity is
large then big(capacity) vehicle is needed. So, depend on amount of transport quantity and the capacity
of vehicles, the unit transportation cost is not constant. The cost varying transportation problem is such a
transportation problem where unit transportation cost is varied depending on the selection of vehicles and
number of vehicles.

The objective of this paper is to develop a transportation problem whose supplies and demands are interval
values but varying interval value unit transportation cost. In each cell (i, j), the interval costs are determined
by fixed single trip transportation costs of vehicles. Finally, present a solution procedure of this type of
problem with a numerical example.
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The basic transportation problem was originally developed by Hitchock [14] and letter by Dantzig [6].
Many researchers [13, 15, 18] did work on fixed charge transportation problem. Gupta and Arora [8] pre-
sented a capacitated fixed charge bi-criterion indefinite quadratic transportation problem, giving the same
priority to cost as well as time is studied. They developed an algorithm which is based on the concept of
solving the indefinite quadratic fixed charge transportation problem. Gupta and Arora [11] discussed on a
paradox in a capacitated transportation problem where the objective function is a ratio of two linear functions
consisting of variable costs and profits respectively. In another paper, Gupta and Arora [9, 10] discussed on
restricted flow in a fixed charge capacitated transportation problem with bounds on total source availabilities
and total destination requirements. Dahiya and Verma [5] considered a class of the capacitated transporta-
tion problems with bounds on total availabilities at sources and total destination requirements. In this paper,
unbalanced capacitated transportation problems have been discussed in the present paper as a particular
case of original problem. In addition, they have discussed paradoxical situation in a balanced capacitated
transportation problem and have obtained the paradoxical solution by solving one of the unbalanced prob-
lems. Arora and Ahuja [1] discussed a paradox in fixed charge transportation problem. Then Arora and
Khurana [2] introduced three-dimensional fixed charge transportation problem is an extension of the classical
three-dimensional transportation problem in which a fixed cost is incurred for every origin. Basu et al. [3]
represented an algorithm for finding the optimum solution of solid fixed charge transportation problem. Then
Bit, et. al. developed fuzzy programming technique for multi objective capacitated transportation problem.
Singh and Saxena [16] introduced the multiobjective time transportation problem with additional restrictions.
Recently, Dutta and Murthy [7] developed fuzzy transportation problem with additional restrictions.

Here we present interval transportation problem. In reality, the interval of the unit cost depending on the
interval of sources and demands. In urban region , actually the transportation cost is not depended on the
quantities but on the capacity of the transports. So unit cost is vary depended on vehicles. In this paper
we determine interval of the parameters of unit cost by our proposed algorithm which develops a multi-level
uncertain programming model. Then formulate corresponding multi-objective crisp model. There are various
type of methods to solve this type of model, but best one is fuzzy programming technique [20] which is applied
here.

2 Mathematical Formulation

2.1 Multi-objective Interval Transportation Problem(MOITP)

The formulation of MOITP is the problem of minimizing interval valued objective function with interval costs,
interval sources and interval demands parameters, is given in the following Model 1.
Model 1

min

m∑
i=1

n∑
j=1

ckijxij , k = 1, . . . ,K

subject to ckij ∈ [Dk
Lij
, Dk

Rij
], k = 1, . . . ,K

n∑
j=1

xij ∈ [aLi
, aRi

], i = 1, . . . ,m

m∑
i=1

xij ∈ [bLj
, bRj

], j = 1, . . . , n

m∑
i=1

aLi
=

n∑
j=1

bLj

m∑
i=1

aRi =

n∑
j=1

bRj

xij ≥ 0 ∀i, ∀j

where ckij ∈ [Dk
Lij
, Dk

Rij
], k = 1, . . . ,K are intervals representing the uncertain cost for transportation prob-

lem. The sources parameter lies in [aLi
, aRi

] and destination parameter lies in [bLj
, bRj

].
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Depending on [aLi
, aRi

] and [bLj
, bRj

]. We determine ckLij
and ckRij

which is discussed in the following subsec-
tion. Then we define DLk

ij=min{ckLij
,c

Rk
ij
} and DRk

ij=max{ckLij
,ckRij

}.

2.2 N-Vehicle Cost Varying Multi-objective Transportation Problem

Abbreviations:
[aLi

, aRi
] : Availability at Origin/Source Oi, i = 1, . . . ,m.

[bLi
, bRi

] : Demand at destination Dj , j = 1, . . . , n.
N : Number of vehicles.
Vl : lth vehicle, l = 1, . . . , N.
K : Number of objectives.
Rr

ij(l) : Transportation cost of single trip of lth vehicle in the rth, (r = 1, . . . ,K) objective in the cell (i, j).

crij ∈ [Dr
Lij
, Dr

Rij
] : Unit transportation cost at the cell (i, j) rth objective, where DLr

ij=min{crLij
,cRr

ij
} and

DRr
ij=max{crLij

,crRij
}.

Cl : Capacity(in unit) of the vehicle Vl, l = 1, . . . , N , where C1 < C2 < · · · < CN .

Suppose there are N -types off vehicles Vl, l = 1, . . . , N from each source to each destination. Let Cl, l =
1, . . . , N are the capacities (in unit) of the vehicles Vl, l = 1, . . . , N respectively, where C1 < C2 < · · · <
CN . (Rr

ij(1), . . . , Rr
ij(N)), r = 1, . . . ,K represent transportation cost for each cell (i, j); where Rr

ij(l), r =
1, . . . ,K; l = 1, . . . , N are the transportation cost from source Oi, i = 1, . . . ,m to the destination Dj , j =
1, . . . , n by the vehicle Vl. So, for each r = 1, . . . ,K cost varying TP can be represent in the following
tabulated form. crij , i = 1, . . . ,m; j = 1, . . . , n; r = 1, . . . , k are not constants.

Table 1: N -vehicle multi-objective cost varying transportation problem

D1 D2 ... Dn stock
O1 Rr

11(1), . . . , Rr
11(N) Rr

12(1), . . . , Rr
12(N) ... Rr

1n(1), . . . , Rr
1n(N) [aL1

, aR1
]

O2 Rr
21(1), . . . , Rr

21(N) Rr
22(1), . . . , Rr

22(N) ... Rr
2n(1), . . . , Rr

2n(N) [aL2
, aR2

]
... ... ... ... ... ...
Om Rr

m1(1), . . . , Rr
m1(N) Rr

m2(1), . . . , Rr
m2(N) ... Rr

mn(1), . . . , Rr
mn(N) [aLm , aRm ]

Demand [bL1
, bR1

] [bL2
, bR2

] ... [bLn
, bRn

]

2.2.1 Determination of crLij

To solve this problem, apply our proposed Algorithm stated as follows:
Algorithm A1:
Step 1. Since lower limit of unit cost is not determined (because it depends on quantity of transport), so
North-west corner rule (because it does not depend on unit transportation cost) is applicable to allocate initial
B.F.S.
Step 2. After the allocate xij by North-west corner rule, for basic cell we determine crLij

(unit transportation

cost from source Oi to destination Dj) as

crLij
=


∑

l L
r
ij(l)R

r
ij(l)

xij
if xij 6= 0

0 if xij = 0,

r = 1, . . . , k

where Lr
ij(l) are integer solutions of

min
∑
l

Lr
ij(l)R

r
ij(l)

s.t. xij ≤
∑
l

Lr
ij(l)Cl.
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Step 3. For non-basic cell (i, j) possible allocation is the minimum of allocations in ith row and jth column
(for possible loop). If possible allocation be xij , then for non-basic cell crLij

(unit transportation cost from

source Oi to destination Dj) as

crLij
=


∑

l L
r
ij(l)R

r
ij(l)

xij
if xij 6= 0

0 if xij = 0,

r = 1, . . . , k

where Lr
ij(l) are integer solutions of

min
∑
l

Lr
ij(l)R

r
ij(l)

s.t. xij ≤
∑
l

Lr
ij(l)Cl.

In this manner we convert cost varying transportation problem to a usual transportation problem but crLij
is

not fixed, it may be changed (when this allocation will not serve optimal value) during optimality test.
Step 4. During optimality test some basic cell changes to non-basic cell and some non-basic cell changes to
basic cell, depends on running basic cell we first fix crLij

by Step 2 and for non-basic we fix crLij
by Step 3.

Step 5. Repeat Step 2. to Step 4. until we obtain optimal solution.
Thus to determine crLij

we solve the following bi-level programming modelModel 2.L which is as follows:
Model 2.L

min

m∑
i=1

n∑
j=1

crLij
xij , (1)

crLij
=


∑

l L
r
ij(l)R

r
ij(l)

xij
if xij 6= 0

0 if xij = 0

where crLij
is determined by following mathematical programming

min
∑
l

Lr
ij(l)R

r
ij(l)

s.t. xij ≤
∑
l

Lr
ij(l)Cl

n∑
j=1

xij = aLi , i = 1, . . . ,m

m∑
i=1

xij = bLj , j = 1, . . . , n

m∑
i=1

aLi
=

n∑
j=1

bLj

0 ≤ xij ∀i, ∀j
where Lr

ij(l), i = 1, . . . ,m; j = 1, . . . , n are integers.

2.2.2 Determination of crRij

To solve this problem, apply our proposed algorithm stated as follows:
Algorithm A2:
Step 1. Since lower limit of unit cost is not determined (because it depends on quantity of transport), so
North-west corner rule (because it does not depend on unit transportation cost) is applicable to allocate initial
B.F.S.
Step 2. After the allocate xij by North-west corner rule, for basic cell we determine crRij

(unit transportation
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cost from source Oi to destination Dj) as

crRij
=


∑

l R
r
ij(l)R

r
ij(l)

xij
if xij 6= 0

0 if xij = 0,

r = 1, . . . , k

where Rr
ij(l) are integer solutions of

min
∑
l

Rr
ij(l)R

r
ij(l)

s.t. xij ≤
∑
l

Rr
ij(l)Cl.

Step 3. For non-basic cell (i, j) possible allocation is the minimum of allocations in ith row and jth column
(for possible loop). If possible allocation be xij , then for non-basic cell crRij

(unit transportation cost from

source Oi to destination Dj) as

crRij
=


∑

l R
r
ij(l)R

r
ij(l)

xij
if xij 6= 0

0 if xij = 0,

r = 1, . . . , k

where Rr
ij(l) are integer solutions of

min
∑
l

Rr
ij(l)R

r
ij(l)

s.t. xij ≤
∑
l

Rr
ij(l)Cl.

In this manner we convert cost varying transportation problem to a usual transportation problem but crRij
is

not fixed, it may be changed (when this allocation will not serve optimal value) during optimality test.
Step 4. During optimality test some basic cell changes to non-basic cell and some non-basic cell changes to
basic cell, depends on running basic cell we first fix crRij

by Step 2 and for non-basic we fix crRij
by Step 3.

Step 5. Repeat Step 2. to Step 4. until we obtain optimal solution.
Thus to determine crRij

we solve the following bi-level programming modelModel 2.R which is as follows:
Model 2.R

min

m∑
i=1

n∑
j=1

crRij
xij , (2)

crRij
=


∑

l R
r
ij(l)R

r
ij(l)

xij
, if xij 6= 0

0 if xij = 0

where crRij
is determined by following mathematical programming

min
∑
l

Rr
ij(l)R

r
ij(l)

s.t. xij ≤
∑
l

Rr
ij(l)Cl

n∑
j=1

xij = aRi
, i = 1, . . . ,m

m∑
i=1

xij = bRj , j = 1, . . . , n

m∑
i=1

aRi =

n∑
j=1

bRj

0 ≤ xij ∀i, ∀j
where Rr

ij(l), i = 1, . . . ,m; j = 1, . . . , n are integers.
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2.2.3 Multi-level Mathematical Programming for Cost Varying Multi-objective Interval Trans-
portation Problem under N-Vehicle (CVMOITPNV)

The Multi-level Mathematical Programming for Cost Varying Interval Transportation Problem under N -
Vehicle is formulated in Model 3 as follows:
Model 3

min

m∑
i=1

n∑
j=1

crijxij

subject to crij ∈ [Dr
Lij
, Dr

Rij
]

n∑
j=1

xij ∈ [aLi , aRi ], i = 1, . . . ,m

m∑
i=1

xij ∈ [bLj , bRj ], j = 1, . . . , n

m∑
i=1

aLi =

n∑
j=1

bLj

m∑
i=1

aRi
=

n∑
j=1

bRj

xij ≥ 0 ∀i, ∀j
Model 2.L (3)

Model 2.R (4)

i.e., Model 3

min

m∑
i=1

n∑
j=1

crijxij

subject to crij ∈ [Dr
Lij
, Dr

Rij
]

n∑
j=1

xij ∈ [aLi
, aRi

], i = 1, . . . ,m

m∑
i=1

xij ∈ [bLj
, bRj

], j = 1, . . . , n

m∑
i=1

aLi =

n∑
j=1

bLj

m∑
i=1

aRi =

n∑
j=1

bRj

xij ≥ 0 ∀i, ∀j

where Dr
Lij=min{crLij

,crRij
} and Dr

Rij=max{crLij
,crRij

}. And [crLij
, crRij

] is determined by following mathematical

programming

min

m∑
i=1

n∑
j=1

crLij
xij , (5)

where crLij
is determined by following mathematical programming

crLij
=


∑

l L
r
ij(l)R

r
ij(l)

xij
, if xij 6= 0

0 if xij = 0
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min
∑
l

Lr
ij(l)R

r
ij(l)

s.t. xij ≤
∑
l

Lr
ij(l)Cl

n∑
j=1

xij = aLi , i = 1, . . . ,m

m∑
i=1

xij = bLj
, j = 1, . . . , n

m∑
i=1

aLi
=

n∑
j=1

bLj

0 ≤ xij ∀i, ∀j
where Lr

ij(l), i = 1, . . . ,m; j = 1, . . . , n are integers

AND

min

m∑
i=1

n∑
j=1

crRij
xij , (6)

where crRij
is determined by following mathematical programming

crRij
=


∑

l R
r
ij(l)R

r
ij(l)

xij
, if xij 6= 0

0 if xij = 0

min
∑
l

Rr
ij(l)R

r
ij(l)

s.t. xij ≤
∑
l

Rr
ij(l)Cr

n∑
j=1

xij = aRi
, i = 1, . . . ,m

m∑
i=1

xij = bRj , j = 1, . . . , n

m∑
i=1

aRi =

n∑
j=1

bRj

0 ≤ xij ∀i, ∀j
where Rr

ij(l), i = 1, . . . ,m; j = 1, . . . , n are integers.

3 Solution Procedure of CVMOITPNV

3.1 Some Definitions

Definition 1. Interval: A closed interval is defined by an order pair of brackets as:

A = [aL, aR] = {a : aL ≤ a ≤ aR, a ∈ R}

where aL and aR are, respectively, the left and right limits of A.
The interval is also denoted by its centre and half width as

A = 〈ac, aw〉 = {a : ac − aw ≤ a ≤ ac + aw, a ∈ R}

where ac = aR+aL

2 and aw = aR−aL

2 are respectively, the centre and half width of A.
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Definition 2. Operators: If A and B are two closed intervals, and ∗ be a binary operation on the set of
real number, then A ∗B = {a ∗ b : a ∈ A, b ∈ B} is defined a binary operation.

According to the above definition interval operations are defined as:

A+B = [aL, aR] + [bL, bR] = [aL + bL, aR + bR],

A+B = 〈ac, aw〉+ 〈bc, bw〉 = 〈ac + bc, aw + bw〉,

kA = k[aL, aR] = [kaL, kaR] if k ≥ 0,

kA = k[aL, aR] = [kaR, kaL] if k ≤ 0

where k is a real number.

Definition 3. Order relation ≤LR: The order relation ≤LR between A = [aL, aR] and B = [bL, bR] is
defined as A ≤LR B iff aL ≤ bL and aR ≤ bR, A <LR B iff A ≤LR B and A 6= B.

Definition 4. Order relation ≤cw: The order relation ≤cw between A = 〈ac, aw〉 and B = 〈bc, bw〉 is
defined as A ≤cw B iff ac ≤ bc and aw ≤ bw, A <cw B iff A ≤cw B and A 6= B.

3.2 Formulation of the Crisp Objective Function

Let S be the set of all feasible solution of Model 3.

Definition 5. Optimal Solution: For each r = 1, . . . ,K, x0 ∈ S is an optimal solution of the Model 3 iff
there is no other solution x ∈ S which satisfies Zr(x) <LR Zr(x0) or Zr(x) <cw Zr(x0).

Definition 6. Order relation ≤Rc: The order relation ≤Rc between A and B is defined as A ≤Rc B iff
A ≤LR B and A ≤cw B, A <Rc B iff A <LR B and A <cw B.

Definition 7. Optimal Solution:r = 1, . . . ,K, x0 ∈ S x0 ∈ S is an optimal solution of the Model 3 iff
there is no other solution x ∈ S which satisfies Zr(x) <Rc Z

r(x0) or Zr(x) <cw Zr(x0).
For each r = 1, . . . ,K, the right limit Zr

R(x) of the interval objective function Zr(x) in given problem may
be elicited as Zr

R(x) =
∑m

i=1

∑n
j=1D

r
cijxij +

∑m
i=1

∑n
j=1D

r
wij
xij . And the centre of the objective function

Zr
c (x) can be elicited as Zr

c (x) =
∑m

i=1

∑n
j=1D

r
cijxij .

The solution of the Model 3 by Definition 7 can be taken as the optimal solution of following model
Model 4.
Model 4

min Zr
R(x) =

m∑
i=1

n∑
j=1

Dr
cijxij +

m∑
i=1

n∑
j=1

Dr
wij
xij , r = 1, . . . ,K (7)

min Zr
c (x) =

m∑
i=1

n∑
j=1

Dr
cijxij , r = 1, . . . ,K (8)

s.t.

n∑
j=1

xij ∈ [aLi , aRi ], i = 1, . . . ,m

m∑
i=1

xij ∈ [bLj , bRj ], j = 1, . . . , n

m∑
i=1

aLi =

n∑
j=1

bLj

m∑
i=1

aRi
=

n∑
j=1

bRj

xij ≥ 0 ∀i, ∀j
Model 2.L (9)

Model 2.R (10)
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Model 4 is a multi-objective model. Therefore it is not easy to solve by interval optimization method
or stochastic optimization method. We can solved it easily by transform it into a single objective model by
many methods like scaler method, weighting method, rank method etc. One of the better method is fuzzy
optimization technique which is discussed in following subsection.

3.2.1 Fuzzy Programming Technique to Solve Model 4

In fuzzy programming technique, we first find the lower bound as LZR and the upper bound as UZR for the
rth objective function ZR(x). Similarly the lower bound as LZc and the upper bound as UZc for the rth

objective function Zc(x). dZR =UZR - LZR the degradation allowance for objective ZR(x). dZc =UZc -
LZRc the degradation allowance for objective Zc(x)

When the aspiration levels for each of the objective have been specified, a fuzzy model is formed and then
the fuzzy model is converted into a crisp model. The solution of Model 4 can be obtained by the following
steps:
step 1. Solve the Model 4 as a single-objective transportation problem 2 times by taking one of the objective
at a time.
step 2. From the above results, determine the corresponding values for objective at each solution derived.
According to each solution and value for every objective, we can find a pay-off matrix as follows:

Table 2: Objective values

ZR Zc

x1 Z1R Z1c

x2 Z2R Z2c

where x1, x2 are the isolated optimal solutions of the k different transportation problems for 2 different
objective functions. Z1R, Z1c, Z2R, Z2c are the values of objective functions.
step 3. From Step 2, find for each objective the Ur and the Lr corresponding to the set of solutions, where
UZR = max{Z1R, Z2R}, LZR = min{Z1R, Z2R}, UZc = max{Z1c, Z2c}, LZc = min{Z1c, Z2c}.

An initial fuzzy model of the problem can be:
Find xij , i = 1, . . . ,m; j = 1, . . . , n,

ZR � LZR, (11)

Zc � LZc (12)

s.t.

n∑
j=1

xij ∈ [aLi
, aRi

], i = 1, . . . ,m

m∑
i=1

xij ∈ [bLj
, bRj

], j = 1, . . . , n

m∑
i=1

aLi
=

n∑
j=1

bLj

m∑
i=1

aRi
=

n∑
j=1

bRj

xij ≥ 0 ∀i, ∀j
Model 2.L

Model 2.R

step 4. Define a membership function µ(ZR), µ(Zc), for the ZR, Zc respectively.
step 5. Convert the fuzzy model of the problem, obtained in Step 3, into the following crisp model, namely,
Model 5.
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Model 5

max λ (13)

subject to λ ≤ µ(ZR) (14)

λ ≤ µ(Zc) (15)
n∑

j=1

xij ∈ [aLi
, aRi

], i = 1, . . . ,m

m∑
i=1

xij ∈ [bLj
, bRj

], j = 1, . . . , n

m∑
i=1

aLi =

n∑
j=1

bLj

m∑
i=1

aRi =

n∑
j=1

bRj

xij ≥ 0 ∀i, ∀j
Model 2.L

Model 2.R

λ ≥ 0

step 6. Solve the crisp model by an appropriate mathematical programming algorithm.
step 7. The solution obtained in step 6 will be optimal compromise solution of the Model 4.

3.2.2 Fuzzy Programming Technique with Linear Membership Function

A linear membership function is defined as

µ1(ZR) =


1 if ZR ≤ LZR

1− ZR−LZR

UZR−LZR
if LZR ≤ ZR ≤ UZR

0 if UZR ≤ ZR,

(16)

and

µ2(Zc) =


1 if Zc ≤ LZc

1− Zc−LZc

UZc−LZc
if LZc ≤ Zc ≤ UZc

0 if UZc ≤ Zc.

(17)

If we use a linear membership function, the crisp model can be simplified in Model 6 as follows:
Model 6

max λ (18)

subject to ZR + λ(UZR − LZR) ≤ UZR,

Zc + λ(UZc − LZc) ≤ UZc,
n∑

j=1

xij ∈ [aLi
, aRi

], i = 1, . . . ,m

m∑
i=1

xij ∈ [bLj
, bRj

], j = 1, . . . , n

m∑
i=1

aLi
=

n∑
j=1

bLj

m∑
i=1

aRi =

n∑
j=1

bRj
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xij ≥ 0 ∀i, ∀j
Model 2.L

Model 2.R

λ ≥ 0.

3.2.3 Fuzzy Programming Technique with Exponential Membership Function

Considering Z1 = ZR, Z2 = Zc, U1 = UZR, U2 = UZc, L1 = LZR, L2 = LZc, a exponential membership
function is defined as

µl(Zr) =


1 if Zr ≤ Lr

1− e
−s

Zr−Lr
Ur−Lr −e−s

1−e−s if Lr ≤ Zr ≤ Ur

0 if Ur ≤ Zr,

r = 1, 2. (19)

If we use a exponential membership function, the crisp model can be simplified as Model 7.
Model 7

max λ (20)

subject to

e−s
Zr−Lr
Ur−Lr − λ(1− e−s) ≥ e−s, r = 1, . . . , k

n∑
j=1

xij ∈ [aLi
, aRi

], i = 1, . . . ,m

m∑
i=1

xij ∈ [bLj
, bRj

], j = 1, . . . , n

m∑
i=1

aLi =

n∑
j=1

bLj

m∑
i=1

aRi =

n∑
j=1

bRj

xij ≥ 0 ∀i, ∀j
Model 2.L

Model 2.R

λ ≥ 0.

4 Numerical Examples

Example 1.The data is collected by a person who supplies products to different companies after tacking
different sources. There are three different suppliers(origins) named as O1, O2, O3 and three different desti-
nations namely D1, D2, D3. How much amount of materials be supplied from different sources to all other
destinations so that transportation cost(s) are minimum. Data are given below in the following Table 3 and
Table 4.

Consider a 2-vehicle cost varying transportation problem as
It is also given that there are three types of vehicle V1, V2 and V3. For each r = 1, 2 the cost of V1 from

source ‘i’ destination ‘j’ is Rr
ij(1) for a single trip. The cost of V2 from source ‘i’ destination ‘j’ is Rr

ij(2) and
that of V3 is Rr

ij(3) for a single trip. It is also given that the capacity of V1 is C1 = 10 and that of V2 and V3
are C2 = 15 and C3 = 20, respectively.

Then we have by Model 2.L

c1L11 = 119
145 , c

1
L12 = 14

5 , c
1
L13 = 15

5 , c
1
L21 = 103

145 , c
1
L22 = 95

145 , c
1
L23 = 12

15 , c
1
L31 = 114

120 , c
1
L32 = 126

120 , c
1
L33 = 72

120 ,

and
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Table 3: Lower bounds of cost intervals of the vehicles of Example 1

D1 D2 D3 stock
O1 10, 13, 16 14, 17, 20 15, 18, 21 [150, 170]
O2 8, 11, 14 7, 10, 13 9, 12, 15 [160, 190]
O3 13, 16, 19 15, 18, 21 6, 9, 12 [120, 130]
Demand [145, 165] [150, 170] [135, 155]

Table 4: Upper bounds of cost intervals of the vehicles of Example 1

D1 D2 D3 stock
O1 14, 17, 20 18, 21, 24 20, 23, 26 [150, 170]
O2 15, 18, 21 8, 11, 14 10, 13, 16 [160, 190]
O3 16, 19, 22 19, 22, 25 6, 9, 12 [120, 130]
Demand [145, 165] [150, 170] [135, 155]

c2L11 = 151
145 , c

2
L12 = 18

5 , c
2
L13 = 20

5 , c
2
L21 = 159

145 , c
2
L22 = 103

145 , c
2
L23 = 13

15 , c
2
L31 = 132

120 , c
2
L32 = 150

120 , c
2
L33 = 72

120 .

We have by Model 2.R

c1R11 = 135
165 , c

1
R12 = 14

5 , c
1
R13 = 15

5 , c
1
R21 = 103

145 , c
1
L22 = 95

145 , c
1
L23 = 21

25 , c
1
L31 = 162

130 , c
1
L32 = 141

130 , c
1
L33 = 78

130 ,

and

c2R11 = 171
165 , c

2
R12 = 18

5 , c
2
R13 = 20

5 , c
2
R21 = 180

165 , c
2
L22 = 117

165 , c
2
L23 = 23

25 , c
2
L31 = 148

130 , c
2
L32 = 169

130 , c
2
L33 = 78

130 .

So, interval cij of interval TP is determined as crij ∈ [min{crLij , c
r
Rij},max{crLij , c

r
Rij}] i.e., we have

c111 ∈ [ 135165 ,
119
145 ], c112 ∈ [ 145 ,

14
5 ], c113 ∈ [ 155 ,

15
5 ], c121 ∈ [ 103145 ,

103
145 ], c122 ∈ [ 95

145 ,
95
145 ],

c123 ∈ [ 1215 ,
21
25 ], c131 ∈ [ 114120 ,

162
130 ], c132 ∈ [ 126120 ,

141
130 ], c133 ∈ [ 72

120 ,
78
130 ],

and

c211 ∈ [ 171165 ,
151
145 ], c212 ∈ [ 185 ,

18
5 ], c213 ∈ [ 205 ,

20
5 ], c221 ∈ [ 180165 ,

159
145 ], c222 ∈ [ 117165 ,

103
145 ],

c223 ∈ [ 1315 ,
23
25 ], c231 ∈ [ 132120 ,

148
130 ], c232 ∈ [ 150120 ,

169
130 ], c233 ∈ [ 72

120 ,
78
130 ].

Then we formulate cost varying interval TP by Model 4 which is Model 8.
Model 8

min Z1
R(x) = (0.002 + 0.819) ∗ x11 + (0.0 + 2.8) ∗ x12 + (0.0 + 3) ∗ x13

+ (0.0 + 0.71) ∗ x21 + (0.0 + 0.655) ∗ x22 + (0.4 + 0.82) ∗ x23
+ (0.296 + 1.098) ∗ x31 + (0.035 + 1.067) ∗ x32 + (0.0 + 0.6) ∗ x33

min Z1
C(x) = (0.0 + 0.819) ∗ x11 + (0.0 + 2.8) ∗ x12 + (0.0 + 3) ∗ x13

+ (0.0 + 0.71) ∗ x21 + (0.0 + 0.655) ∗ x22 + (0.0 + 0.82) ∗ x23
+ (0.0 + 1.098) ∗ x31 + (0.0 + 1.067) ∗ x32 + (0.0 + 0.6) ∗ x33

min Z2
R(x) = (0.005 + 1.039) ∗ x11 + (0.0 + 3.6) ∗ x12 + (0.0 + 4) ∗ x13

+ (0.005 + 1.094) ∗ x21 + (0.001 + 0.709) ∗ x22 + (0.05 + 0.893) ∗ x23
+ (0.038 + 1.12) ∗ x31 + (0.05 + 1.275) ∗ x32 + (0.0 + 0.6) ∗ x33

min Z2
C(x) = (0.0 + 1.039) ∗ x11 + (0.0 + 3.6) ∗ x12 + (0.0 + 4) ∗ x13

+ (0.0 + 1.094) ∗ x21 + (0.0 + 0.709) ∗ x22 + (0.0 + 0.893) ∗ x23
+ (0.0 + 1.12) ∗ x31 + (0.0 + 1.275) ∗ x32 + (0.0 + 0.6) ∗ x33

x11 + x12 + x13 >= 150;x11 + x12 + x13 <= 170

x21 + x22 + x23 >= 160;x21 + x22 + x23 <= 190
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x31 + x32 + x33 >= 120;x31 + x32 + x33 <= 130

x11 + x21 + x31 >= 145x11 + x21 + x31 <= 165;

x12 + x22 + x32 >= 150;x12 + x22 + x32 <= 170

x13 + x23 + x33 >= 135;x13 + x23 + x33 <= 155

xij ≥ 0, i = 1, 2, 3; j = 1, 2, 3. (21)

Then solved by Model 6 by Lingo package we have the following result: λ = 1.0, Z1
R = 308.6, Z1

C = 304.3,
Z2
R = 347.53, Z2

C = 346.13, x11 = 150, x22 = 150, x23 = 10, x33 = 125.

Example 2. The data is collected by a person who supplies products to different companies after tacking
different sources. There are three different suppliers(origins) named as O1, O2, O3 and three different desti-
nations namely D1, D2, D3. How much amount of materials be supplied from different sources to all other
destinations so that transportation cost(s) are minimum. Data are given below in the following Table 5 and
Table 6. Consider a 2-vehicle cost varying transportation problem as

Table 5: Lower bounds of cost intervals of the vehicles of Example 2

D1 D2 D3 stock
O1 5, 7 4, 6 9, 11 [60, 90]
O2 2, 3 6, 8 7, 9 [40, 80]
O3 3, 4 10, 12 4, 6 [20, 30]
Demand [50, 70] [40, 50] [30, 80]

Table 6: Upper bounds of cost intervals of the vehicles of Example 2

D1 D2 D3 stock
O1 10, 12 11, 13 12, 14 [60, 90]
O2 8, 10 6, 9 5, 7 [40, 80]
O3 15, 18 14, 16 4, 6 [20, 30]
Demand [50, 70] [40, 50] [30, 80]

It is also given that there are two types of vehicle V1 and V2. For each r = 1, . . . ,K the cost of V1 from
source ‘i’ destination ‘j’ is Rr

ij(1) for a single trip. The cost of V2 from source ‘i’ destination ‘j’ is Rr
ij(2) for a

single trip. It is also given that the capacity of V1 is C1 = 10 and that of V2 is C2 = 20.
Then we have by Model 2.L

c1L11 = 7
20 , c

1
L12 = 12

40 , c
1
L13 = 9

10 , c
1
L21 = 6

30 , c
1
L22 = 15

30 , c
1
L23 = 7

10 , c
1
L31 = 7

20 , c
1
L32 = 12

40 , c
1
L33 = 17

20 ,

and

c2L11 = 34
50 , c

2
L12 = 11

10 , c
2
L13 = 12

10 , c
2
L21 = 20

30 , c
2
L22 = 15

30 , c
2
L23 = 5

10 , c
2
L31 = 18

20 , c
2
L32 = 16

20 , c
2
L33 = 6

20 .

Then we have by Model 2.R

c1R11 = 14
40 , c

1
R12 = 16

50 , c
1
R13 = 31

50 , c
1
R21 = 5

30 , c
1
L22 = 15

30 , c
1
L23 = 36

80 , c
1
L31 = 7

30 , c
1
L32 = 22

30 , c
1
L33 = 10

30 ,

and

c2R11 = 46
70 , c

2
R12 = 13

20 , c
2
R13 = 14

20 , c
2
R21 = 20

30 , c
2
L22 = 15

30 , c
2
L23 = 19

50 , c
2
L31 = 43

30 , c
2
L32 = 30

30 , c
2
L33 = 10

13 .

So, interval cij of interval TP determined as crij ∈ [min{crLij , c
r
Rij},max{crLij , c

r
Rij}] i.e., we have

c111 ∈ [ 7
20 ,

14
20 ], c112 ∈ [ 1240 ,

16
50 ], c113 ∈ [ 3150 ,

9
10 ], c121 ∈ [ 5

30 ,
20
30 ], c122 ∈ [ 1530 ,

15
30 ],

c123 ∈ [ 3680 ,
7
10 ], c131 ∈ [ 7

30 ,
7
10 ], c132 ∈ [ 1240 ,

22
30 ], c133 ∈ [ 1030 ,

17
20 ],

and

c211 ∈ [ 4670 ,
34
50 ], c212 ∈ [ 1320 ,

11
10 ], c213 ∈ [ 1420 ,

9
10 ], c221 ∈ [ 2030 ,

20
30 ], c222 ∈ [ 1530 ,

15
30 ],
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c223 ∈ [ 1950 ,
5
10 ], c231 ∈ [ 1820 ,

43
30 ], c232 ∈ [ 1620 ,

30
30 ], c233 ∈ [ 6

20 ,
10
13 ].

Then we formulate cost varying interval TP by Model 4 which is Model 9.
Model 9

min Z1
R(x) = (0.35 + 0.525) ∗ x11 + (0.02 + 0.31) ∗ x12 + (0.28 + 0.76) ∗ x13

+ (0.5 + 0.42) ∗ x21 + (0.0 + 0.5) ∗ x22 + (0.25 + 0.575) ∗ x23
+ (0.47 + 0.47) ∗ x31 + (0.43 + 0.516) ∗ x32 + (0.52 + 0.592) ∗ x33

min Z1
C(x) = (0.0 + 0.525) ∗ x11 + (0.0 + 0.31) ∗ x12 + (0.0 + 0.76) ∗ x13

+ (0.0 + 0.42) ∗ x21 + (0.0 + 0.5) ∗ x22 + (0.0 + 0.575) ∗ x23
+ (0.0 + 0.47) ∗ x31 + (0.0 + 0.516) ∗ x32 + (0.0 + 0.592) ∗ x33

min Z2
R(x) = (0.023 + 0.669) ∗ x11 + (0.45 + 0.875) ∗ x12 + (0.2 + 0.8) ∗ x13

+ (0.0 + 0.667) ∗ x21 + (0.0 + 0.5) ∗ x22 + (0.12 + 0.44) ∗ x23
+ (0.533 + 1.16) ∗ x31 + (0.2 + 0.9) ∗ x32 + (0.469 + 0.535) ∗ x33

min Z2
C(x) = (0.0 + 0.669) ∗ x11 + (0.0 + 0.875) ∗ x12 + (0.0 + 0.8) ∗ x13

+ (0.0 + 0.667) ∗ x21 + (0.0 + 0.5) ∗ x22 + (0.0 + 0.44) ∗ x23
+ (0.0 + 1.16) ∗ x31 + (0.0 + 0.9) ∗ x32 + (0.0 + 0.535) ∗ x33

x11 + x12 + x13 >= 60;x11 + x12 + x13 <= 90

x21 + x22 + x23 >= 40;x21 + x22 + x23 <= 80

x31 + x32 + x33 >= 20;x31 + x32 + x33 <= 30

x11 + x21 + x31 >= 50;x11 + x21 + x31 <= 70

x12 + x22 + x32 >= 40;x12 + x22 + x32 <= 50

x13 + x23 + x33 >= 30;x13 + x23 + x33 <= 80

xij ≥ 0, i = 1, 2, 3; j = 1, 2, 3. (22)

Then solved by Model 6 by Lingo package we have the following result λ = 0.896023, Z1
R = 96.00, Z1

C =
64.37989, Z2

R = 120.288, Z2
C = 91.00, x11 = 45.40, x12 = 36.12, x22 = 13.89, x23 = 19.35, x31 = 4.6,

x33 = 15.4.

5 Conclusion

In this paper we have presented a solution procedure of cost varying interval transportation problem under
two vehicles. Here the source and destination parameters are considered as intervals. Initially, depending on
cost of vehicles we determine interval of the parameter of the objective function, and the problem is converted
into classical single objective interval transportation problem. Then this model converted to a bi-objective
transportation problem, one is the right limit and other is center of the objective which are minimized.

To obtain the solution of this bi-objective model, the fuzzy programming technique is used. Here different
types of membership functions may be used (like, linear, hyperbolic, exponential). But we use only linear
membership function.
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