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Abstract 

 

A problem of classifying diversely distorted objects is considered. These objects are modeled as flat scaled-turned-

shifted objects. In order to substitute complicated and slow deep learning architectures, two-layer perceptron is tried to 

be a classifier. For this, the perceptron classifier is trained by a specific embedding into the training process. The 

embedding is additional feature distortions regularizing the training so that it makes the perceptron classify diversely 

distorted objects more accurately. In classifying 60×80 monochrome images of 26 enlarged capital letters, an 

appropriately trained perceptron is identified which performs with less than 4% of errors at medium intensity of 

distortions. The perceptron keeps its high-accurate classification capabilities if total number of object features and 

classes’ number are different from those 4800 and 26, respectively. Furthermore, unlike deep learning classifiers, two-

layer perceptron can take just about half a minute to classify 10000 diversely distorted objects.  

© 2015 World Academic Press, UK. All rights reserved.  

Keywords: classification of diversely distorted objects, deep learning classifiers, two-layer perceptron, training set, 

classification error percentage 

 

1 Introduction 
 

Object classification is a great part of global automatization problem. Classifiers are required to be light, simple, and 

rapid. In classification of diversely distorted objects (DDO), the classifier’s simplicity and rapidity are contrary ones 

standing against each other. Typically, DDO are 2D or 3D data which usually can be imaged. DDO constitute 

majority among static objects to be classified. 

For the present-day paradigm, DDO are classified accurately just by deep learning classifiers (DLC). The high 

accuracy of DLC is ensured due to that they are based on sets of algorithms that attempt to model high-level 

abstractions in data by using model architectures, with complex structures or otherwise, composed of multiple 

nonlinear transformations [39, 28]. Various deep learning architectures such as deep neural networks, convolutional 

deep neural networks, deep belief networks and recurrent neural networks have been successfully applied to DDO 

classification [10, 51, 19, 37, 4]. Particularly, neocognitron [14, 15] performing perfectly over 2D objects distorted in 

diverse ways [18, 19], is used for optical and handwritten character recognition [16, 17]. Cresceptron being a cascade 

of many layers similar to neocognitron is used for performing 3D object recognition directly from cluttered scenes 

[47]. 

However, DLC is too complicated to be rapid over large-scale data [13, 32, 41]. And their training lasts too long 

as well [20, 32]. Contrariwise, two-layer perceptron (TLP) is much lighter, and classifiers of this type are fast enough 

[23, 2]. But TLP has, commonly, low-accuracy performance over DDO. Thus, highly accurate DLC stand against 

rapid TLP classifiers. Nevertheless, this is not only accuracy against rapidity. Here also heavily complicated 

architecture of DLC is contrasted with simplicity of TLP. So, the motivation is to identify the TLP classifier whose 

accuracy over DDO would be nearly comparable to high-accuracy performance of DLC so that accuracy, rapidity, 

and simplicity coalesce. This seems realizable according to the known universal approximation theorem for neural 

networks (UATNN) [5, 6, 25, 40, 12, 8, 48, 44, 30]. The UATNN states that every continuous function that maps 
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intervals of real numbers to some output interval of real numbers can be approximated arbitrarily closely by a TLP. 

This result holds for a wide range of activation functions, e. g. for the sigmoid functions [11, 1, 9]. 

 

2 Antecedent Problems of Static DDO Classification 
 

Preprocessing, a special procedure [35, 43, 3, 24], precedes the static DDO classification. This procedure aims at 

reduction of redundant object features — constant data, borders, repeating fragments, etc. Another problem, standing 

before classification, is segmentation of a field of those objects [49, 45, 31] to be classified. The segmentation is 

accomplished by a criterion aiming at selecting the objects within the field rationally, without regions not relating to 

those objects [29, 46]. If preprocessing and segmentation are accomplished inaccurately, a DLC is constructed more 

complicated and retarding [19, 20, 47, 10, 39, 42]. TLP is never dependent upon these antecedent problems of static 

DDO classification. It’s an argument in favor of classifying DDO by TLP. 

 

3 Restrictions of DLC in Static DDO Classification 
 

Further TLP favoring argumentation comes out from that operation speed of DLC is low and depends stronger on the 

total number of object features (TNOF). DLC don’t work on smaller hard disk space and memory [39, 47, 10, 42, 20]. 

And as TNOF increases, DLC slow down distinctly [4, 19, 47, 34, 51]. 

These restrictions of DLC in static DDO classification don’t concern TLP. For classifying DDO with acceptable 

accuracy, TLP needs special training process [21, 50]. Only after TLP is successfully trained [50, 27, 36], its low 

resources consumption, independence upon antecedent problems of static DDO classification, and rapidity are 

making sense. 

 

4 Goal and Tasks 
 

When the TLP hidden layer neuron number is assigned appropriately, classification capabilities of TLP are fully 

determined with the TLP training process [23, 7, 21, 27, 22]. Therefore, the TLP training process is to be adjusted and 

optimized for getting its maximal performance in classifying DDO. 

For presenting a DDO deeper, we need to try a few types of distortion simultaneously. Owing to that distortions 

(deformations) of a flat image are well-visible and best-comprehensible, the flat monochrome image (FMI) is an 

eminently suitable model of the object. 

There are five types of FMI distortion: pixel noise, pixel inversion, scaling, turning (rotation or angulation), and 

shift. These types are cited in order of complexity in training the TLP. Pixel noise (inversion) distortion is surmounted 

successfully by the trained TLP [23, 38]. Scaled, turned, or shifted FMI by the greater TNOF are classified much 

worse. Any of these distortion types requires a specific embedding into the TLP training process. The embedding 

shall relate to the corresponding distortion type. 

The final goal is to identify the TLP classifier which would be capable to substitute DLC in classifying DDO. 

Flat scaled-turned-shifted objects (FSTSO) will emulate those DDO. And FSTSO are scaled-turned-shifted 

monochrome images (STSMI). They may be scaled-turned-shifted in diverse ratios and ways. 

We are to reach the goal in the following steps: 

1. The general totality of objects is defined. TNOF shall be within the medium range. 

2. Models of DDO as FSTSO are stated. These models are pixel-distorted monochrome images (PDMI), STSMI, 

and pixel-distorted STSMI (PDSTSMI). 

3. TLP structure is stated. 

4. PDMI-trained TLP is checked once again that it cannot classify STSMI or PDSTSMI. 

5. TLP is checked out whether it can be trained with STSMI. If there is a fail in this, then TLP is going to be 

trained with PDSTSMI. And the part of STSMI within the training set of PDSTSMI is increased until the near-

minimal classification error percentage (CEP) in classifying STSMI is maintained. In this way, we are to make 

gradual transition from PDMI-trained TLP to PDSTSMI-trained TLP. 

6. Conclusion to effectiveness of PDSTSMI-trained TLP for classifying STSMI is to be made. The effectiveness 

is understood that the identified TLP classifier is capable to substitute DLC in classifying FSTSO which model DDO. 

Notices about peculiar training process and specific ratio for types of distortion are to be included. 
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5 General Totality of Objects to be Classified 
 

The medium range of TNOF implies a few thousands of those features, at which DLC are pretty complicated and 

slow. At the same time, classification results are naturally desired to be obtained both as fast as possible and 

appropriate. Also number of classes in the general totality must be moderate. While training and testing, a medium 

TNOF and a moderate number of classes prevent lingering the investigation processes. Therefore, let FMI be the 

enlarged English alphabet capital letter of the format 60 80 , making up 26 classes. And let FMI be presented with 

60 80  matrix of ones and zeros. Thus, the general totality of 60 80  matrices of ones and zeros is constituted from 
48002  FMI, where STSMI exist as well. 

 

6 Models of DDO 
 

In the general case, monochrome Y W  image is presented as a Y W  matrix. For  \ 1Q  classes, let 

 q

q uv
Y W

a


A  be the matrix of elements  0, 1
q

uva   by 1,q Q  that maps the non-distorted representative of the 

th-q  class. Henceforward any class representative as a Y W  matrix is reshaped into  Y W -length-column. Our 

investigations are going to be carried out from MATLAB environment, wherein the white color is coded with ones, and 

the black color is coded with zeros (Figure 1). 

 

 

 
 

Figure 1:  Non-distorted 60 80  FMI of the letters ―J‖, ―R‖, ―V‖, ―Y‖, based on the respective 60 80  matrices 

 10 18 22 25, , ,A A A A  and viewed from within MATLAB 
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An interesting fact is that FMI is not the continuous black cast on the continuous white background. Regular 

crosshatching pixel black-into-white inversions throughout the letter cast are seen in Figure 1. Thus, the initial pixel 

inversion distortion (binary feature inversion distortion) is already put into non-distorted representatives. 

 

6.1 Model of PDMI 
 

For the PDMI training process, all the representatives as  Y W -length-columns are concatenated horizontally. The 

Q  non-distorted representatives are concatenated into the matrix  
 jq Y W Q

a
 

A , where its th-q column is the 

column-reshaped representative of the th-q class. The model of PDMI is in forming the matrix 

 
 

-PDMI

PDMI

k k

jq
Y W Q

a
 

A  of Q  pixel-distorted representatives (each for its class) through the addition 

 PDMI pixel

k k
  A A Ξ  (1) 

by standard deviation (SD) 

 
max

pixel pixel

k k

F
     1,k F   (2) 

and its maximum 
max

pixel 0   at  Y W Q   matrix Ξ  of values of normal variate (NV) with zero expectation and 

unit variance (ZEUV), where F . The assignment (2) gives the pixel noise SD on the th-k step of forming F  

matrices  PDMI
1

F
k

k
A . 

For accomplishing the training process we use the good-proven MATLAB training function ―traingda‖ as one of 

the fastest training functions for TLP which is trained with backpropagation algorithm [33, 27]. In the PDMI training 

process, the input of TLP is fed with the training set 

       PDMI

PDMI11 1
,

C F FC k

i li k



 
P A A  (3) 

of C  replicas of matrix A  of non-distorted representatives and F  matrices of PDMI by the set of identifiers 

(targets) 

    
11

C F C F

i ii

 


T I  (4) 

with identity Q Q  matrix I . The set (3), being formed by (1) and (2), is passed through TLP with targets (4) for 

passJ   times. 

 

6.2 Model of STSMI 
 

By the model of STSMI, the image successively is scaled, turned, and shifted. Such succession is necessary because it 

is running from the easy-to-model distortion type towards the worst distortion type. 

A scaled image is formed by means of the MATLAB function ―imresize‖. The map  , implementing this function 

partly, is applied to the image qA  as 

     S

scale,
k

q qk    A A  (5) 

with the scale coefficient  scale

k
   by SD 

 
max

scale scale

k k

F
     1,k F    for  

max

scale 0  . (6) 

The scale coefficient 

    scale scale scale 1
k k

k       (7) 
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is determined by the value  scale k  of NV with ZEUV raffled at the th-k stage of STSMI set formation. If occurs 

 scale 0
k

   then the corresponding NV with ZEUV is re-raffled until  scale 0
k

   . The input image qA  is 

enlarged by  scale

k
   times within the map (5) if  scale 1

k
   ; the input image qA  is reduced by 

 scale

1
k

 
 times 

within the map (5) if  scale 1
k

   ; the input image qA  remains non-scaled if  scale 1
k

   . 

Another NV with ZEUV is raffled at the th-k stage of STSMI set formation for turning the scaled image 

 S

q kA . Its value  turn k  is used within the MATLAB function ―imrotate‖ implemented by the map  . The 

procedure of turning the scaled image  S

q kA  of the th-q  class is stated implicitly as 

       ST S

turn1 1 ,
k

q qk k    A A , (8) 

where the map   in (8) along with the argument  S
1 q kA  takes the turn angle  turn

k
   by SD 

 
max

turn turn

k k

F
     1,k F    for  

max

turn 0  . (9) 

Actually, the map (8) takes the negative (pixel-inverted FMI) of the scaled image  S

q kA  and rotates the input 

image  S
1 q kA  by 

    turn turn turn

180k k
k    


 (10) 

degrees around its center point. The image is turned in counterclockwise direction if  turn 0
k

   ; for  turn 0
k

    

the image is turned clockwise; for  turn 0
k

    the image remains unturned. The map   in (8) returns the image 

which is inverted back. 

Before shifting the scaled-turned image, it must have the source format Y W . By  scale 1
k

   , the scaled-

turned image is the matrix  ST

q kA  of the intermediary format V H . The format of the matrices  ST

q kA  and 

 S

q kA  is the same. If  scale 1
k

    then the scaled-turned image is cropped. If cropped, then lines of their numbers 

     1, , 1 ,V VN Y N V   (11) 

and columns of their numbers 

     1, , 1 ,H HN W N H   (12) 

in the matrix  ST

q kA  are discarded. The integers 

 
1 sign

sign sign
2 2 2 2

V
V V

V Y V V
N

        
            

      
 (13) 

and 

 
1 sign

sign sign
2 2 2 2

H
H H

H W H H
N

        
            

      
 (14) 

for (11) and (12) are calculated by the values  ,V H   of two independent NV with ZEUV raffled every time when 

the function  x  returning the integer part of the number x  is applied. If  scale 1
k

    then V Y  and H W , 

and the scaled-turned image is contoured rectangularly with the background white color. For making this, the matrix 

 ST

q kA  is padded from the left for 
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left

1 sign
sign sign

2 2 2 2

H
H

W H H H
N

        
            

      
 (15) 

columns of ones and from the right for 

 right leftN W H N    (16) 

columns of ones, and the matrix  ST

q kA  is padded from the top for 

 
top

1 sign
sign sign

2 2 2 2

V
V

Y V V V
N

        
            

      
 (17) 

lines of ones and from the bottom for 

 bottom topN Y V N    (18) 

lines of ones. 

The cropped or contoured scaled-turned image as Y W  matrix    ST q

q uv
Y W

k a k


 
 

A  is shifted 

horizontally and vertically. A shift constant consists of two components, horizontal and vertical, where SD 

 
max

shift shift

k k

F
     1,k F    and  

max

shift 0   (19) 

is used. For Y W  image, the horizontal pixel shift (HPS) is 

    
   shift hor

hor shift shift hor

1 sign

2

k

k k
W k W

s W k
     

         

 
   shift hor1 sign

2

k
W k W

W
     

  , (20) 

where  hor k  is a value of NV with ZEUV raffled at the th-k stage of STSMI set formation for HPS, and 0   is 

an HPS magnitude regulator. This regulator is used for vertical pixel shift (VPS) as well. Concurrently, VPS is 

    
   shift ver

ver shift shift ver

1 sign

2

k

k k
Y k Y

s Y k
     

         

 
   shift ver1 sign

2

k
Y k Y

Y
     

  , (21) 

where  ver k  is a value of NV with ZEUV raffled at the th-k stage of STSMI set formation for VPS. From 

previous experience,  0.1, 0.05  or some about that for both (20) and (21). 

Due to the horizontal shift, the matrix    ST q

q uv
Y W

k a k


 
 

A  is transformed into the matrix 

   ST-HPS -HPSq

q uv
Y W

k a k


 
 

A . For  hor shift 0
k

s    elements of the matrix  ST-HPS

q kA  are 

  -HPS
1

q

uva k    for  1,u Y   and   hor shift1,
k

v s   (22) 

by 

    -HPSq q

uv uta k a k   at   hor shift

k
t v s     for  1,u Y   and   hor shift 1,

k
v s W   . (23) 

For  hor shift 0
k

s    elements of the matrix  ST-HPS

q kA  are 

    -HPSq q

uv uta k a k   at   hor shift

k
t v s     for  1,u Y   and   hor shift1,

k
v W s    (24) 

by 

  -HPS
1

q

uva k    for  1,u Y   and   hor shift 1,
k

v W s W    . (25) 
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Clearly, for  hor shift 0
k

s    the th-q image is not shifted horizontally: 

    -HPSq q

uv uva k a k   for  1,u Y   and  1,v W . (26) 

After the horizontal shift, due to the vertical shift, the matrix  ST-HPS

q kA  is transformed into the matrix 

   STSMI -STSMIq

q uv
Y W

k a k


 
 

A . For  ver shift 0
k

s    elements of the matrix  STSMI

q kA  are 

    -STSMI -HPSq q

uv rva k a k   at   ver shift

k
r u s     for   ver shift1,

k
u Y s     and  1,v W  (27) 

by 

  -STSMI
1

q

uva k    for   ver shift 1,
k

u Y s Y      and  1,v W . (28) 

For  ver shift 0
k

s    elements of the matrix  STSMI

q kA  are 

  -STSMI
1

q

uva k    for   ver shift1,
k

u s     and  1,v W  (29) 

by 

    -STSMI -HPSq q

uv rva k a k   at   ver shift

k
r u s     for   ver shift 1,

k
u s Y      and  1,v W . (30) 

Clearly, for  ver shift 0
k

s    the th-q horizontally shifted image is not shifted vertically: 

    -STSMI -HPSq q

uv uva k a k   for  1,u Y   and  1,v W . (31) 
 

After every image became an STSMI, matrices of all STSMI are column-reshaped and concatenated into the 

matrix  
 

-STSMI

STSMI

k k

jq
Y W Q

a
 

A , ready for including it into the training set or for adding the pixel noise distortion. 

In the STSMI training process, the input of TLP is fed with the training set 

       STSMI

STSMI11 1
,

C F FC k

i li k



 
P A A  (32) 

by targets (4), being passed through TLP for passJ  times. 

With scaling by (5) — (7), turning by (8) — (10), cropping or contouring by (11) — (18), shifting by (19) — 

(31), the values of the corresponding SD in (6), (9), (19) are varied synchronously, like these SD are parts of a whole 

SD for forming randomized STSMI. This is realized by setting a ratio between ultimate values 
max

scale ,
max

turn ,  

max

shift .  The ratio is maintained for the current values scale , turn , shift .  

 

6.3 Model of PDSTSMI 
 

Model of PDSTSMI is in forming the matrix  
 

-PDSTSMI

PDSTSMI

k k

jq
Y W Q

a
 

A  through the addition 

 PDSTSMI STSMI pixel

k k k
  A A Ξ  (33) 

by SD (2). And in the PDSTSMI training process, the input of TLP is fed with the training set 

       PDSTSMI

PDSTSMI11 1
,

C F FC k

i li k



 
P A A  (34) 

by targets (4), being passed through TLP for passJ  times. 

The values of the corresponding SD in (2), (6), (9), (19) are varied synchronously, like these four SD are parts of 

a whole SD for forming randomized PDSTSMI. This is realized similarly to the STSMI model by setting a ratio 

between ultimate values 
max

pixel , 
max

scale , 
max

turn , 
max

shift . The ratio is maintained for the current values pixel , scale , 

turn , shift . 

 



Journal of Uncertain Systems, Vol.9, No.4, pp.286-305, 2015                                                                                                           

 

 

 

293 

7 TLP Structure 
 

TLP as mathematical object consists of two matrices and two vectors: 

 
 

  
TLPTLP TLP

1 1
, , ,jl lq HH H l qY W Q Q

bw z h
   

         (35) 

by 
TLPH  neurons in TLP hidden layer. Matrices 

  TLPY Wjl H
w


    and 

TLP
lq H Q

z


    correspond to the input and hidden 

layer, respectively. Vectors  
TLP1l H

h


 and 
1q Q

b


    contain their biases. For object features  
1

Y W

j j
x




, the th-q output 

neuron value is 

 
TLP

1 1

H Y W

q j jl l lq q

l j

n x w h z b



 

  
      

  
  

    at  1,q Q  (36) 

by the logarithmic sigmoid transfer function (LSTF) 

    
1

1 xx e


   . (37) 

LSTF (37) is identically used in 
TLPH  hidden layer neurons and in Q  output layer neurons. TLP classifier returns 

the class number 
*q  according to that 

  *
1,

argmax q
q Q

q n


  (38) 

by (36). 

For classifying FSTSO at bad distortions, it is sufficient to let 
TLP 250H   into the TLP structure. Besides, let 

2C   and 8F   for the TLP training process, where two matrices and two vectors (35) are identified. The integer 

passJ  depends on types of distortions and their intensities. So, it shall be defined specifically. 

 

8 Batch Testings of the Trained TLP 
 

The trained TLP is tested on regular batch inputs. In this case, each class feeds the input of TLP for the same number 

of times. A batch testing is Q  inputs, where each class is represented. These FSTSO feed the input of TLP through a 

range of a whole SD which defines intensities of distortions. To obtain statistically valid classification results, TLP 

shall be tested on no less than 100 batch testings. By 
testB  batch testings, CEP is calculated as 

 

 
test

*

1 1

error

test

100 sign

B Q

t

t q

q q q

p
Q B

 







 (39) 

by the classifier’s response  * tq q  to the th-q class representative in the th-t batch at the input of TLP. The response 

is determined as (38). 

 

9 PDMI-Trained TLP for Classifying STSMI and PDSTSMI 
 

Taken 
max

pixel 1  , the integer pass 10J   is excellently practiced for training TLP with PDMI [38], which performs 

perfectly in classifying PDMI by the model (1) — (4). For seeing how PDMI-trained TLP classifies STSMI, let SD 

ratio be drawn from the equalities 

 shift scale turn5 5       at  
max

shift 0.5   (40) 

by 0.1   in (20) and (21). The equalities in (40) and 0.1   are assigned heuristically from previous experience. 

The maximum SD in assignment (40) has been taken carefully minimal. 

For visualizing classification results over STSMI, there is the abscissa axis as shift-distortion SD shift  (Figure 

2). We see in Figure 2 that CEP  error shiftp   over SD range  0; 0.5  increases intolerably. CEP over the segment 
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 0; 0.125  is nonlinear. It resembles some shape of LSTF running to saturation over the segment  0.075; 0.125 . 

But starting off the point 
shift 0.15   rightwards, the CEP increasing is quasi-linear. Figure 2 shows the predictable 

fail of PDMI-trained TLP in classifying STSMI. 

 
Figure 2:  CEP  error shiftp   over SD range  0; 0.5  by SD ratio drawn from (40) in STSMI after fourfold 200 batch 

testings of three PDMI-trained TLP; distortions of the letter ―A‖ due to (40) are exemplified at 

 shift 0.125, 0.25, 0.375, 0.5   along the abscissa axis 

Obviously, it is expected that PDMI-trained TLP cannot classify PDSTSMI. For checking how PDMI-trained 

TLP classifies PDSTSMI, there is the heuristically assigned SD ratio drawn from the equalities 

 shift scale turn pixel5 5 0.5         at  
max

shift 0.5   (41) 
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by 0.1   in (20) and (21). For visualizing classification results over PDSTSMI, the abscissa axis is as shift-

distortion SD 
shift  (Figure 3). Figure 3 shows that the shape of  error shiftp   for PDSTSMI is almost repeated after 

the shape of  error shiftp   for STSMI, saying that neither STSMI nor PDSTSMI can be classified by PDMI-trained 

TLP. 

 
 

 

Figure 3:  CEP  error shiftp   over SD range  0; 0.5  by SD ratio drawn from (41) in PDSTSMI after fourfold 200 

batch testings of three PDMI-trained TLP tested for Figure 2; distortions of the letter ―R‖ due 

to (41) are exemplified at  shift 0.125, 0.25, 0.375, 0.5   along the abscissa axis 

Figures 2 and 3 prove that PDMI-trained TLP cannot classify STSMI or PDSTSMI, unless distortions are weak. 

The distortion weakness is when shift 0.025 , what is very rare phenomenon. Hence, TLP is to be checked out 
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whether it can be trained with STSMI. Clearly, STSMI-trained TLP will be tested for classifying STSMI and 

PDSTSMI over the spoken above SD range  0; 0.5  of the shift distortion. Classification of PDMI is of interest also. 

 

10 STSMI-Trained TLP for Classifying STSMI 
 

For training TLP with STSMI effectively, the integer passJ  for the training set (32) should be increased up from 

pass 10J  . The training set (32) is formed by (40). Polylines in Figure 4 show that STSMI-trained TLP classifies 

STSMI by (40) much better than PDMI-trained TLP does. CEP progressively decreases as passJ  increases, but the 

decrement progress early is fading out. By 
shift 0.25  or about that, STSMI-trained TLP classifies STSMI at high 

accuracy. Nevertheless, at higher SD, closer to 
shift 0.5   point, STSMI-trained TLP classifies STSMI much worse. 

Besides, the STSMI training process is some overextended, having passes with unmet goals on reaching minimum 

gradient. Consequently, TLP cannot be trained with STSMI effectively, unless 
shift 0.25  or passJ  is increased 

enough and distortions are weak. 

 

 
 

Figure 4:  CEP  error shiftp   over SD range  0; 0.5  by SD ratio drawn from (40) in STSMI 

after three-times-200-batch-tested the STSMI-trained TLP 

 

 

After the obvious fail, STSMI-trained TLP is not reckoned to be a classifier of PDSTSMI (Figure 5). However, 

STSMI-trained TLP classifies PDMI quite good (Figure 6). But it’s not a purpose of long STSMI-training. 
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Figure 5:  CEP  error shiftp   over SD range  0; 0.5  by SD ratio drawn from (41) in PDSTSMI  

after three-times-200-batch-tested the STSMI-trained TLP 

 

Now TLP is going to be trained with PDSTSMI by increasing the part of STSMI within the training set (34). 

That will be a try to use advantage of PDMI-trained TLP (in classifying PDMI) within PDSTSMI-trained TLP (for 

classifying STSMI). 

 

11 PDSTSMI-Trained TLP for Classifying STSMI, PDSTSMI, and PDMI 
 

Figure 4 and Figure 5 convince us of necessity for increasing the integer passJ  for the training set (34). Taken 

pass 120J   on that necessity, the part of STSMI within the training set (34) is increased twice, starting with the 

equalities 

 shift scale turn pixel5 5 0.125         at  
max

pixel 1  . (42) 

By (42), the part of STSMI is just 7 / 47  (the part of shift distortion is one eighth with respect to PDMI). Let the 

increment of 
max

shift  be executed by 

 shift scale turn pixel5 5 0.25         at  
max

pixel 1   (43) 

and 

 shift scale turn pixel5 5 0.5         at  
max

pixel 1   (44) 

within the training set (34). Note, that the STSMI part increment is not twofold, as it might come in sight. By (43), the 

part of STSMI is 7 / 27 . And by (44), the part of STSMI is 7 /17 . Further increment of the STSMI part lies in 

forming the training set (34) by 

 shift scale turn pixel5 5 4         at  
max

pixel 0.125  , (45) 
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Figure 6:  CEP  error pixelp   over SD range  0; 1  in PDMI after three-times-200-batch-tested the STSMI-trained 

TLP; PDMI are exemplified at  pixel 0.2, 0.4, 0.6, 0.8, 1   along the abscissa axis 

 

where the part of PDMI is just 5 33  (rather than one fourth). Having tested the PDSTSMI-trained TLP with STSMI 

by (40), PDSTSMI training set configurations (42) — (44) are revealed to be poor, but the configuration 

 shift scale turn pixel5 5 4         at  
max

pixel 0.25   (46) 

proves to be even better than the configuration (45), not changing the PDMI part (Figure 7). 

Figure 7 hints and it is experienced the ratio 

 shift scale turn pixel5 5 4        (47) 

at some 
max

pixel 0.125   is the closely-best for classifying PDSTSMI. Thereafter, 33 TLP have been PDSTSMI-

trained at 

  max

pixel 0.125, 0.1875, 0.25   (48) 

and various passJ  (Table 1) and tested (Figure 8). Then they are tested by 

 shift scale turn5 5       at  
max

shift 0.75  , (49) 
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and only 14 TLP among these 33 classifiers perform accurately at  error 0.5 4p   (Figure 9), although CEP by 

shift 0.5   is linearly increasing. 

 

 
 

Figure 7:  Gradual decrement of CEP  error shiftp   over SD range  0; 0.5  by SD ratio drawn from (40)  

in STSMI, where configurations (42) — (46) of PDSTSMI training set (34) are applied  
(TLP with the best-configured PDSTSMI training set has been tested triply) 

 

 
Table 1:  Configurations of PDSTSMI training set (34) in trying to identify a high-accurate TLP classifier  

over STSMI 

Number 

of TLP 
max

pixel  
max

shift  passJ  
Number 

of TLP 
max

pixel  
max

shift  passJ  
Number 

of TLP 
max

pixel  
max

shift  passJ  

1 0.1875 0.75 280 12 0.1875 0.75 250 23 0.125 0.5 260 

2 0.125 0.5 220 13 0.1875 0.75 300 24 0.25 1.0 120 

3 0.25 1.0 210 14 0.1875 0.75 300 25 0.25 1.0 140 

4 0.1875 0.75 100 15 0.1875 0.75 350 26 0.25 1.0 160 

5 0.1875 0.75 150 16 0.1875 0.75 350 27 0.25 1.0 170 

6 0.1875 0.75 200 17 0.125 0.5 210 28 0.25 1.0 180 

7 0.1875 0.75 200 18 0.125 0.5 210 29 0.25 1.0 190 

8 0.1875 0.75 210 19 0.125 0.5 220 30 0.25 1.0 200 

9 0.1875 0.75 230 20 0.125 0.5 230 31 0.25 1.0 210 

10 0.1875 0.75 230 21 0.125 0.5 240 32 0.25 1.0 220 

11 0.1875 0.75 250 22 0.125 0.5 250 33 0.25 1.0 230 
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Figure 8:  Scattering of CEP  error shiftp   over SD range  0; 0.5  by SD ratio drawn from (40) in STSMI, where 

each of 33 PDSTSMI-trained TLP (numbered in Table 1) has been 200-batch-tested 

 

Comparison of Figure 9 and Figure 4 reports that PDSTSMI-trained TLP performance excels STSMI-trained 

TLP performance. The performance is improved if 
max

shift  is increased: 15 TLP in Figure 9 have been PDSTSMI-

trained at 
max

shift 0.75   and 
max

shift 1  , while all the worst TLP in Figure 8 (except TLP #4, most likely, because of 

100 passes) have been PDSTSMI-trained at 
max

shift 0.5  . But increasing both 
max

shift  and 
max

pixel  impairs capability 

to classify PDSTSMI by 

 shift scale turn pixel5 5 0.5         at  
max

shift 0.75   (50) 

and, especially, PDMI (Figure 10 and Figure 11, respectively). 

In particular, all the worst TLP in Figure 10 have been PDSTSMI-trained at 
max

shift 1  . And each of 15 

PDSTSMI-trained TLP in Figure 11 classifies PDMI. This implies that, for classifying STSMI, TLP should be trained 

at greater 
max

shift  and 
max

pixel  holding their ratio about (47). On the other hand, if PDSTSMI or PDMI are classified, 

TLP should be trained at lower 
max

shift . 

Consequently, if STSMI solely are expected, one of TLP #3, #27, #30, #31 numbered after Table 1 is suitable. 

Figures 8 and 9 show that these TLP perform at  error 0.5 3.75p   and  error 0.75 19.5p  . Otherwise, if PDMI 

distortions are unavoidable, then a compromise version is TLP #21, whose performance is better over PDSTSMI 

(Figure 12) and PDMI (Figure 13). This classifier is coarser over STSMI, though (Figure 12). 
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Figure 9:  CEP  error shiftp   over SD range  0; 0.75  by SD ratio drawn from (49) in STSMI, where each of 15 

PDSTSMI-trained TLP (numbered in Table 1 and performing at lower CEP due to Figure 8)  

has been 800-batch-tested 

 

Eventually, operation speed of PDSTSMI-trained TLP is alright since it takes about 48 seconds to classify 10000 

60 80  FSTSO on Intel® Core™ i3-4150 CPU @ 3.50GHz by 4 GB of RAM (64-bit Windows 7). When 

parallelizing on two CPU cores, it takes 29 seconds. DLC and, particularly, neocognitron, on the similar system 

perform slower [37, 26]. Though parallelization helps in acceleration of DLC, its cost and resources consumption 

compared to TLP grow considerably. 

 

12 Conclusion 
 

Selection of a classifier over DDO addresses to coalescence of accuracy, rapidity, and simplicity. If FSTSO emulating 

DDO are 60 80  STSMI, then using PDSTSMI-trained TLP #3, #27, #30, #31 is effective at any intensity of 

distortions. If types of distortions are uncertain, the compromised TLP #21 is generally applicable. However, if the 

PDMI part is slight, then PDSTSMI-trained TLP #3, #27, #30, #31 are suitable. 

If DDO are FSTSO whose TNOF is about 4800 and classes’ number is about 26, then those listed TLP substitute 

DLC as well. And by a-few-percent-deviation from 4800 and 26, CEP behavior (Figures 9, 10, 11, 12, 13) mustn’t 

change excessively. This means TLP which is PDSTSMI-trained at 
max

shift 1   by (47) is capable to substitute DLC in 

classifying FSTSO, performing with 96 % accuracy at medium intensity of distortions (at shift 0.5   and the 

respective magnitudes of related sigmas). 
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Figure 10:  CEP  error shiftp   over SD range  0; 0.75  by SD ratio drawn from (50) in PDSTSMI, where each of 15 

PDSTSMI-trained TLP in Figure 9 has been 800-batch-tested 

 

 
 

Figure 11:  Unsatisfactory CEP  error pixelp   over SD range  0; 1  in PDMI, where each of 15 PDSTSMI-trained 

TLP in Figures 9 and 10 has been 800-batch-tested 
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Figure 12: Performance of TLP #21 (800-batch-tested) 

over SD ranges  0; 0.75  in STSMI and  PDSTSMI by 

their SD ratios drawn from (49) and (50), respectively 

Figure 13: Performance of TLP #21 (800-batch-tested) 

over SD range  0; 1  in PDMI; the performance is three 

times better than the best performance  in Figure 11 
 

Even if deviation from TNOF 4800 and 26Q   is bigger, TLP should be trained with DDO by additional 

feature distortions (AFD), the specific embedding into the TLP training process. AFD, implying the addition (33), 

regularize the TLP training process in order to make TLP classify DDO more accurately like it classifies PDMI. This, 

however, drags the training process longer. For non-flat objects, say, 3D objects (data) or multidimensional data, the 

matrix Ξ  is flat anyway whose elements are values of NV with ZEUV. And the matrix Ξ  format is always L Q  by 

TNOF L . 

Those good TLP for classifying FSTSO by AFD in training (#3, #21, #27, #30, #31) were obtained under SD 

ratio (47), although this ratio is scarcely the best. CEP (39) depends both on distortion intensities and ratios between 

them. Moreover, 
max

pixel  for the training set influences on CEP, so choosing 
max

pixel  mustn’t be necessarily according 

to (48). Therefore, the ratio of sigmas could be improved by the criterion of CEP minimization. And this is a way to 

identify a TLP classifier whose CEP is lower than  error shiftp   in Figure 9. 

To advance the work in that way, a problem with three coefficients at sigmas 

  shift scale turn pixel, , ,     (51) 

in positive octant of three-dimensional Euclidean space is to be solved. The fourth coefficient is 1 at one of the 

sigmas (51). The advanced PDSTSMI-trained TLP would be more effective over DDO. Further to effectiveness of 

such TLP, an advanced TLP-based DLC could be configured, whose layers might be actually TLP optimized and 

trained by AFD. 
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