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Abstract

This paper studies the issue of perishable products that are produced and delivered in batches in a
closed-loop supply chain. In our problem, the perishable products are placed in returnable containers for
safe transport. We assume that the return time of container is random. Under risk-averse criterion, a
stochastic mean-standard deviation model is formulated to minimize the total cost and risk. We analyze
three scenarios that may encounter in our supply chain problem, and derive the analytical solution of the
proposed optimization model. Finally, one numerical example is presented to demonstrate the validity of
the proposed optimization model. The computational results demonstrate that the optimal solution to
a risk-neutral optimization model is not optimal to our risk-averse optimization model, which coincides
with our theoretical analysis.
c⃝2015 World Academic Press, UK. All rights reserved.
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1 Introduction

Closed-loop supply chain (CLSC) is a complete cycle of supply chain that from procurement to final sales,
which includes the forward supply chain and the reverse supply chain [4, 6]. In the forward supply chain,
products are produced in batches, deposited in returnable transport items (RTIs) and flowed to the buyer;
while in the reverse supply chain, RTIs are returned to the supplier to ship the next dispatch. Considering
the supply and demand risks, He [7] and Zhang [15] discussed sequential price and quantity decisions for
a forward supply chain. Wang and Yang [13] discussed a reverse supply chain and proposed two types of
uncertain hierarchical facility location models. As the acceleration of the global economy integration process,
the competition is not merely among product enterprises, but also among all the enterprises on the supply
chain. CLSC aims to derive a balanced production plan to improve the market competitiveness. For centuries,
the CLSC system has become an inevitable trend for the future economical structure. In this paper, the RTIs’
return time is considered stochastic since delays in returning process may occur. For example, the return time
is limited by the transport capacity or the damages of RTIs that need extra time to be repaired. However,
delays may result in higher inventory cost, and higher deteriorating rate. To improve the utilization ratio of
the containers and reduce the inventory cost of the entire system simultaneously, it is extremely necessary for
decision makers to make moderate order quantity of products. Then we can better manage the CLSC and
get a higher return.

In the framework of the supply chain, the study on CLSC for deteriorating products is a hot topic in
recent years [5, 14]. There are several research branches in this research area. We just review three important
directions that are related to our problem. The first direction is about studies on RTIs. Hellström and
Johansson [8] presented the impact of controlling the RTIs. In [11], Singh and Saxena presented a closed
loop structure with remanufacturing of a single item, and determined the optimal replenishment cycle. Kim
et al. [10] considered the return time of RTIs to be stochastic and derived the expected costs of the whole
system. Kim and Glock [9] used an RFID system to support the tracking of RTIs positions in the supply
chain to get a higher return rate. The second one is the studies on different demand and deterioration
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functions. Skouri et al. [12] analyzed the model with ramp type demand rate, partial backlogging and Weibull
deterioration rate. Studies on algorithm designs is the third direction. Devika [1] and Diabat [2] used
metaheuristics hybridization techniques and genetic algorithms to obtain the optimal solution. Fahimnia et
al. [3] presented a tactical model to minimize the cost of the system by incorporating multiple transport lot
sizing and flexible holding capacity of warehouses.

In our CLSC problem, the critical parameter about RTIs’ return time is quite uncertain due to various
reasons. The significance of uncertainty motivates us to develop a new mean-standard deviation stochastic
optimization method for our CLSC problem, in which the standard deviation is suggested to gauge the risk
resulted from stochastic uncertainty. What’s more, we depict the RTIs’ return time as a uniform distribution
variable to illustrate its randomness. In the distribution interval, we choose two points, which are the point
on which shortage just occurs and the point on which we lose all of the sales opportunities, then the interval
is divided into three parts. We obtain the different cost functions in each case. At last, we turn our mean-
standard deviation model into an equivalent determinate one. To indicate the effectiveness of our model, we
discuss the impact of the risk preference parameter on decision results.

The remainder of the paper is structured as follows. The next section outlines the CLSC problem and
proposes a mean-standard deviation model. Section 3 turns the proposed mean-standard deviation model with
stochastic return times into an equivalent determinate model. Some numerical experiments are performed to
demonstrate the new modeling idea and the effectiveness in Section 4. Section 5 concludes the paper.

2 The Mean-Standard Deviation CLSC Problem

In this section, we consider a closed-loop supply chain consisting of a single supplier and a single buyer. The
supplier produces deteriorating products at the rate of P and ships them in batches to the buyer. On account
that the RTI has the function of keeping fresh, we assume that product in transit will not go bad. When
products arrive, the buyer takes out the goods from RTIs and shelves them. Furthermore, the buyer collects,
sorts and cleans these RTIs. Finally RTIs are returned to the supplier. We call this process a lead time (a
cycle), in which the buyer decides how many goods to be ordered and the supplier finishes the consignment
of goods. We consider the average cost after N orders in one year. In each order, our supply chain will
produce setup cost, order cost, inventory cost of the products and the RTIs. In our paper, we calculate these
costs in one year and minimize the average cost. Moreover, the cost with higher deviation from the expected
average is not expected. In other words, we would better minimize the standard deviation while minimizing
the expected cost.

For convenience, we make the following assumptions to simplify our problem:
A1 Both the time the supplier fulls the RTIs and the time the buyer empties the RTIs are not

considered;
A2 RTIs with products are not charged, and only those empty RTIs are charged;
A3 When the RTIs’ return time is longer than expected time, the products will deteriorate,

appropriate discount will be considered;
A4 Products are produced in batch, and half box products are not allowed;
A5 Different order quantity has the same order cost;
A6 The market demand is assumed to be constant.

In addition, we use the following terminology throughout our paper:

Fixed parameters:
S : setup cost at the supplier;
A : order cost, including shipment cost at the buyer;
P0 : selling price for non-deteriorated products;
L0 : expected lead time (L0 > 0);
θ : price discount factor;
α : transport capacity of one RTI;
π : shortage cost factor for finished products at the supplier;
D : demand of finished products at the buyer;
P : production at the supplier;
gb : inventory carrying charge for RTIs at the buyer;
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gs : inventory carrying charge for RTIs at the supplier;
hb : inventory carrying charge for finished products at the buyer;
hs : inventory carrying charge for finished products at the supplier;

Decision variables:
Q : the total number of products;
n : return lot size of RTIs (n = Q/α);
N : The number of orders every year (N = D/Q);

Random variable:
t : a lead time or a cycle time the chain used that follows a uniform distribution on [Ll, Lr];

Related functions:
p(t,Q) : selling price after a delay of (t− L0) units of time (t > L0);
F (·) : cumulative distribution function of lead time;
f(·) : probability density function of lead time.

As for the entire system, we first calculate the total cost of the supply chain system in one order and
denote it as w(Q, t). Then the annual cost is W (Q, t) = Nw(Q, t). Furthermore, we denote the expected
total cost as Et[W (Q, t)] and the standard deviation of the total cost as Vt[W (Q, t)]. Thus, our target is to
minimize Et[W (Q, t)] and also minimize Vt[W (Q, t)]. Therefore we proposed the following model for one year:

min λ · Et[W (Q, t)] + (1− λ) · Vt[W (Q, t)]
s.t. Q = nα

n ∈ N+

Q > 0,

(1)

where λ expresses the degree of the decision makers’ willingness to take risk. λ = 1 indicates that the decision
makers are risk-takers. λ = 0 indicates that the decision makers are very conservative. The first constraint
declares that our products are sold in batches, and the second one illustrates that half box is not allowed.

3 Model Analysis

In this section, we assume the RTIs return time follows a uniform distribution on [Ll, Lr]. Two points are
selected to divide the interval [Ll, Lr] into three subintervals, which are the point shortages just occur and
the point we lose all of the sales opportunities. Our model is analyzed in three cases.

Case I. RTIs are returned before the lot has been completed and no shortages occur at the
supplier.

In this case, the return shipment arrives after t units of time with Ll 6 t 6 L0. The total costs include
the setup cost, order cost, inventory carrying charge for RTIs at the buyer, inventory carrying charge for RTIs
at the supplier, inventory carrying charge for finished products at the buyer and inventory carrying charge
for finished products at the supplier. By calculation, the inventory carrying charge for RTIs at the buyer is
gbαn (n− 1)/2D, the inventory carrying charge for RTIs at the supplier is (L0 − t)ngs, the inventory carrying
charge for finished products at the buyer is hbQ

2/2D, the inventory carrying charge for finished products at
the supplier is hsQ

2/2P . As a consequence, the total costs function w (Q, t) for one order is represented as
follows:

wa (Q, t) = S +A+
αn (n− 1)

2D
gb + (L0 − t)ngs +

Q2

2D
hb +

Q2

2P
hs. (2)

Case II. RTIs are returned after the lot has been completed at the supplier, and shortages
occur, but there still has sales opportunity.

In this case, the return shipment arrives after t units of time with L0 6 t 6 L0 +Q/D. Due to the lost of
sale opportunities, the buyer reduce the order of products at the rate of D. Thus, before the sale opportunities
have been completely lost, the buyer order ñ units of products, where ñ = (Q− (t− L0)D)/α. The total
costs include the setup cost, order cost, inventory carrying charge for RTIs at the buyer, inventory carrying
charge for finished products at the buyer, inventory carrying charge for finished products at the supplier,
shortage cost for finished products at the buyer, and the lose caused by deterioration. By calculation, the
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inventory carrying charge for RTIs at the buyer is gbαñ (ñ− 1)/2D, the inventory carrying charge for finished

products at the buyer is hb(Q− (t− L0)D)
2
2D, the inventory carrying charge for finished products at the

supplier is
(
Q2/2P + (t− L0)Q

)
hs, the shortage cost for finished products at the buyer is (t− L0)

2
Dπ/2,

the lose caused by deterioration is QP0

(
1− e−Qθ(t−L0)

)
. Then, for one order, we can get the total cost

wb (Q, t) =S +A+
αñ (ñ− 1)

2D
gb +

(
Q2

2P
+ (t− L0)Q

)
hs +

(t− L0)
2
Dπ

2

+
(Q− (t− L0)D)

2

2D
hb +QP0

(
1− e−Qθ(t−L0)

)
.

(3)

Case III. RTIs are returned late and shortages occur, and the sales opportunity is lost.
In this case, the return shipment arrives after t units of time with L0+Q/D 6 t 6 Lr. And the total costs

include the setup cost, order cost, inventory carrying charge for finished products at the supplier, shortage
cost for finished products at the buyer and the lose caused by deterioration. After calculation, the inventory
carrying charge for finished products at the supplier is

(
Q2/2P + (t− L0)Q

)
hs, the shortage cost for finished

products at the buyer is
Q2

2D
π +

(
t− L0 −

Q

D

)
Qπ,

the the lose caused by deterioration is QP0

(
1− e−Qθ(t−L0)

)
. The total cost function w (Q, t) is

wc (Q, t) = S +A+

(
Q2

2P
+ (t− L0)Q

)
hs +

Q2

2D
π +

(
t− L0 −

Q

D

)
Qπ +QP0

(
1− e−Qθ(t−L0)

)
. (4)

Based on the above analyses, the expected annual total cost of the supply chain system is obtained as the
following formula:

Et[W (Q, t)] =

∫ L0

Ll

Wa (Q, t) f (t) dt+

∫ L0+
Q
D

L0

Wb (Q, t) f (t) dt+

∫ Lr

L0+
Q
D

Wc (Q, t) f (t) dt

=

∫ L0

Ll

Nwa (Q, t) f (t) dt+

∫ L0+
Q
D

L0

Nwb (Q, t) f (t) dt+

∫ Lr

L0+
Q
D

Nwc (Q, t) f (t) dt

=
N

Lr − Ll
{Aa(L0 − Ll) +

1

2
ngs(L0 − Ll)

2 +Ab
Q

D
+

1

2
Bb

Q2

D2
+

1

3
Cb

Q3

D3
(5)

+
P0

θ
(exp(

−Q2θ

D
)− 1) +Ac(Lr − L0 −

Q

D
) +

1

2
Bc((Lr − L0)

2 − Q2

D2
)

+
P0

θ
(exp(−Qθ(Lr − L0))− exp(

−Q2θ

D
))}.

Since the variance of the total costs is

V 2
t [W (Q, t)] =

∫ L0

Ll

W 2
a (Q, t) f (t) dt+

∫ L0+
Q
D

L0

W 2
b (Q, t) f (t) dt+

∫ Lr

L0+
Q
D

W 2
c (Q, t) f (t) dt− E2

t [W (Q, t)],

the standard deviation of the total costs is

Vt[W (Q, t)]

=

(∫ L0

Ll

W 2
a (Q, t) f (t) dt+

∫ L0+
Q
D

L0

W 2
b (Q, t) f (t) dt+

∫ Lr

L0+
Q
D

W 2
c (Q, t) f (t) dt− E2

tW (Q, t)

) 1
2

.

For the above three integrals, we have the following calculated results:∫ L0

Ll

W 2
a (Q, t) f (t) dt =

N2

Lr − Ll
{A2

a(L0 − Ll) +
1

3
n2g2s(L0 − Ll)

3 +Aangs(L0 − Ll)
2}, (6)
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∫ L0+
Q
D

L0

W 2
b (Q, t) f (t) dt =

N2

Lr − Ll
{A2

b

Q

D
+AbBb

Q2

D2
+

1

3
(B2

b + 2AbCb)
Q3

D3
+

1

2
BbCb

Q4

D4

+
1

5
C2

b

Q5

D5
− P 2

0Q

2θ
(exp(

−2Q2θ

D
)− 1) +

2AbP0

θ
(exp(

−Q2θ

D
)− 1) (7)

+
2BbP0

θ2Q
[(
Q2θ

D
+ 1) exp(

−Q2θ

D
)− 1]

+
2CbP0

θ3Q2
[(
2Q2θ

D
+

Q4θ2

D2
+ 2) exp(

−Q2θ

D
)− 2]},

∫ Lr

L0+
Q
D

W 2
c (Q, t) f (t) dt =

N2

Lr − Ll
{A2

c(Lr − L0 −
Q

D
) +

1

3
B2

c [((Lr − L0)
3 − Q3

D3
)]

+AcBc[((Lr − L0)
2 − Q2

D2
)]− P 2

0Q

2θ
(exp(−2Qθ(Lr − L0))

− exp(
−2Q2θ

D
)) +

2AcP0

θ
(exp(−Qθ(Lr − L0))− exp(

−Q2θ

D
)) (8)

−2BbP0

θ2Q
[exp(−Qθ(Lr − L0))(−Qθ(Lr − L0)− 1)

+ exp(
−Q2θ

D
)(
Q2θ

D
+ 1)]},

where

Aa = S +A+
αn (n− 1)

2D
gb +

Q2

2D
hb +

Q2

2P
hs,

Ab = S +A+
Q2

2D
(
gb
α

+ hb)−
Q

2D
gb +

Q2

2P
hs +QP0,

Bb = (
1

2
− Q

α
)gb,

Cb =
D

2
(
gb
α

+ hb + π),

Ac = S +A+
Q2

2P
hs −

Q2

2D
π +QP0,

Bc = Q(hs + π).

As a consequence, model (1) can be turned into the following equivalent determinate programming model:
min λ · Et[W (Q, t)] + (1− λ) · (

∫ L0

Ll
W 2

a (Q, t) f (t) dt+
∫ L0+

Q
D

L0
W 2

b (Q, t) f (t) dt

+
∫ Lr

L0+
Q
D
W 2

c (Q, t) f (t) dt− E2
t [W (Q, t)])

1
2 .

s.t. Q = nα
n ∈ N+

Q > 0.

(9)

where Et[W (Q, t)] is calculated by equation (5), three integrals
∫ L0

Ll
W 2

a (Q, t) f (t) dt,
∫ L0+

Q
D

L0
W 2

b (Q, t) f (t) dt

and
∫ Lr

L0+
Q
D
W 2

c (Q, t) f (t) dt are calculated by equations (6), (7) and (8), respectively.

Model (9) is a mixed-integer programming problem, which can be solved directly by general purpose
software such as MATLAB and LINDO.

4 Numerical Experiment

We assume that the supplier produce products in batches, and each RTI contains 200 kilograms of products.
The supplier must pay 20000 dollars for per setup cost while the buyer pay 10000 dollars for per order. If
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RTIs are returned before the lot has been completed, they will be charged for 36000 dollars per container
per year. For the supplier, there is no inventory cost of the products in this case. For the buyer, 11 dollars
per kilogram per year and 36000 dollars per emptied container per year will be charged for inventory cost.
However, if shortages occur, the supplier will be charged 11 dollars per kilogram per year and the buyer will
be charged 238 dollars per unit per unit shortage per year. What’s more, the products begin to deteriorate,
the price discount factor is θ = 1.5. We assume that the RTIs’ returned time follows a uniform distribution
on [0.013,0.063]. So the expected return time is 0.038 year. All the parameters are given annually in Table 1.

Table 1: The values of parameters in the CLSC problem (9)

parameters S A α p0 gs = gb θ
reference data 20 k$/order 10 k$/order 0.2 kkg 10 $/kg 36 k$/container 1.5

parameters hs = hb D P π [Ll, Lr]
reference data 11 $/kg 4800 kkg 5400 kkg 238 $/unit [0.013, 0.063] (year)

If we take λ = 1, the objective function is to minimize the expected value, that is to say, the impact of
the risk is not considered. In this case, we have

Wa(Q, t) = 4800
0.2×n × (20 + 10 + 0.2×n(n−1)

2×4800 × 36 + (0.038− t)n× 36 + (0.2×n)2

2×4800 × 11 + (0.2×n)2

2×5400 × 11);

Wb (Q, t) = 4800
0.2×n × (20 + 10 + 0.2ñ(ñ−1)

2×4800 × 36 +
(

(0.2×n)2

2×5400 + (t− 0.38)× (0.2× n)
)
× 11

+ (t−0.38)2×4800×238
2 + ((0.2×n)−(t−0.38)×4800)2

2×4800 × 11 + 0.2× n× 10
(
1− e−0.2×n×1.5×(t−0.38)

)
);

Wc (Q, t) = 4800
0.2×n × (20 + 10 +

(
(0.2×n)2

2×5400 + (t− 0.038)× 0.2× n
)
× 11 + (0.2×n)2

2×4800 × 238

+
(
t− 0.038− 0.2×n

4800

)
× 0.2× n× 238 + 0.2× n× 10

(
1− e−0.2×n×1.5×(t−0.038)

)
).

It is difficult to prove that the programming problem is convex, but as shown in Figure 1, the objective
function is convex when λ = 1. Since the number of RTIs is integer, we derive the optimal solution is n = 117,
Q = 23400 kilograms, and the minimum cost Et[W (Q, t)]=27039 thousand dollars. Furthermore, we illustrate
the impact of different risk preference degrees on the optimal solution Q in Table 2 and Figure 2.

0 100 200 300 400 500 600 700
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

5

Q

av
er

ag
e 

co
st

Figure 1: Average cost when λ = 1
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Figure 2: Optimal solutions of Q under different λ

From Table 2 and Figure 2, we can obtain the following observations: (i) If we only minimize the annual
cost, we should produce 23.4 thousand kilograms products. The expected annual cost is 27039 thousand
dollars accordingly. But the standard deviation is 134470 thousand dollars, which is very high. That is to say,
there is a high risk that may probably bankrupt our entire enterprises in the closed-loop supply chain. (ii) As
λ increases, the optimal quantity of products and the minimum cost also increase. In other words, standard
deviation can be another index considered by decision makers as the lot size increases.
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Table 2: Optimal solutions and minimum costs with various values of λ

λ 1 0.9 0.8 0.7 0.6 0.5
Q(kkg) 23400 21800 20800 20400 20000 19600

n 117 109 76 104 100 98
min cost (k$) 27039 27062 27105 27129 27158 27191

λ 0.4 0.3 0.2 0.1 0
Q(kkg) 19400 19200 19200 19000 19000

n 97 96 96 95 95
min cost (k$) 27210 27230 27230 27252 27252

5 Conclusions

On the basis of risk-averse criterion, we studied the issue about stochastic closed-loop supply chain for dete-
riorating items and obtained the following major results.

Firstly, a mean-standard deviation model was developed for a CLSC problem with deteriorating products,
in which the return time of container is random.

Secondly, when the return time follows uniform distribution, we analyzed the proposed optimization model
in three different cases. The mean and standard deviation of the stochastic total cost can be turned into its
equivalent deterministic analytical expressions. The obtained equivalent optimization models can be solved
by conventional optimization softwares.

Finally, we conducted several numerical experiments to analyze the impact of the risk preference parameter
on the optimal quantity of products and the total costs. From the computational results, we observed that
when the scale of production increases, the risk increases too. For our risk-averse optimization model, the
optimal solution to risk-neutral optimization model is not optimal.
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