
28628628628628620

Journal of Uncertain Systems

Vol.9, No.4, pp.286-305, 2015

Online at: www.jus.org.uk

Two-Layer Perceptron for Classifying Flat Scaled-Turned-Shifted

Objects by Additional Feature Distortions in Training

Vadim V. Romanuke
*

 Department of Applied Mathematics and Social Informatics, Khmelnitskiy National University,

Institutskaya str., 11, 29016, Khmelnitskiy,Ukraine

Received 25 December 2013; Revised 2 August 2015

Abstract

A problem of classifying diversely distorted objects is considered. These objects are modeled as flat scaled-turned-

shifted objects. In order to substitute complicated and slow deep learning architectures, two-layer perceptron is tried to

be a classifier. For this, the perceptron classifier is trained by a specific embedding into the training process. The

embedding is additional feature distortions regularizing the training so that it makes the perceptron classify diversely

distorted objects more accurately. In classifying 60×80 monochrome images of 26 enlarged capital letters, an

appropriately trained perceptron is identified which performs with less than 4% of errors at medium intensity of

distortions. The perceptron keeps its high-accurate classification capabilities if total number of object features and

classes’ number are different from those 4800 and 26, respectively. Furthermore, unlike deep learning classifiers, two-

layer perceptron can take just about half a minute to classify 10000 diversely distorted objects.

© 2015 World Academic Press, UK. All rights reserved.

Keywords: classification of diversely distorted objects, deep learning classifiers, two-layer perceptron, training set,

classification error percentage

1 Introduction

Object classification is a great part of global automatization problem. Classifiers are required to be light, simple, and

rapid. In classification of diversely distorted objects (DDO), the classifier’s simplicity and rapidity are contrary ones

standing against each other. Typically, DDO are 2D or 3D data which usually can be imaged. DDO constitute

majority among static objects to be classified.

For the present-day paradigm, DDO are classified accurately just by deep learning classifiers (DLC). The high

accuracy of DLC is ensured due to that they are based on sets of algorithms that attempt to model high-level

abstractions in data by using model architectures, with complex structures or otherwise, composed of multiple

nonlinear transformations [39, 28]. Various deep learning architectures such as deep neural networks, convolutional

deep neural networks, deep belief networks and recurrent neural networks have been successfully applied to DDO

classification [10, 51, 19, 37, 4]. Particularly, neocognitron [14, 15] performing perfectly over 2D objects distorted in

diverse ways [18, 19], is used for optical and handwritten character recognition [16, 17]. Cresceptron being a cascade

of many layers similar to neocognitron is used for performing 3D object recognition directly from cluttered scenes

[47].

However, DLC is too complicated to be rapid over large-scale data [13, 32, 41]. And their training lasts too long

as well [20, 32]. Contrariwise, two-layer perceptron (TLP) is much lighter, and classifiers of this type are fast enough

[23, 2]. But TLP has, commonly, low-accuracy performance over DDO. Thus, highly accurate DLC stand against

rapid TLP classifiers. Nevertheless, this is not only accuracy against rapidity. Here also heavily complicated

architecture of DLC is contrasted with simplicity of TLP. So, the motivation is to identify the TLP classifier whose

accuracy over DDO would be nearly comparable to high-accuracy performance of DLC so that accuracy, rapidity,

and simplicity coalesce. This seems realizable according to the known universal approximation theorem for neural

networks (UATNN) [5, 6, 25, 40, 12, 8, 48, 44, 30]. The UATNN states that every continuous function that maps

* Corresponding author.

Email: romanukevadimv@mail.ru (V.V. Romanuke).

Journal of Uncertain Systems, Vol.9, No.4, pp.286-305, 2015

287

intervals of real numbers to some output interval of real numbers can be approximated arbitrarily closely by a TLP.

This result holds for a wide range of activation functions, e. g. for the sigmoid functions [11, 1, 9].

2 Antecedent Problems of Static DDO Classification

Preprocessing, a special procedure [35, 43, 3, 24], precedes the static DDO classification. This procedure aims at

reduction of redundant object features — constant data, borders, repeating fragments, etc. Another problem, standing

before classification, is segmentation of a field of those objects [49, 45, 31] to be classified. The segmentation is

accomplished by a criterion aiming at selecting the objects within the field rationally, without regions not relating to

those objects [29, 46]. If preprocessing and segmentation are accomplished inaccurately, a DLC is constructed more

complicated and retarding [19, 20, 47, 10, 39, 42]. TLP is never dependent upon these antecedent problems of static

DDO classification. It’s an argument in favor of classifying DDO by TLP.

3 Restrictions of DLC in Static DDO Classification

Further TLP favoring argumentation comes out from that operation speed of DLC is low and depends stronger on the

total number of object features (TNOF). DLC don’t work on smaller hard disk space and memory [39, 47, 10, 42, 20].

And as TNOF increases, DLC slow down distinctly [4, 19, 47, 34, 51].

These restrictions of DLC in static DDO classification don’t concern TLP. For classifying DDO with acceptable

accuracy, TLP needs special training process [21, 50]. Only after TLP is successfully trained [50, 27, 36], its low

resources consumption, independence upon antecedent problems of static DDO classification, and rapidity are

making sense.

4 Goal and Tasks

When the TLP hidden layer neuron number is assigned appropriately, classification capabilities of TLP are fully

determined with the TLP training process [23, 7, 21, 27, 22]. Therefore, the TLP training process is to be adjusted and

optimized for getting its maximal performance in classifying DDO.

For presenting a DDO deeper, we need to try a few types of distortion simultaneously. Owing to that distortions

(deformations) of a flat image are well-visible and best-comprehensible, the flat monochrome image (FMI) is an

eminently suitable model of the object.

There are five types of FMI distortion: pixel noise, pixel inversion, scaling, turning (rotation or angulation), and

shift. These types are cited in order of complexity in training the TLP. Pixel noise (inversion) distortion is surmounted

successfully by the trained TLP [23, 38]. Scaled, turned, or shifted FMI by the greater TNOF are classified much

worse. Any of these distortion types requires a specific embedding into the TLP training process. The embedding

shall relate to the corresponding distortion type.

The final goal is to identify the TLP classifier which would be capable to substitute DLC in classifying DDO.

Flat scaled-turned-shifted objects (FSTSO) will emulate those DDO. And FSTSO are scaled-turned-shifted

monochrome images (STSMI). They may be scaled-turned-shifted in diverse ratios and ways.

We are to reach the goal in the following steps:

1. The general totality of objects is defined. TNOF shall be within the medium range.

2. Models of DDO as FSTSO are stated. These models are pixel-distorted monochrome images (PDMI), STSMI,

and pixel-distorted STSMI (PDSTSMI).

3. TLP structure is stated.

4. PDMI-trained TLP is checked once again that it cannot classify STSMI or PDSTSMI.

5. TLP is checked out whether it can be trained with STSMI. If there is a fail in this, then TLP is going to be

trained with PDSTSMI. And the part of STSMI within the training set of PDSTSMI is increased until the near-

minimal classification error percentage (CEP) in classifying STSMI is maintained. In this way, we are to make

gradual transition from PDMI-trained TLP to PDSTSMI-trained TLP.

6. Conclusion to effectiveness of PDSTSMI-trained TLP for classifying STSMI is to be made. The effectiveness

is understood that the identified TLP classifier is capable to substitute DLC in classifying FSTSO which model DDO.

Notices about peculiar training process and specific ratio for types of distortion are to be included.

V.V. Romanuke: Two-Layer Perceptron for Classifying Flat Scaled-Turned-Shifted Objects

288

5 General Totality of Objects to be Classified

The medium range of TNOF implies a few thousands of those features, at which DLC are pretty complicated and

slow. At the same time, classification results are naturally desired to be obtained both as fast as possible and

appropriate. Also number of classes in the general totality must be moderate. While training and testing, a medium

TNOF and a moderate number of classes prevent lingering the investigation processes. Therefore, let FMI be the

enlarged English alphabet capital letter of the format 60 80 , making up 26 classes. And let FMI be presented with

60 80 matrix of ones and zeros. Thus, the general totality of 60 80 matrices of ones and zeros is constituted from
48002 FMI, where STSMI exist as well.

6 Models of DDO

In the general case, monochrome Y W image is presented as a Y W matrix. For \ 1Q classes, let

 q

q uv
Y W

a

A be the matrix of elements 0, 1
q

uva by 1,q Q that maps the non-distorted representative of the

th-q class. Henceforward any class representative as a Y W matrix is reshaped into Y W -length-column. Our

investigations are going to be carried out from MATLAB environment, wherein the white color is coded with ones, and

the black color is coded with zeros (Figure 1).

Figure 1: Non-distorted 60 80 FMI of the letters ―J‖, ―R‖, ―V‖, ―Y‖, based on the respective 60 80 matrices

 10 18 22 25, , ,A A A A and viewed from within MATLAB

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

5

10

15

20

25

30

35

40

45

50

55

60

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

5

10

15

20

25

30

35

40

45

50

55

60

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

5

10

15

20

25

30

35

40

45

50

55

60

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

5

10

15

20

25

30

35

40

45

50

55

60

Journal of Uncertain Systems, Vol.9, No.4, pp.286-305, 2015

289

An interesting fact is that FMI is not the continuous black cast on the continuous white background. Regular

crosshatching pixel black-into-white inversions throughout the letter cast are seen in Figure 1. Thus, the initial pixel

inversion distortion (binary feature inversion distortion) is already put into non-distorted representatives.

6.1 Model of PDMI

For the PDMI training process, all the representatives as Y W -length-columns are concatenated horizontally. The

Q non-distorted representatives are concatenated into the matrix
 jq Y W Q

a

A , where its th-q column is the

column-reshaped representative of the th-q class. The model of PDMI is in forming the matrix

-PDMI

PDMI

k k

jq
Y W Q

a

A of Q pixel-distorted representatives (each for its class) through the addition

 PDMI pixel

k k
 A A Ξ (1)

by standard deviation (SD)

max

pixel pixel

k k

F
 1,k F (2)

and its maximum
max

pixel 0 at Y W Q matrix Ξ of values of normal variate (NV) with zero expectation and

unit variance (ZEUV), where F . The assignment (2) gives the pixel noise SD on the th-k step of forming F

matrices PDMI
1

F
k

k
A .

For accomplishing the training process we use the good-proven MATLAB training function ―traingda‖ as one of

the fastest training functions for TLP which is trained with backpropagation algorithm [33, 27]. In the PDMI training

process, the input of TLP is fed with the training set

 PDMI

PDMI11 1
,

C F FC k

i li k

P A A (3)

of C replicas of matrix A of non-distorted representatives and F matrices of PDMI by the set of identifiers

(targets)

11

C F C F

i ii

T I (4)

with identity Q Q matrix I . The set (3), being formed by (1) and (2), is passed through TLP with targets (4) for

passJ times.

6.2 Model of STSMI

By the model of STSMI, the image successively is scaled, turned, and shifted. Such succession is necessary because it

is running from the easy-to-model distortion type towards the worst distortion type.

A scaled image is formed by means of the MATLAB function ―imresize‖. The map , implementing this function

partly, is applied to the image qA as

 S

scale,
k

q qk A A (5)

with the scale coefficient scale

k
 by SD

max

scale scale

k k

F
 1,k F for

max

scale 0 . (6)

The scale coefficient

 scale scale scale 1
k k

k (7)

V.V. Romanuke: Two-Layer Perceptron for Classifying Flat Scaled-Turned-Shifted Objects

290

is determined by the value scale k of NV with ZEUV raffled at the th-k stage of STSMI set formation. If occurs

 scale 0
k

 then the corresponding NV with ZEUV is re-raffled until scale 0
k

 . The input image qA is

enlarged by scale

k
 times within the map (5) if scale 1

k
 ; the input image qA is reduced by

 scale

1
k

 times

within the map (5) if scale 1
k

 ; the input image qA remains non-scaled if scale 1
k

 .

Another NV with ZEUV is raffled at the th-k stage of STSMI set formation for turning the scaled image

 S

q kA . Its value turn k is used within the MATLAB function ―imrotate‖ implemented by the map . The

procedure of turning the scaled image S

q kA of the th-q class is stated implicitly as

 ST S

turn1 1 ,
k

q qk k A A , (8)

where the map in (8) along with the argument S
1 q kA takes the turn angle turn

k
 by SD

max

turn turn

k k

F
 1,k F for

max

turn 0 . (9)

Actually, the map (8) takes the negative (pixel-inverted FMI) of the scaled image S

q kA and rotates the input

image S
1 q kA by

 turn turn turn

180k k
k

 (10)

degrees around its center point. The image is turned in counterclockwise direction if turn 0
k

 ; for turn 0
k

the image is turned clockwise; for turn 0
k

 the image remains unturned. The map in (8) returns the image

which is inverted back.

Before shifting the scaled-turned image, it must have the source format Y W . By scale 1
k

 , the scaled-

turned image is the matrix ST

q kA of the intermediary format V H . The format of the matrices ST

q kA and

 S

q kA is the same. If scale 1
k

 then the scaled-turned image is cropped. If cropped, then lines of their numbers

 1, , 1 ,V VN Y N V (11)

and columns of their numbers

 1, , 1 ,H HN W N H (12)

in the matrix ST

q kA are discarded. The integers

1 sign

sign sign
2 2 2 2

V
V V

V Y V V
N

 (13)

and

1 sign

sign sign
2 2 2 2

H
H H

H W H H
N

 (14)

for (11) and (12) are calculated by the values ,V H of two independent NV with ZEUV raffled every time when

the function x returning the integer part of the number x is applied. If scale 1
k

 then V Y and H W ,

and the scaled-turned image is contoured rectangularly with the background white color. For making this, the matrix

 ST

q kA is padded from the left for

Journal of Uncertain Systems, Vol.9, No.4, pp.286-305, 2015

291

left

1 sign
sign sign

2 2 2 2

H
H

W H H H
N

 (15)

columns of ones and from the right for

 right leftN W H N (16)

columns of ones, and the matrix ST

q kA is padded from the top for

top

1 sign
sign sign

2 2 2 2

V
V

Y V V V
N

 (17)

lines of ones and from the bottom for

 bottom topN Y V N (18)

lines of ones.

The cropped or contoured scaled-turned image as Y W matrix ST q

q uv
Y W

k a k

A is shifted

horizontally and vertically. A shift constant consists of two components, horizontal and vertical, where SD

max

shift shift

k k

F
 1,k F and

max

shift 0 (19)

is used. For Y W image, the horizontal pixel shift (HPS) is

 shift hor

hor shift shift hor

1 sign

2

k

k k
W k W

s W k

 shift hor1 sign

2

k
W k W

W

 , (20)

where hor k is a value of NV with ZEUV raffled at the th-k stage of STSMI set formation for HPS, and 0 is

an HPS magnitude regulator. This regulator is used for vertical pixel shift (VPS) as well. Concurrently, VPS is

 shift ver

ver shift shift ver

1 sign

2

k

k k
Y k Y

s Y k

 shift ver1 sign

2

k
Y k Y

Y

 , (21)

where ver k is a value of NV with ZEUV raffled at the th-k stage of STSMI set formation for VPS. From

previous experience, 0.1, 0.05 or some about that for both (20) and (21).

Due to the horizontal shift, the matrix ST q

q uv
Y W

k a k

A is transformed into the matrix

 ST-HPS -HPSq

q uv
Y W

k a k

A . For hor shift 0
k

s elements of the matrix ST-HPS

q kA are

 -HPS
1

q

uva k for 1,u Y and hor shift1,
k

v s (22)

by

 -HPSq q

uv uta k a k at hor shift

k
t v s for 1,u Y and hor shift 1,

k
v s W . (23)

For hor shift 0
k

s elements of the matrix ST-HPS

q kA are

 -HPSq q

uv uta k a k at hor shift

k
t v s for 1,u Y and hor shift1,

k
v W s (24)

by

 -HPS
1

q

uva k for 1,u Y and hor shift 1,
k

v W s W . (25)

V.V. Romanuke: Two-Layer Perceptron for Classifying Flat Scaled-Turned-Shifted Objects

292

Clearly, for hor shift 0
k

s the th-q image is not shifted horizontally:

 -HPSq q

uv uva k a k for 1,u Y and 1,v W . (26)

After the horizontal shift, due to the vertical shift, the matrix ST-HPS

q kA is transformed into the matrix

 STSMI -STSMIq

q uv
Y W

k a k

A . For ver shift 0
k

s elements of the matrix STSMI

q kA are

 -STSMI -HPSq q

uv rva k a k at ver shift

k
r u s for ver shift1,

k
u Y s and 1,v W (27)

by

 -STSMI
1

q

uva k for ver shift 1,
k

u Y s Y and 1,v W . (28)

For ver shift 0
k

s elements of the matrix STSMI

q kA are

 -STSMI
1

q

uva k for ver shift1,
k

u s and 1,v W (29)

by

 -STSMI -HPSq q

uv rva k a k at ver shift

k
r u s for ver shift 1,

k
u s Y and 1,v W . (30)

Clearly, for ver shift 0
k

s the th-q horizontally shifted image is not shifted vertically:

 -STSMI -HPSq q

uv uva k a k for 1,u Y and 1,v W . (31)

After every image became an STSMI, matrices of all STSMI are column-reshaped and concatenated into the

matrix

-STSMI

STSMI

k k

jq
Y W Q

a

A , ready for including it into the training set or for adding the pixel noise distortion.

In the STSMI training process, the input of TLP is fed with the training set

 STSMI

STSMI11 1
,

C F FC k

i li k

P A A (32)

by targets (4), being passed through TLP for passJ times.

With scaling by (5) — (7), turning by (8) — (10), cropping or contouring by (11) — (18), shifting by (19) —

(31), the values of the corresponding SD in (6), (9), (19) are varied synchronously, like these SD are parts of a whole

SD for forming randomized STSMI. This is realized by setting a ratio between ultimate values
max

scale ,
max

turn ,

max

shift . The ratio is maintained for the current values scale , turn , shift .

6.3 Model of PDSTSMI

Model of PDSTSMI is in forming the matrix

-PDSTSMI

PDSTSMI

k k

jq
Y W Q

a

A through the addition

 PDSTSMI STSMI pixel

k k k
 A A Ξ (33)

by SD (2). And in the PDSTSMI training process, the input of TLP is fed with the training set

 PDSTSMI

PDSTSMI11 1
,

C F FC k

i li k

P A A (34)

by targets (4), being passed through TLP for passJ times.

The values of the corresponding SD in (2), (6), (9), (19) are varied synchronously, like these four SD are parts of

a whole SD for forming randomized PDSTSMI. This is realized similarly to the STSMI model by setting a ratio

between ultimate values
max

pixel ,
max

scale ,
max

turn ,
max

shift . The ratio is maintained for the current values pixel , scale ,

turn , shift .

Journal of Uncertain Systems, Vol.9, No.4, pp.286-305, 2015

293

7 TLP Structure

TLP as mathematical object consists of two matrices and two vectors:

TLPTLP TLP

1 1
, , ,jl lq HH H l qY W Q Q

bw z h

 (35)

by
TLPH neurons in TLP hidden layer. Matrices

 TLPY Wjl H
w

 and

TLP
lq H Q

z

 correspond to the input and hidden

layer, respectively. Vectors
TLP1l H

h

 and
1q Q

b

 contain their biases. For object features
1

Y W

j j
x

, the th-q output

neuron value is

TLP

1 1

H Y W

q j jl l lq q

l j

n x w h z b

 at 1,q Q (36)

by the logarithmic sigmoid transfer function (LSTF)

1

1 xx e

 . (37)

LSTF (37) is identically used in
TLPH hidden layer neurons and in Q output layer neurons. TLP classifier returns

the class number
*q according to that

 *
1,

argmax q
q Q

q n

 (38)

by (36).

For classifying FSTSO at bad distortions, it is sufficient to let
TLP 250H into the TLP structure. Besides, let

2C and 8F for the TLP training process, where two matrices and two vectors (35) are identified. The integer

passJ depends on types of distortions and their intensities. So, it shall be defined specifically.

8 Batch Testings of the Trained TLP

The trained TLP is tested on regular batch inputs. In this case, each class feeds the input of TLP for the same number

of times. A batch testing is Q inputs, where each class is represented. These FSTSO feed the input of TLP through a

range of a whole SD which defines intensities of distortions. To obtain statistically valid classification results, TLP

shall be tested on no less than 100 batch testings. By
testB batch testings, CEP is calculated as

test

*

1 1

error

test

100 sign

B Q

t

t q

q q q

p
Q B

 (39)

by the classifier’s response * tq q to the th-q class representative in the th-t batch at the input of TLP. The response

is determined as (38).

9 PDMI-Trained TLP for Classifying STSMI and PDSTSMI

Taken
max

pixel 1 , the integer pass 10J is excellently practiced for training TLP with PDMI [38], which performs

perfectly in classifying PDMI by the model (1) — (4). For seeing how PDMI-trained TLP classifies STSMI, let SD

ratio be drawn from the equalities

 shift scale turn5 5 at
max

shift 0.5 (40)

by 0.1 in (20) and (21). The equalities in (40) and 0.1 are assigned heuristically from previous experience.

The maximum SD in assignment (40) has been taken carefully minimal.

For visualizing classification results over STSMI, there is the abscissa axis as shift-distortion SD shift (Figure

2). We see in Figure 2 that CEP error shiftp over SD range 0; 0.5 increases intolerably. CEP over the segment

V.V. Romanuke: Two-Layer Perceptron for Classifying Flat Scaled-Turned-Shifted Objects

294

 0; 0.125 is nonlinear. It resembles some shape of LSTF running to saturation over the segment 0.075; 0.125 .

But starting off the point
shift 0.15 rightwards, the CEP increasing is quasi-linear. Figure 2 shows the predictable

fail of PDMI-trained TLP in classifying STSMI.

Figure 2: CEP error shiftp over SD range 0; 0.5 by SD ratio drawn from (40) in STSMI after fourfold 200 batch

testings of three PDMI-trained TLP; distortions of the letter ―A‖ due to (40) are exemplified at

 shift 0.125, 0.25, 0.375, 0.5 along the abscissa axis

Obviously, it is expected that PDMI-trained TLP cannot classify PDSTSMI. For checking how PDMI-trained

TLP classifies PDSTSMI, there is the heuristically assigned SD ratio drawn from the equalities

 shift scale turn pixel5 5 0.5 at
max

shift 0.5 (41)

0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5
0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

shift

 error shiftp

0.025 0.05 0.075 0.1 0.125 0.15

5

10

15

20

25

30

0 0.0250.050.0750.10.1250.150.1750.20.2250.250.2750.30.3250.350.3750.40.4250.450.4750.5
0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

TLP #1

TLP #2

TLP #3

Journal of Uncertain Systems, Vol.9, No.4, pp.286-305, 2015

295

by 0.1 in (20) and (21). For visualizing classification results over PDSTSMI, the abscissa axis is as shift-

distortion SD
shift (Figure 3). Figure 3 shows that the shape of error shiftp for PDSTSMI is almost repeated after

the shape of error shiftp for STSMI, saying that neither STSMI nor PDSTSMI can be classified by PDMI-trained

TLP.

Figure 3: CEP error shiftp over SD range 0; 0.5 by SD ratio drawn from (41) in PDSTSMI after fourfold 200

batch testings of three PDMI-trained TLP tested for Figure 2; distortions of the letter ―R‖ due

to (41) are exemplified at shift 0.125, 0.25, 0.375, 0.5 along the abscissa axis

Figures 2 and 3 prove that PDMI-trained TLP cannot classify STSMI or PDSTSMI, unless distortions are weak.

The distortion weakness is when shift 0.025 , what is very rare phenomenon. Hence, TLP is to be checked out

0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5
0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

shift

 error shiftp

0 0.0250.050.0750.10.1250.150.1750.20.2250.250.2750.30.3250.350.3750.40.4250.450.4750.5
0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

TLP #1

TLP #2

TLP #3

0.05 0.075 0.1 0.125 0.15

20

25

30

V.V. Romanuke: Two-Layer Perceptron for Classifying Flat Scaled-Turned-Shifted Objects

296

whether it can be trained with STSMI. Clearly, STSMI-trained TLP will be tested for classifying STSMI and

PDSTSMI over the spoken above SD range 0; 0.5 of the shift distortion. Classification of PDMI is of interest also.

10 STSMI-Trained TLP for Classifying STSMI

For training TLP with STSMI effectively, the integer passJ for the training set (32) should be increased up from

pass 10J . The training set (32) is formed by (40). Polylines in Figure 4 show that STSMI-trained TLP classifies

STSMI by (40) much better than PDMI-trained TLP does. CEP progressively decreases as passJ increases, but the

decrement progress early is fading out. By
shift 0.25 or about that, STSMI-trained TLP classifies STSMI at high

accuracy. Nevertheless, at higher SD, closer to
shift 0.5 point, STSMI-trained TLP classifies STSMI much worse.

Besides, the STSMI training process is some overextended, having passes with unmet goals on reaching minimum

gradient. Consequently, TLP cannot be trained with STSMI effectively, unless
shift 0.25 or passJ is increased

enough and distortions are weak.

Figure 4: CEP error shiftp over SD range 0; 0.5 by SD ratio drawn from (40) in STSMI

after three-times-200-batch-tested the STSMI-trained TLP

After the obvious fail, STSMI-trained TLP is not reckoned to be a classifier of PDSTSMI (Figure 5). However,

STSMI-trained TLP classifies PDMI quite good (Figure 6). But it’s not a purpose of long STSMI-training.

shift
0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

0.475 0.5

14

15

16

17

18

19

0.375 0.4 0.425 0.45 0.475 0.5
5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

0.475 0.5

16

17

18

19
 error shiftp

pass 25J

pass 20J

pass 15J

pass 10J

pass 15J

pass 15J
pass 20J

pass 20J

pass 25J

7.46 7.48 7.5 7.52 7.54 7.56 7.58

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

 pass 25J
pass 20J
pass 15J
pass 10J

Journal of Uncertain Systems, Vol.9, No.4, pp.286-305, 2015

297

Figure 5: CEP error shiftp over SD range 0; 0.5 by SD ratio drawn from (41) in PDSTSMI

after three-times-200-batch-tested the STSMI-trained TLP

Now TLP is going to be trained with PDSTSMI by increasing the part of STSMI within the training set (34).

That will be a try to use advantage of PDMI-trained TLP (in classifying PDMI) within PDSTSMI-trained TLP (for

classifying STSMI).

11 PDSTSMI-Trained TLP for Classifying STSMI, PDSTSMI, and PDMI

Figure 4 and Figure 5 convince us of necessity for increasing the integer passJ for the training set (34). Taken

pass 120J on that necessity, the part of STSMI within the training set (34) is increased twice, starting with the

equalities

 shift scale turn pixel5 5 0.125 at
max

pixel 1 . (42)

By (42), the part of STSMI is just 7 / 47 (the part of shift distortion is one eighth with respect to PDMI). Let the

increment of
max

shift be executed by

 shift scale turn pixel5 5 0.25 at
max

pixel 1 (43)

and

 shift scale turn pixel5 5 0.5 at
max

pixel 1 (44)

within the training set (34). Note, that the STSMI part increment is not twofold, as it might come in sight. By (43), the

part of STSMI is 7 / 27 . And by (44), the part of STSMI is 7 /17 . Further increment of the STSMI part lies in

forming the training set (34) by

 shift scale turn pixel5 5 4 at
max

pixel 0.125 , (45)

0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5
0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

shift

 error shiftp

0.225 0.25 0.275

1

2

3

4

7.46 7.48 7.5 7.52 7.54 7.56 7.58

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

 pass 25J
pass 20J
pass 15J
pass 10J

0.475 0.5

33

34

35

36

37

38

V.V. Romanuke: Two-Layer Perceptron for Classifying Flat Scaled-Turned-Shifted Objects

298

Figure 6: CEP error pixelp over SD range 0; 1 in PDMI after three-times-200-batch-tested the STSMI-trained

TLP; PDMI are exemplified at pixel 0.2, 0.4, 0.6, 0.8, 1 along the abscissa axis

where the part of PDMI is just 5 33 (rather than one fourth). Having tested the PDSTSMI-trained TLP with STSMI

by (40), PDSTSMI training set configurations (42) — (44) are revealed to be poor, but the configuration

 shift scale turn pixel5 5 4 at
max

pixel 0.25 (46)

proves to be even better than the configuration (45), not changing the PDMI part (Figure 7).

Figure 7 hints and it is experienced the ratio

 shift scale turn pixel5 5 4 (47)

at some
max

pixel 0.125 is the closely-best for classifying PDSTSMI. Thereafter, 33 TLP have been PDSTSMI-

trained at

 max

pixel 0.125, 0.1875, 0.25 (48)

and various passJ (Table 1) and tested (Figure 8). Then they are tested by

 shift scale turn5 5 at
max

shift 0.75 , (49)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

pixel

 error pixelp

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

7.46 7.48 7.5 7.52 7.54 7.56 7.58

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

 pass 25J
pass 20J
pass 15J
pass 10J

Journal of Uncertain Systems, Vol.9, No.4, pp.286-305, 2015

299

and only 14 TLP among these 33 classifiers perform accurately at error 0.5 4p (Figure 9), although CEP by

shift 0.5 is linearly increasing.

Figure 7: Gradual decrement of CEP error shiftp over SD range 0; 0.5 by SD ratio drawn from (40)

in STSMI, where configurations (42) — (46) of PDSTSMI training set (34) are applied
(TLP with the best-configured PDSTSMI training set has been tested triply)

Table 1: Configurations of PDSTSMI training set (34) in trying to identify a high-accurate TLP classifier

over STSMI

Number

of TLP
max

pixel
max

shift passJ
Number

of TLP
max

pixel
max

shift passJ
Number

of TLP
max

pixel
max

shift passJ

1 0.1875 0.75 280 12 0.1875 0.75 250 23 0.125 0.5 260

2 0.125 0.5 220 13 0.1875 0.75 300 24 0.25 1.0 120

3 0.25 1.0 210 14 0.1875 0.75 300 25 0.25 1.0 140

4 0.1875 0.75 100 15 0.1875 0.75 350 26 0.25 1.0 160

5 0.1875 0.75 150 16 0.1875 0.75 350 27 0.25 1.0 170

6 0.1875 0.75 200 17 0.125 0.5 210 28 0.25 1.0 180

7 0.1875 0.75 200 18 0.125 0.5 210 29 0.25 1.0 190

8 0.1875 0.75 210 19 0.125 0.5 220 30 0.25 1.0 200

9 0.1875 0.75 230 20 0.125 0.5 230 31 0.25 1.0 210

10 0.1875 0.75 230 21 0.125 0.5 240 32 0.25 1.0 220

11 0.1875 0.75 250 22 0.125 0.5 250 33 0.25 1.0 230

0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5
0

1
2

3
4
5

6
7
8

9
10
11

12
13
14

15
16
17

18
19
20

21
22
23

24
25

26
27
28

29
30
31

32
33
34

35

shift

 error shiftp

0.15 0.175 0.2 0.225 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

0.4 0.425 0.45 0.475 0.5

1.4
1.6
1.8

2
2.2
2.4
2.6
2.8

3
3.2
3.4
3.6
3.8

4
4.2
4.4
4.6
4.8

(46)

(45)

(44)

(43)

(42)

(45)

(46)

(46)(45)

(44)
(43)

(42)

V.V. Romanuke: Two-Layer Perceptron for Classifying Flat Scaled-Turned-Shifted Objects

300

Figure 8: Scattering of CEP error shiftp over SD range 0; 0.5 by SD ratio drawn from (40) in STSMI, where

each of 33 PDSTSMI-trained TLP (numbered in Table 1) has been 200-batch-tested

Comparison of Figure 9 and Figure 4 reports that PDSTSMI-trained TLP performance excels STSMI-trained

TLP performance. The performance is improved if
max

shift is increased: 15 TLP in Figure 9 have been PDSTSMI-

trained at
max

shift 0.75 and
max

shift 1 , while all the worst TLP in Figure 8 (except TLP #4, most likely, because of

100 passes) have been PDSTSMI-trained at
max

shift 0.5 . But increasing both
max

shift and
max

pixel impairs capability

to classify PDSTSMI by

 shift scale turn pixel5 5 0.5 at
max

shift 0.75 (50)

and, especially, PDMI (Figure 10 and Figure 11, respectively).

In particular, all the worst TLP in Figure 10 have been PDSTSMI-trained at
max

shift 1 . And each of 15

PDSTSMI-trained TLP in Figure 11 classifies PDMI. This implies that, for classifying STSMI, TLP should be trained

at greater
max

shift and
max

pixel holding their ratio about (47). On the other hand, if PDSTSMI or PDMI are classified,

TLP should be trained at lower
max

shift .

Consequently, if STSMI solely are expected, one of TLP #3, #27, #30, #31 numbered after Table 1 is suitable.

Figures 8 and 9 show that these TLP perform at error 0.5 3.75p and error 0.75 19.5p . Otherwise, if PDMI

distortions are unavoidable, then a compromise version is TLP #21, whose performance is better over PDSTSMI

(Figure 12) and PDMI (Figure 13). This classifier is coarser over STSMI, though (Figure 12).

 shift

 error shiftp

0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

2.75

3

3.25

3.5

3.75

4

4.25

4.5

4.75

5

5.25

5.5

5.75

6

6.25

6.5

6.75

7

7.25

7.5

7.75

8

8.25

8.5

8.75

9

0.475 0.5

3

3.25

3.5

3.75

4

4.25

4.5

4.75

5

5.25

5.5

5.75

6

6.25

6.5

6.75

7

7.25

7.5

7.75

8

8.25

8.5

8.75
17

23

18

19 22

2

20

21

4

24

7

16

15

29

6

33

5

25

9

28
10

14

8

3

27

31
13

26

32

12 1

11

30

Journal of Uncertain Systems, Vol.9, No.4, pp.286-305, 2015

301

Figure 9: CEP error shiftp over SD range 0; 0.75 by SD ratio drawn from (49) in STSMI, where each of 15

PDSTSMI-trained TLP (numbered in Table 1 and performing at lower CEP due to Figure 8)

has been 800-batch-tested

Eventually, operation speed of PDSTSMI-trained TLP is alright since it takes about 48 seconds to classify 10000

60 80 FSTSO on Intel® Core™ i3-4150 CPU @ 3.50GHz by 4 GB of RAM (64-bit Windows 7). When

parallelizing on two CPU cores, it takes 29 seconds. DLC and, particularly, neocognitron, on the similar system

perform slower [37, 26]. Though parallelization helps in acceleration of DLC, its cost and resources consumption

compared to TLP grow considerably.

12 Conclusion

Selection of a classifier over DDO addresses to coalescence of accuracy, rapidity, and simplicity. If FSTSO emulating

DDO are 60 80 STSMI, then using PDSTSMI-trained TLP #3, #27, #30, #31 is effective at any intensity of

distortions. If types of distortions are uncertain, the compromised TLP #21 is generally applicable. However, if the

PDMI part is slight, then PDSTSMI-trained TLP #3, #27, #30, #31 are suitable.

If DDO are FSTSO whose TNOF is about 4800 and classes’ number is about 26, then those listed TLP substitute

DLC as well. And by a-few-percent-deviation from 4800 and 26, CEP behavior (Figures 9, 10, 11, 12, 13) mustn’t

change excessively. This means TLP which is PDSTSMI-trained at
max

shift 1 by (47) is capable to substitute DLC in

classifying FSTSO, performing with 96 % accuracy at medium intensity of distortions (at shift 0.5 and the

respective magnitudes of related sigmas).

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

shift

 error shiftp

0.75
17.8

18

18.2

18.4

18.6

18.8

19

19.2

19.4

19.6

19.8

20

20.2

20.4

20.6

20.8

21

21.2

21.4

21.6

21.8

22

22.2

22.4

22.6

22.8

23

23.223.2

8

9

13

14

10

11

12

26

1
28

32

27

30

31

3

V.V. Romanuke: Two-Layer Perceptron for Classifying Flat Scaled-Turned-Shifted Objects

302

Figure 10: CEP error shiftp over SD range 0; 0.75 by SD ratio drawn from (50) in PDSTSMI, where each of 15

PDSTSMI-trained TLP in Figure 9 has been 800-batch-tested

Figure 11: Unsatisfactory CEP error pixelp over SD range 0; 1 in PDMI, where each of 15 PDSTSMI-trained

TLP in Figures 9 and 10 has been 800-batch-tested

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75
0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

46

48

50

52

54

56

58

60

62

64

66

68

70

72

shift

 error shiftp

0.725 0.75
61.5

62

62.5

63

63.5

64

64.5

65

65.5

66

66.5

67

67.5

68

68.5

69

69.5

70

70.5

71

71.5

72

72.5

73
26

30

28

31
3
27

32

9
14

13

1
10

8

12

11

pixel

 error pixelp

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Journal of Uncertain Systems, Vol.9, No.4, pp.286-305, 2015

303

Figure 12: Performance of TLP #21 (800-batch-tested)

over SD ranges 0; 0.75 in STSMI and PDSTSMI by

their SD ratios drawn from (49) and (50), respectively

Figure 13: Performance of TLP #21 (800-batch-tested)

over SD range 0; 1 in PDMI; the performance is three

times better than the best performance in Figure 11

Even if deviation from TNOF 4800 and 26Q is bigger, TLP should be trained with DDO by additional

feature distortions (AFD), the specific embedding into the TLP training process. AFD, implying the addition (33),

regularize the TLP training process in order to make TLP classify DDO more accurately like it classifies PDMI. This,

however, drags the training process longer. For non-flat objects, say, 3D objects (data) or multidimensional data, the

matrix Ξ is flat anyway whose elements are values of NV with ZEUV. And the matrix Ξ format is always L Q by

TNOF L .

Those good TLP for classifying FSTSO by AFD in training (#3, #21, #27, #30, #31) were obtained under SD

ratio (47), although this ratio is scarcely the best. CEP (39) depends both on distortion intensities and ratios between

them. Moreover,
max

pixel for the training set influences on CEP, so choosing
max

pixel mustn’t be necessarily according

to (48). Therefore, the ratio of sigmas could be improved by the criterion of CEP minimization. And this is a way to

identify a TLP classifier whose CEP is lower than error shiftp in Figure 9.

To advance the work in that way, a problem with three coefficients at sigmas

 shift scale turn pixel, , , (51)

in positive octant of three-dimensional Euclidean space is to be solved. The fourth coefficient is 1 at one of the

sigmas (51). The advanced PDSTSMI-trained TLP would be more effective over DDO. Further to effectiveness of

such TLP, an advanced TLP-based DLC could be configured, whose layers might be actually TLP optimized and

trained by AFD.

Acknowledgments

This work was technically supported by the Center of parallel computations at Khmelnitskiy National University,

Ukraine.

References

[1] Anastassiou, G.A., Multivariate sigmoidal neural network approximation, Neural Networks, vol.24, no.4, pp.378–386, 2011.

shift

 error shiftp

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75
0

5

10

15

20

25

30

35

40

45

50

55

60

PDSTSMI

STSMI

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

pixel

 error pixelp

V.V. Romanuke: Two-Layer Perceptron for Classifying Flat Scaled-Turned-Shifted Objects

304

[2] Arulampalam, G., and A. Bouzerdoum, A generalized feedforward neural network architecture for classification and

regression, Neural Networks, vol.16, nos.5–6, pp.561–568, 2003.

[3] Asadi, S., Hadavandi, E., Mehmanpazir, F., and M.M. Nakhostin, Hybridization of evolutionary Levenberg—Marquardt

neural networks and data pre-processing for stock market prediction, Knowledge-Based Systems, vol.35, pp.245–258, 2012.

[4] Bai, J., Wu, Y., Zhang, J., and F. Chen, Subset based deep learning for RGB-D object recognition, Neurocomputing, vol.165,

pp.280–292, 2015.

[5] Bordignon, F., and F. Gomide, Uninorm based evolving neural networks and approximation capabilities, Neurocomputing,

vol.127, pp.13–20, 2014.

[6] Cao, F., Lin, S., and Z. Xu, Approximation capability of interpolation neural networks, Neurocomputing, vol.74, nos.1–3,

pp.457–460, 2010.

[7] Castillo, P.A., Merelo, J.J., Arenas, M.G., and G. Romero, Comparing evolutionary hybrid systems for design and

optimization of multilayer perceptron structure along training parameters, Information Sciences, vol.177, no.14, pp.2884–

2905, 2007.

[8] Chairez, I., Finite time convergent learning law for continuous neural networks, Neural Networks, vol.50, pp.175–182, 2014.

[9] Chen, Z., Cao, F., and J. Hu, Approximation by network operators with logistic activation functions, Applied Mathematics

and Computation, vol.256, pp.565–571, 2015.

[10] Cireşan, D., Meier, U., Masci, J., and J. Schmidhuber, Multi-column deep neural network for traffic sign classification,

Neural Networks, vol.32, pp.333–338, 2012.

[11] Costarelli, D., and R. Spigler, Approximation results for neural network operators activated by sigmoidal functions, Neural

Networks, vol.44, pp.101–106, 2013.

[12] Costarelli, D., and R. Spigler, Convergence of a family of neural network operators of the Kantorovich type, Journal of

Approximation Theory, vol.185, pp.80–90, 2014.

[13] Fan, J., Zhang, J., Mei, K., Peng, J., and L. Gao, Cost-sensitive learning of hierarchical tree classifiers for large-scale image

classification and novel category detection, Pattern Recognition, vol.48, no.5, pp.1673–1687, 2015.

[14] Fukushima, K., Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by

shift in position, Biological Cybernetics, vol.36, no.4, pp.193–202, 1980.

[15] Fukushima, K., Neural network model for selective attention in visual pattern recognition and associative recall, Applied

Optics, vol.26, no.23, pp.4985–4992, 1987.

[16] Fukushima, K., Neocognitron: a hierarchical neural network capable of visual pattern recognition, Neural Networks, vol.1,

no.2, pp.119–130, 1988.

[17] Fukushima, K., Neocognitron for handwritten digit recognition, Neurocomputing, vol.51, pp.161–180, 2003.

[18] Fukushima, K., Increasing robustness against background noise: visual pattern recognition by a neocognitron, Neural

Networks, vol.24, no.7, pp.767–778, 2011.

[19] Fukushima, K., Artificial vision by multi-layered neural networks: neocognitron and its advances, Neural Networks, vol.37,

pp.103–119, 2013.

[20] Fukushima, K., Training multi-layered neural network neocognitron, Neural Networks, vol.40, pp.18–31, 2013.

[21] Hagan, M.Т., and M.B. Menhaj, Training feedforward networks with the Marquardt algorithm, IEEE Transactions on Neural

Networks, vol.5, no.6, pp.989–993, 1994.

[22] Hagiwara, K., Hayasaka, T., Toda, N., Usui, S., and K. Kuno, Upper bound of the expected training error of neural network

regression for a Gaussian noise sequence, Neural Networks, vol.14, no.10, pp.1419–1429, 2001.

[23] Haykin, S., Neural Networks: A Comprehensive Foundation, Prentice Hall, New Jersey, 1999.

[24] Huang, J., Li, Y.-F., and M. Xie, An empirical analysis of data preprocessing for machine learning-based software cost

estimation, Information and Software Technology, vol.67, pp.108–127, 2015.

[25] Ismailov, V.E., On the approximation by neural networks with bounded number of neurons in hidden layers, Journal of

Mathematical Analysis and Applications, vol.417, no.2, pp.963–969, 2014.

[26] Kangin, D., Kolev, G., and A. Vikhoreva, Further parameters estimation of neocognitron neural network modification with

FFT convolution, Journal of Telecommunication, Electronic and Computer Engineering, vol.4, no.2, pp.21–26, 2012.

[27] Kathirvalavakumar, T., and S. Jeyaseeli Subavathi, Neighborhood based modified backpropagation algorithm using adaptive

learning parameters for training feedforward neural networks, Neurocomputing, vol.72, nos.16–18, pp.3915–3921, 2009.

Journal of Uncertain Systems, Vol.9, No.4, pp.286-305, 2015

305

[28] Kim, S., Choi, Y., and M. Lee, Deep learning with support vector data description, Neurocomputing, vol.165, pp.111–117,

2015.

[29] Lillo-Castellano, J.M., Mora-Jiménez, I., Figuera-Pozuelo, C., and J.L. Rojo-Álvarez, Traffic sign segmentation and

classification using statistical learning methods, Neurocomputing, vol.153, pp.286–299, 2015.

[30] Lin, S., Rong, Y., and Z. Xu, Multivariate Jackson-type inequality for a new type neural network approximation, Applied

Mathematical Modelling, vol.38, no.24, pp.6031–6037, 2014.

[31] Ma, J., Zheng, L., Dong, M., He, X., Guo, M., Yaguchi, Y., and R. Oka, A segmentation-free method for image classification

based on pixel-wise matching, Journal of Computer and System Sciences, vol.79, no.2, pp.256–268, 2013.

[32] Mei, K., Dong, P., Lei, H., and J. Fan, A distributed approach for large-scale classifier training and image classification,

Neurocomputing, vol.144, pp.304–317, 2014.

[33] Moller, M.F., A scaled conjugate gradient algorithm for fast supervised learning, Neural Networks, vol.6, no.4, pp.525–533,

1993.

[34] Mrazova, I., and M. Kukacka, Can deep neural networks discover meaningful pattern features?, Procedia Computer Science,

vol.2, pp.194–199, 2012.

[35] Nawi, N.M., Atomi, W.H., and M.Z. Rehman, The effect of data pre-processing on optimized training of artificial neural

networks, Procedia Technology, vol.11, pp.32–39, 2013.

[36] Plaza, J., Plaza, A., Perez, R., and P. Martinez, On the use of small training sets for neural network-based characterization of

mixed pixels in remotely sensed hyperspectral images, Pattern Recognition, vol.42, no.11, pp.3032–3045, 2009.

[37] Poli, G., and J.H. Saito, Parallel face recognition processing using neocognitron neural network and GPU with CUDA high

performance architecture, Face Recognition, edited by Milos Oravec, InTech, Rijeka, Croatia, pp.381–404, 2010.

[38] Romanuke, V.V., Setting the hidden layer neuron number in feedforward neural network for an image recognition problem

under Gaussian noise of distortion, Computer and Information Science, vol.6, no.2, pp.38–54, 2013.

[39] Schmidhuber, J., Deep learning in neural networks: an overview, Neural Networks, vol.61, pp.85–117, 2015.

[40] Shao, H., Wang, J., Liu, L., Xu, D., and W. Bao, Relaxed conditions for convergence of batch BPAP for feedforward neural

networks, Neurocomputing, vol.153, pp.174–179, 2015.

[41] Shao, Y.-H., Wang, Z., Yang, Z.-M., and N.-Y. Deng, Weighted linear loss support vector machine for large scale problems,

Procedia Computer Science, vol.31, pp.639–647, 2014.

[42] Siniscalchi, S.M., Yu, D., Deng, L., and C.-H. Lee, Exploiting deep neural networks for detection-based speech recognition,

Neurocomputing, vol.106, pp.148–157, 2013.

[43] Tsoi, A.C., and A. Back, Static and dynamic preprocessing methods in neural networks, Engineering Applications of Artificial

Intelligence, vol.8, no.6, pp.633–642, 1995.

[44] Wang, L., and T. Chen, Multistability and complete convergence analysis on high-order neural networks with a class of

nonsmooth activation functions, Neurocomputing, vol.152, pp.222–230, 2015.

[45] Wei, W., and Y. Xin, Rapid, man-made object morphological segmentation for aerial images using a multi-scaled, geometric

image analysis, Image and Vision Computing, vol.28, no.4, pp.626–633, 2010.

[46] Wei, X., Phung, S.L., and A. Bouzerdoum, Object segmentation and classification using 3-D range camera, Journal of Visual

Communication and Image Representation, vol.25, no.1, pp.74–85, 2014.

[47] Weng, J., Ahuja, N., and T.S. Huang, Learning recognition and segmentation using the cresceptron, International Journal of

Computer Vision, vol.25, no.2, pp.109–143, 1997.

[48] Xu, D., Zhang, H., and D.P. Mandic, Convergence analysis of an augmented algorithm for fully complex-valued neural

networks, Neural Networks, vol.69, pp.44–50, 2015.

[49] You, J., and H.A. Cohen, Classification and segmentation of rotated and scaled textured images using texture ―tuned‖ masks,

Pattern Recognition, vol.26, no.2, pp.245–258, 1993.

[50] Yu, C., Manry, M.T., Li, J., and P.L. Narasimha, An efficient hidden layer training method for the multilayer perceptron,

Neurocomputing, vol.70, nos.1–3, pp.525–535, 2006.

[51] Zhang, Y., Li, X., Zhang, Z., Wu, F., and L. Zhao, Deep learning driven blockwise moving object detection with binary scene

modeling, Neurocomputing, vol.168, pp.454–463, 2015.

	JUS-9-4-1.pdf
	Introduction
	The Mean-Standard Deviation CLSC Problem
	Model Analysis
	Numerical Experiment
	Conclusions

	jus-9-4-6.pdf
	Introduction
	 Mathematical Formulation
	Multi-objective Interval Transportation Problem(MOITP)
	N-Vehicle Cost Varying Multi-objective Transportation Problem
	Determination of cLijr
	Determination of crRij
	Multi-level Mathematical Programming for Cost Varying Multi-objective Interval Transportation Problem under N-Vehicle (CVMOITPNV)

	Solution Procedure of CVMOITPNV
	Some Definitions
	Formulation of the Crisp Objective Function
	Fuzzy Programming Technique to Solve Model 4
	Fuzzy Programming Technique with Linear Membership Function
	Fuzzy Programming Technique with Exponential Membership Function

	Numerical Examples
	Conclusion

