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Abstract

Data envelopment analysis (DEA) is an approach to measuring the relative efficiencies of a set of
decision making units (DMUs) that use multiple inputs to produce multiple outputs. In this paper,
we study the input-oriented and the output-oriented fuzzy DEA models, in which the input data and
output data are characterized by fuzzy variables with known possibility distributions. The definitions
of expectation efficiency of the evaluated DMUs are introduced. Although in some special cases the
credibility constraints can be turned into their crisp equivalents, we cannot do so for the expectation
objective function. As a result, for general fuzzy inputs and outputs, the fuzzy DEA models cannot be
turned into their deterministic mathematical programming problems. In addition, since the objective
functions of the input-oriented and the output-oriented DEA models are the expected ratio of weighted
fuzzy outputs to weighted fuzzy inputs, and the expected ratio of weighted fuzzy inputs to weighted fuzzy
outputs, respectively, they have no convexity property in general case. Therefore, conventional numerical
optimization methods cannot be used to solve the fuzzy DEA models with general fuzzy inputs and
outputs. To avoid this difficulty, we suggest an approximation approach (AA) to evaluating expectation
objective and credibility constraint functions, and the reasonableness of AA is demonstrated by discussing
the related convergence properties. After that, we design a hybrid heuristic algorithm for solving our fuzzy
DEA models. The hybrid algorithm integrates AA, neural network (NN), and the simulated annealing (SA)
algorithm. Finally, one numerical example is provided to illustrate the effectiveness of the approximation-
based SA algorithm and the relative efficiency is analyzed via numerical experiments.
c©2015 World Academic Press, UK. All rights reserved.
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1 Introduction

DEA, initially proposed by Charnes et al. [3], has been widely used to evaluate the relative efficiency of
a set of homogeneous DMUs with multiple inputs and multiple outputs. In the original DEA models, the
input and output data are assumed to be measured exactly. One of the advantages of the DEA model is
that it does not require either a priori weights or the explicit specification of functional relations between
the multiple inputs and outputs. On the basis of CCR model [3], various extensions of the CCR model have
been proposed, including BCC model [1], FDH (free disposal hull) model [17], SBM (slacks-based measure of
efficiency) model [22], RAM model [4], and other well-known DEA models [2].

However, there is a weakness in deterministic DEA models, they do not allow imprecise data in inputs and
outputs, i.e., the data of inputs and outputs of the evaluated DMUs are assumed to be measured with crisp
positive values on a ratio scale. However, as some researchers pointed out, this assumption may not always be
true in real-world problems. As a result, DEA efficiency evaluation may be sensitive to such imprecise data.
In order to incorporate uncertain input and output data to DEA analysis, many researchers applied their
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minds to deal with the imprecise data of DEA in fuzzy environment. For example, Sengupta [21] explored
the use of fuzzy set-theoretic measures in the context of DEA; Maeda and Tanaka [5] formulated a DEA
model with an interval efficiency which consists of efficiencies obtained from the optimistic and pessimistic
viewpoints; Hatami-Marbini and Tavana [7] proposed an alternative fuzzy outranking method by extending
the Electre I method to take into account the uncertain, imprecise and linguistic assessments provided by a
group of decision makers; Qin et al. [18, 19] studied fuzzy DEA models via parametric programming method,
where the parameters characterize the degree of uncertainty of the fuzzy coefficients, and Meng [15] presented
a new satisficing DEA model with credibility criterion. The interested reader may refer to [6], in which the
authors provided a taxonomy and review of the fuzzy DEA methods.

Different from the work mentioned above, the main purpose of this paper is to construct the input-
oriented and the output-oriented credibililistic DEA models by adopting the expectation criterion in the
objective function. The theoretical foundation of our credibilistic DEA models is credibility measure theory
[10, 11, 13]. It is well-known that probability measure is additive and the mathematical expectation of random
variable is linear. However, credibility measure is nonadditive and the expected value operator of fuzzy variable
is nonlinear in general. Therefore, the solution methods developed for stochastic DEA cannot be used for our
credibilistic DEA models. In this paper, the objective functions in our input-oriented and output-oriented
credibilistic DEA models are the expected ratio of weighted fuzzy outputs to weighted fuzzy inputs, and
the expected ratio of weighted fuzzy inputs to weighted fuzzy outputs, respectively, which are different from
those discussed in the literature, and the proposed credibilistic DEA models are in general cannot be turned
into deterministic programming problems. Therefore, conventional numerical optimization methods cannot
be used to solve our credibilistic DEA models. To avoid this difficulty, we adopt AA to evaluate expectation
objective and credibility constraint functions, and discuss the convergence of the evaluation method. After
that, we design a hybrid SA algorithm, which integrates AA, NN and the SA algorithm, to solve the developed
credibilistic DEA models.

The rest of this paper is organized as follows. In Section 2, we firstly present the new input-oriented
and the output-oriented credibilistic DEA models; then introduce the definition of expectation efficiency
of the evaluated DMUs. The equivalent problems of the proposed credibilistic DEA models are discussed
in Section 3. In Section 4, we design a hybrid heuristic algorithm, which integrates AA, NN and the SA
algorithm, for general credibilistic DEA models. In Section 5, we provide one numerical example to illustrate
the effectiveness of the approximation-based SA algorithm and analyze the DMUs’ relative efficiency via
numerical experiments. Section 6 draws our conclusions.

2 Formulation of Credibilistic DEA Models

In this section, we will develop a credibility approach to input-oriented and the output-oriented fuzzy DEA
models, in which the input and output data are characterized by fuzzy variables with known possibility
distributions. The aim of the proposed credibilistic DEA model is to optimize the expected value of objective
function subject to credibility constraints with prescribed credibility levels.

Firstly, on the basis of fuzzy expected value operator and credibility measure, we can formulate the
following input-oriented credibilistic DEA model,

max
u,v

V I
EDEA = E

[
vT ỹ0/u

T x̃0
]

subject to Cr{uT x̃i − vT ỹi ≥ 0} ≥ αi, i = 1, 2, . . . , n (1)

u ≥ 0, u 6= 0

v ≥ 0, v 6= 0,

where

x̃0: the fuzzy inputs column vector consumed by DMU0;

x̃i: the fuzzy inputs column vector consumed by DMUi;

ỹ0: the fuzzy outputs column vector produced by DMU0;

ỹi: the fuzzy outputs column vector produced by DMUi, and
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αi: the predetermined credibility level corresponding to the ith constraint for i = 1, 2, . . . , n.

In model (1), we wish to find the decision (u, v) with maximum expected return value E
[
vT ỹ0/u

T x̃0
]
,

while the fuzzy event uT x̃i − vT ỹi ≥ 0 (i = 1, 2, . . . , n) is satisfied with at least credibility αi (i = 1, 2, . . . , n).
What’s more, model (1) is an input-oriented DEA one to evaluate the DMU0 and we need to solve n times
with (x̃0, ỹ0) = (x̃i, ỹi) (i = 1, 2, . . . , n) for the evaluated n DMUs.

Secondly, we can employ fuzzy expected operator and credibility measure to build the output-oriented
credibilistic DEA model as follows,

min
u,v

V O
EDEA = E

[
uT x̃0/v

T ỹ0
]

subject to Cr{uT x̃i − vT ỹi ≥ 0} ≥ αi, i = 1, 2, . . . , n (2)

u ≥ 0, u 6= 0

v ≥ 0, v 6= 0.

In model (2), αi is a predetermined credibility level corresponding to the ith constraint for i = 1, 2, . . . , n. We
may interpret the output-oriented fuzzy DEA model (2) in a similar way as model (1).

As we know, we use the optimal value to determine the efficiency of DMU0 in the deterministic environment.
Before we define the efficiency in fuzzy environment, we first recall the concept of efficiency in the deterministic
environment. For the input-oriented and the output-oriented CCR models, if the optimal value equals to unity
and there exists at least one optimal solution whose each component is larger than 0, then DMU0 is CCR-
efficient; if the optimal value equals to unity and at least one element of the optimal solution is zero, then
DMU0 is CCR-weak-efficient; Otherwise, it is said to be CCR-inefficient. Correspondingly, we explain the
efficiency of DMU0 by the expected value in the input-oriented and the output-oriented credibilistic DEA
models at the specified credibility levels.

Firstly, for input-oriented credibilistic DEA model (1), we formally define its efficiency as follows.

Definition 2.1. For input-oriented credibilistic DEA model (1), DMU0 is expectation efficient if its optimal
value V I∗

EDEA ≥ 1 and there exists at least one optimal solution (u∗, v∗) with u∗ > 0, v∗ > 0.
DMU0 is expectation weak efficient if its optimal value V I∗

EDEA ≥ 1 and at least one element of the optimal
solution (u∗, v∗) is zero. Otherwise, DMU0 is said to be expectation inefficient.

Secondly, for output-oriented credibilistic DEA model (2), we have the following formal definition about
expectation efficiency.

Definition 2.2. For output-oriented credibilistic DEA model (2), DMU0 is expectation-efficient if its optimal
value V O∗

EDEA ≤ 1 and there exists at least one optimal solution (u∗, v∗) with u∗ > 0, v∗ > 0.
DMU0 is expectation-weak-efficient if its optimal value V O∗

EDEA ≤ 1 and at least one element of the optimal
solution (u∗, v∗) is zero. Otherwise, DMU0 is said to be expectation-inefficient.

Remark: Definitions 2.1 and 2.2 are the generalizations of the deterministic CCR efficiency.

Using the concepts of expectation efficiency of the evaluated DMU0, in the following section, we will discuss
the equivalent problems of models (1) and (2).

3 The Equivalent Credibilistic DEA Models

When the number of fuzzy inputs and fuzzy outputs increase, we can see that models (1) and (2) may include
a large number of fuzzy variables. Therefore, to find out the optimal solutions to models (1) and (2), we are
required to give efficient methods of computing the expectation objective and credibility constraint functions.
For general fuzzy inputs and outputs, we cannot achieve these two goals simultaneously. In the following, we
consider a special case, in which only the credibility constraints can be turned into their crisp equivalents.

Let ξ = (a1, a2, a3, a4) and η = (b1, b2, b3, b4) be two trapezoidal fuzzy variables. If ξ and η are mutually
independent [14], then one has

ξ + η = (a1 + b1, a2 + b2, a3 + b3, a4 + b4),
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and
βξ + γη = (βa1 + γb1, βa2 + γb2, βa3 + γb3, βa4 + γb4)

for any β, γ ≥ 0. As a consequence, we have the following property of credibility constraints.
Let ξ1, ξ2, . . . , ξn be mutually independent trapezoidal fuzzy variables with ξi = (r1i , r

2
i , r

3
i , r

4
i ), and ki >

0, i = 1, 2, . . . , n. According to the definition of credibility measure, it is easy to check the credibility has the
following properties related to trapezoidal fuzzy variables.

(i) When α < 0.5, Cr{
∑n

i=1 kiξi ≥ 0} ≥ α if and only if (1− 2α)
∑n

i=1 kir
4
i + 2α

∑n
i=1 kir

3
i ≥ 0;

(ii) When α ≥ 0.5, Cr{
∑n

i=1 kiξi ≥ 0} ≥ α if and only if (2α− 1)
∑n

i=1 kir
1
i + 2(1− α)

∑n
i=1 kir

2
i ≥ 0.

For the sake of convenience, we denote xrii = (xri1i, x
ri
2i, · · · , x

ri
mi), y

ri
i = (yri1i , y

ri
2i , · · · , y

ri
ri). When αi ≥ 0.5

(i = 1, . . . , n), according to the properties of credibility, the credibilistic DEA models (1) and (2) become the
following equivalent models (3) and (4), respectively.

max
u,v

V I
EDEA = E

[
vT ỹ0/u

T x̃0
]

subject to (2αi − 1)(uTxr1i − v
T yr4i ) + 2(1− αi)(u

Txr2i − v
T yr3i ) ≥ 0, i ≤ n (3)

u ≥ 0, u 6= 0

v ≥ 0, v 6= 0,

and

min
u,v

V O
EDEA = E

[
uT x̃0/v

T ỹ0
]

subject to (2αi − 1)(uTxr1i − v
T yr4i ) + 2(1− αi)(u

Txr2i − v
T yr3i ) ≥ 0, i ≤ n (4)

u ≥ 0, u 6= 0

v ≥ 0, v 6= 0,

where αi is a predetermined credibility level corresponding to the ith constraint for i = 1, 2, . . . , n.
So far, for the case of trapezoidal inputs and outputs, we have discussed the method of turning the

credibility constraints into their equivalent deterministic forms which facilitate us to check the credibility
constraints in this special case. However, we cannot do so in general case. Consequently, to design solution
methods for general models (1) and (2), we have to discuss methods of computing expectation objective
functions in these two models, which is usually difficult compared with credibility constraint functions, even
in the case when fuzzy inputs and outputs are trapezoidal fuzzy variables. The issues will be discussed in the
next section.

4 Solution Methods

4.1 Computing Expectation Objective and Credibility Functions

In order to solve credibilistic DEA models (1) and (2), for any given weight vector (u, v), we are required to
compute the expectation objective functions

(u, v)→ E
[
uT x̃0/v

T ỹ0
]
, (u, v)→ E

[
vT ỹ0/u

T x̃0
]
,

and the credibility function of fuzzy event uT x̃0 − vT ỹ0 ≥ 0,

(u, v)→ Cr
{
uT x̃0 − vT ỹ0 ≥ 0

}
.

In the following, we discus the general case that fuzzy input data x̃0 and fuzzy output data ỹ0 ≥ 0 are
continuous fuzzy variables with general possibility distributions.

In the input-oriented and the output-oriented credibilistic DEA models (1) and (2), when the inputs
and outputs are general continuous fuzzy variables for each DMU, we cannot get the analytical expressions
of expectation objective and credibility constraint functions. In this case, the exact values of expectation
objective and credibility constraint functions are usually difficult to compute. To overcome this difficulty, we
adopt AA proposed in [12] to evaluate the expectation objective and credibility constraint functions.
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Suppose that (x̃T0 , ỹ
T
0 ) = (x̃1,0, x̃2,0, · · · , x̃m,0, ỹm+1,0, ỹm+2,0, · · · , ỹm+r,0) is a continuous fuzzy vector with

an infinite support Ξ = Πm+r
j=1 [aj , bj ], where [aj , bj ] is the support of x̃j,0 (1 ≤ j ≤ m) or ỹj,0 (m+1 ≤ j ≤ m+r).

In this case, we adopt AA to approximate the possibility distribution of (x̃T0 , ỹ
T
0 ) by a sequence of possibility

distributions of discrete fuzzy vectors (x̃Tt , ỹ
T
t ). The discretization method is described as follows.

For each integer t, we define the discrete fuzzy vector

(x̃Tt , ỹ
T
t ) = (x̃t,1, x̃t,2, · · · , x̃t,m, ỹt,m+1, ỹt,m+2, · · · , ỹt,m+r)

in the following way. For each j ∈ {1, 2, . . . ,m}, define fuzzy variable x̃t,j = gt,j(x̃j,0) and for each j ∈
{m+ 1,m+ 2, . . . ,m+ r}, define fuzzy variable ỹt,j = gt,j(ỹj,0) as

gt,j(vj) = sup

{
kj
t

∣∣ kj ∈ Z, s.t.
kj
t
≤ vj

}
for vj ∈ [aj , bj ], where Z is the set of integers.

Note that fuzzy variables x̃j,0 and ỹj,0 take their values in [aj , bj ], while x̃t,j and ỹt,j take values kj/t for
kj = [taj ], [taj ] + 1, . . . , [tbj ], where [r] is the maximal integer such that [r] ≤ r. In addition, for each kj ,
as x̃j,0 and ỹj,0 take their values in [kj/t, (kj + 1)/t), fuzzy variables x̃t,j and ỹt,j take the value kj/t only.
Hence, the possibility distributions of fuzzy variables x̃t,j and ỹt,j are determined by

vt,j

(
kj
t

)
= Pos

{
γ
∣∣ kj
t
≤ x̃j,0(γ) <

kj + 1

t

}
, j = 1, 2, . . . ,m,

and

vt,j

(
kj
t

)
= Pos

{
γ
∣∣ kj
t
≤ ỹj,0(γ) <

kj + 1

t

}
, j = m+ 1,m+ 2, . . . ,m+ r

for kj = [taj ], [taj ] + 1, . . . , [tbj ]. Consequently, for each γ ∈ Γ, we have

x̃j,0(γ)− 1

t
< x̃t,j(γ) ≤ x̃j,0(γ), j = 1, 2, . . . ,m,

and

ỹj,0(γ)− 1

t
< ỹt,j(γ) ≤ ỹj,0(γ), j = m+ 1,m+ 2, . . . ,m+ r,

which can be equivalently rewritten as

|x̃t,j(γ)− x̃j,0(γ)| < 1

t
, |ỹt,j(γ)− ỹj,0(γ)| < 1

t
.

In addition, (x̃Tt , ỹ
T
t ) and (x̃T0 , ỹ

T
0 ) are (m + r)-ary fuzzy vectors, x̃t,j and x̃j,0 are their jth components

for j = 1, 2, . . . ,m, and ỹt,j and ỹj,0 are their jth components for j = m + 1,m + 2, . . . ,m + r, respectively.
Hence, we have

‖(x̃Tt , ỹTt )(γ)− (x̃T0 , ỹ
T
0 )(γ)‖

=

√
m∑
j=1

(x̃t,j(γ)− x̃j,0(γ))2 +
m+r∑

j=m+1

(ỹt,j(γ)− ỹj,0(γ))2 ≤
√
m+r
t , γ ∈ Γ,

which implies that the sequence {(x̃Tt , ỹTt )} of discrete fuzzy vectors converges uniformly to the continuous
fuzzy vector (x̃T0 , ỹ

T
0 ).

The process to evaluate the expectation objective function by AA is summarized as follows.

Algorithm 4.1. Evaluating expectation objective function by AA

Step 1. Generate K points ((x̂kt )T , (ŷkt )T ) = (x̂kt,1, · · · , x̂kt,m, ŷkt,m+1, · · · , ŷkt,m+r) uniformly from the support

of (x̃T0 , ỹ
T
0 ) for k = 1, 2, . . . ,K.

Step 2. Compute vk = vt,1(x̂kt,1) ∧ · · · ∧ vt,m+r(ŷkt,m+r) and fk = f(x̂kt , ŷ
k
t ) for k = 1, 2, . . . ,K, where

f(x̃0, ỹ0) = vT ỹ0/u
T x̃0 for model (1) or f(x̃0, ỹ0) = uT x̃0/v

T ỹ0 for model (2).
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Step 3. Rearrange the subscript k of vk and fk such that f1 ≤ f2 ≤ · · · ≤ fK .

Step 4. Calculate the weights wk, where

wk =
1

2
(

k
max
i=1

vi −
k−1
max
i=0

vi) +
1

2
(

K
max
i=k

vi −
K+1
max
i=k+1

vi)

with v0 = vK+1 = 0.

Step 5. Return the expected value by E =
∑K

k=1 wkfk.

The convergence of the evaluation method is guaranteed by the following convergent result. As a conse-
quence, the value of expectation objective E

[
vT ỹ0/u

T x̃0
]

or E
[
uT x̃0/v

T ỹ0
]

can be estimated by the approx-

imating expectation objective value E
[
vT ỹt/u

T x̃t
]

or E
[
uT x̃t/v

T ỹt
]

provided t is sufficiently large.

Theorem 4.1. Consider credibilistic DEA models (1) and (2). If the fuzzy inputs-outputs (x̃T0 , ỹ
T
0 ) is an

(m+r)-ary continuous and bounded fuzzy vector, and the sequence (x̃Tt , ỹ
T
t ) of fuzzy vectors is the discretization

of the fuzzy vector (x̃T0 , ỹ
T
0 ), then we have

lim
t→∞

E[vT ỹt/u
T x̃t] = E[vT ỹ0/u

T x̃0], and lim
t→∞

E[uT x̃t/v
T ỹt] = E[uT x̃0/v

T ỹ0].

Proof. Since the fuzzy inputs-outputs (x̃T0 , ỹ
T
0 ) is an (m+r)-ary continuous and bounded positive fuzzy vector,

and for any feasible solution (u, v), the functions vT ỹ0/u
T x̃0 or uT x̃0/v

T ỹ0 are continuous on Rm+r. By the
suppositions of this theorem, the conditions of [12, Theorem 3] are satisfied. As a consequence, the assertions
in this theorem hold.

In the input-oriented and the output-oriented credibilistic DEA models (1) and (2), when the inputs
and outputs are general continuous fuzzy variables for each DMU, we cannot turn the credibility constraint
functions into their crisp deterministic forms. In this case, we can also evaluate the credibility constraint
functions by AA. The convergence of the approach is included in the following result.

Theorem 4.2. Consider credibilistic DEA models (1) and (2). If the fuzzy inputs-outputs (x̃T0 , ỹ
T
0 ) is an

(m+r)-ary continuous and bounded fuzzy vector, and the sequence (x̃Tt , ỹ
T
t ) of fuzzy vectors is the discretization

of the fuzzy vector (x̃T0 , ỹ
T
0 ), then we have

lim
t→∞

Cr
{
uT x̃t − vT ỹt ≥ 0

}
= Cr

{
uT x̃0 − vT ỹ0 ≥ 0

}
,

provided that credibility function Cr{uT x̃0 − vT ỹ0 ≥ r} is continuous at r = 0.

Proof. By the construction of (x̃Tt , ỹ
T
t ), we know that the sequence {(x̃Tt , ỹTt )} of discrete fuzzy vectors con-

verges uniformly to the continuous fuzzy vector (x̃T0 , ỹ
T
0 ). For any given inputs and outputs weight vectors u

and v, since uT x̃t − vT ỹt is a linear combination of discrete fuzzy variables

(x̃t,1, x̃t,2, · · · , x̃t,m, ỹt,m+1, ỹt,m+2, · · · , ỹt,m+r) ,

the sequence {uT x̃t − vT ỹt} of discrete fuzzy variables converges uniformly to the continuous fuzzy variable
uT x̃0−vT ỹ0. It is known that in credibility theory uniform convergence implies convergence in distribution for
sequence of fuzzy variables, we deduce that {uT x̃t−vT ỹt} converges in distribution to uT x̃0−vT ỹ0. Therefore,
by [12, Theorem 1], the assertion of the theorem is valid provided that credibility function Cr{uT x̃0−vT ỹ0 ≥ r}
is continuous at r = 0.

4.2 Approximation-based SA Algorithm

For simplicity, we take E(u, v, x̃0, ỹ0) as the objective functions for credibilistic DEA models (1) and (2) in
the rest of this paper. We now introduce the SA algorithm to solve models (1) and (2). The name of the
SA algorithm derived from an analogy between the simulation of the annealing process of solids originally
proposed by Metropolis et al. [16] and the strategy of solving combinatorial optimization problems firstly
provided by Kirkpatrick et al. [9]. In the annealing process, a solid is heated to a high temperature and cooled
slowly to low it to crystallize. As the heating process allows the atoms to move randomly, if the cooling process
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is done too slowly, it gives the atoms enough time to redistribute themselves in a regular crystalline lattice
structure as they lose mobility until a minimum energy state is reached, which is also named stability. In the
analogy, the state of solid corresponding to the feasible solution of the combinatorial optimization problems,
the energy at every state corresponding to the improvement of the objective function and the minimum energy
state will be the optimal solution of the combinatorial optimization problems.

The SA algorithm, a very excellent global optimization algorithm, is a stochastic approach to direct the
search. In the SA algorithm, an optimization problem starts with a high temperature. After generating an
initial solution, it attempts to move from the current solution to one of its neighborhood solutions, which
are used to change the values of decision variables, and made according to a user-defined annealing schedule.
Then the changes in the objective function values (∆E) are computed. If the new solution results in better
objective value, it is accepted. However, if the new solution yields worse objective value, it can still be
accepted according to the probability function, P (∆E) = min{1, exp(−∆E/tk)}, where tk is the current
temperature. This check is performed by firstly generating a random real number from the interval (0, 1).
If the value is less than or equal to the probability value, the new solution is accepted; otherwise, it is
rejected. By accepting worse solutions, the SA algorithm can avoid being trapped in local optimal solution.
the SA algorithm repeats the above process MarkovLength times at each temperature to reach the thermal
equilibrium, where MarkovLength is a control parameter, which was usually called the Markov chain length.
The parameter tk is gradually decreased by a cooling function as the SA algorithm proceeds until the stopping
condition is satisfied. However, three parameters must be specified in implementing the SA algorithm: an
initial temperature; a temperature decreasing rule, and the number of iterations to be performed at each
temperature stage, i.e., the Markov Chain length.

The approximation-based SA algorithm for solving models (1) and (2) is summarized as:

Algorithm 4.2. Approximation-based SA algorithm

Step 1. Set the initialized temperature t0 := tmax and generate initialized solution (u0, v0), then evaluate its
corresponding objective function value E(u0, v0, x̃0, ỹ0) by AA.

Step 2. Randomly sample a point (u, v) from the given feasible region, then evaluate by AA the expectation
objective function E(u, v, x̃0, ỹ0) and ∆E = E(u0, v0, x̃0, ỹ0) − E(u, v, x̃0, ỹ0) in model (1) or ∆E =
E(u, v, x̃0, ỹ0)− E(u0, v0, x̃0, ỹ0) in model (2).

Step 3. Check whether min{1, exp(−∆E/tk)} ≥ random(0,1). If yes, then (u0, v0) := (u, v); otherwise
remains the current state (u0, v0).

Step 4. At the same temperature, check whether the inner-circulation (I-C) satisfies the stopping criterion.
If yes, go to the next step; otherwise go back to Step 2.

Step 5. Decrease the temperature slowly by tk+1 := λtk, where λ ∈ (0, 1).

Step 6. Check whether the outer-circulation (O-C) satisfies the stopping criterion. If yes, then output the
optimal solution and optimal value, stop; otherwise, go back to Step 2.

For designing the SA algorithm, some principle factors should be considered.
Initial solution: An initial solution is a starting solution or point that will be used in the search process

and considered as a random solution. In this paper, we use (u0, v0) to denote it, which is the best one of the
one hundred random points produced in the feasible field.

Initial temperature: An initial temperature t0 = tmax is used to control the series of atoms’ moves in the
search process. In general, the initial temperature should be high enough to allow all candidate solutions to
be accepted.

Temperature decreasing rule: The temperature decreasing rule in this paper is decided by the parameter
λ, which is also used to control the series of atoms’ moves in the search process. The parameter λ is the rate
at which the temperature is decreased. In this paper, we set the parameter λ = 0.99, and the temperature is
decreased through multiplication by a fixed factor λ while starting from the initial temperature t0.

Neighboring solutions: Neighboring solutions are the set of feasible solutions that can be generated from
the current solution. Each feasible solution can be directly reached from current solution by a move and
resulted neighboring solution. Here, we adopt the following method to generate the neighboring solutions.

Neighboring solutions ∼ N (current solution, 0.5)
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where N (·, ·) means normal distribution.
Stopping criteria: The SA algorithm has inside and outside circulations, where the inside circulation

controls the achievement to equilibrium state in the current temperature and the outside circulation controls
the temperature decreasing rate, hence there are two stopping criteria:

C1) In the outer-circulation, the number of temperature transitions is used as a stopping rule. Furthermore,
when the parameter tk < ε in the SA algorithm, the algorithm can be terminated, where ε is a very small
positive constant (e.g., ε = 10−8 in this paper) or calculated by other parameters.

C2) In the inner-circulation, the control parameterMarkovLength, usually called the Markov chain length,
controls the completion of the inner loop. In addition, the users can determine this period.

4.3 Approximation-based Hybrid SA Algorithm

Till now, we have discussed the methods of evaluating expectation objective and credibility constraint func-
tions included in models (1) and (2). However, the approximation-based SA algorithm is a time-consuming
process provided the number of realizations of fuzzy inputs and outputs. To speed up the solution process,
we desire to replace the expectation objective and credibility constraint functions by an NN since a trained
NN has the ability to approximate integrable functions [20]. We employ the fast BP algorithm [8] to train a
feed-forward NN to approximate the expectation objective or credibility constraint functions. Usually, an NN
with two hidden layers is better in generation than the NN with one hidden layer. But in most applications,
an NN with one hidden layer is enough to be a universal approximator for any integrable functions. Thus, in
this paper, we only consider the NN with the input layer, one hidden layer and the output layer connected in a
feed-forward way. For this purpose, we design an approximation-based hybrid SA algorithm, which integrates
AA, NN and the SA algorithm, to solve general fuzzy expected value DEA models (1) and (2). In this hybrid
algorithm, the AA is used to evaluate the values of expectation objective and credibility constraint functions;
NN is employed to approximate the expectation objective and credibility constraint functions, and the SA
algorithm is used to find the optimal solutions to the DEA models. More precisely, we first employ AA to
generate a set of input-output data for expectation objective and credibility constraint functions. Then, using
the generated input-output data, we train an NN by BP algorithm to approximate the expectation objective
and credibility constraint functions. We repeat the BP algorithm until the error for all vectors in the training
set is reduced to an acceptable value. After that, we use new data, which are not learned by the NN, to
test the trained NN. We don’t stop the training process until we satisfy with the test results. After the NN
is well-trained, it is embedded into a SA algorithm. In the process of the SA algorithm, the output values
of the NN represent the approximate values of the expectation objective and credibility constraint functions.
Therefore, during solution process, it is not necessary to adopt AA to evaluate expectation objective and
credibility constraint functions so that much time can be saved. The process of the approximation-based
hybrid SA algorithm for solving the proposed fuzzy expected value DEA model is summarized as:

Algorithm 4.3. Approximation-based hybrid SA algorithm

Step 1. Generate a set of input-output data for expectation objective function

U : (u, v)→ E(u, v, x̃0, ỹ0)

by AA.

Step 2. Train an NN by BP algorithm to approximate the expectation objective function E(u, v, x̃0, ỹ0)
according to the generated training input-output data.

Step 3. Initialize the temperature and generate initialized state, and compute its corresponding expectation
objective function value by the trained NN.

Step 4. Check whether the outer-circulation satisfies the stopping criterion. If yes, then output the optimal
solution and optimal value; otherwise, go to the next step.

Step 5. Generate a new state by the state-produced function, and calculate its corresponding expectation
objection function value by the trained NN.

Step 6. Check whether the new state is accepted by the acceptance function. If yes, update the current
state; otherwise, remain the current state and go to the next step.
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Step 7. Check whether the inner-circulation satisfies the stopping criterion. If yes, decrease the temperature
slowly and then go back to Step 4; otherwise, go back to Step 5.

5 Computational Results and Efficiency Analysis

In this section, one numerical example is provided to illustrate the feasibility and effectiveness of the approximation-
based hybrid SA algorithm. The numerical experiments are performed on a personal computer, and the pa-
rameters involved in the SA algorithm are set as follows: The initial temperature tmax = 10; The parameter
λ in temperature decreasing rule is 0.99; The parameter ε in the outer-circulation is 10−8, and the parameter
MarkovLength in the inner-circulation is 3000. The required fuzzy input data and fuzzy output data for
our numerical experiments are collected in Table 1, which are characterized by triangular fuzzy variables. In
addition, the credibility levels for all DMUs in models (1) and (2) are assumed to be equal, i.e., α1 = α2 =
· · · = αn = α.

Table 1: DMUs with two fuzzy inputs and two fuzzy outputs

DMUi Input 1 Input 2 Output 1 Output 2
i=1 (3.0, 3.5, 4.0) (1.9, 2.1, 2.3) (2.6, 2.8, 3.0) (3.8, 4.1, 4.4)
i=2 (2.7, 2.7, 2.7) (1.4, 1.5, 1.6) (2.5, 2.5, 2.5) (3.5, 3.7, 3.9)
i=3 (4.1, 4.5, 4.9) (2.0, 2.4, 2.8) (2.9, 3.4, 3.9) (4.5, 5.3, 6.1)
i=4 (3.2, 3.9, 4.6) (2.0, 2.1, 2.2) (2.8, 3.2, 3.6) (5.5, 5.7, 5.9)
i=5 (5.4, 6.0, 6.6) (3.4, 3.9, 4.4) (4.2, 4.9, 5.6) (6.8, 7.7, 8.6)

Firstly, when the fuzzy input and output data are mutually independent triangular fuzzy variables, the
credibility constraints can be converted to their crisp equivalents by the methods discussed in subsection 3.
However, we cannot do so for the expectation objective functions.

Then, we adopt AA to evaluate the values of the expectation objective functions (10000 discretization
points in the numerical experiments), and repeat this process to produce a set of 2000 input-output data for
the input-oriented expectation objective function

U1 : (u, v)→ E(u, v, x̃0, ỹ0) = E
[
vT ỹ0/u

T x̃0
]
,

and the output-oriented expectation objective function

U2 : (u, v)→ E(u, v, x̃0, ỹ0) = E
[
uT x̃0/v

T ỹ0
]
,

respectively.

After that, according to the sets of input-output data, we train two feedforward NNs to approximate the
expectation objective functions U1 and U2, respectively. In the numerical experiments, the trained NNs have
the same structures: four input neurons representing the values of decision variables u1, u2, v1 and v2; five
hidden neurons, and one output neuron representing the output value of expectation objective function.

Finally, the trained NNs are embedded respectively into the SA algorithm to produce the AA and NN-
based SA algorithm to search for the optimal solutions to the input-oriented and the output-oriented expected
value DEA models, respectively.

The results of evaluating the DMUs with credibility level α = 0.95 in the input-oriented DEA model
(1) are reported in Table 2, which can be interpreted in the following way. DMU1, DMU3 and DMU5 are
expectation-inefficient with expected values 0.873778, 0.935441 and 0.949802, respectively. Therefore, if those
DMUs want to improve their relative efficiency values to change their inferior positions in competition, they
must decrease their input data because model (1) is an input-oriented fuzzy expectation DEA model. On the
other hand, the other two DMUs are expectation-efficient. From Table 2, we can also see that DMU2 is the
most efficient, follows with DMU4 and DMU5. Hence, the efficient values give more information about the
DMUs and can make the decision maker have a reasonable choice to increase its efficiency in competition.
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Table 2: Results of evaluation with α = 0.95 in model (1)

DMUs Optimal solution(u,v) Optimal value Evaluating analysis
DMU1 (0.0043, 0.0253, 0.0921, 0.0049) 0.873778 Inefficiency
DMU2 (0.0107, 0.0279, 0.0165, 0.0053) 1.033811 Efficiency
DMU3 (0.0018, 0.0385, 0.0204, 0.0005) 0.935441 Inefficiency
DMU4 (0.0059, 0.0132, 0.0067, 0.0035) 1.005339 Efficiency
DMU5 (0.0014, 0.0114, 0.0000, 0.0037) 0.949802 Inefficiency

Table 3 collects the results of evaluating the DMUs with credibility level α = 0.95 in the output-oriented
DEA model (2). From Table 3, we can see that DMU1, DMU3 and DMU5 are expectation-inefficient with
expected values 1.129857, 1.148728 and 1.102718, respectively. The relative expectation-inefficient DMUs have
some disadvantages in the output data which should be changed in order to vary their weakness positions
in competition because of the output-oriented credibilistic DEA model (2). On the other hand, DMU2 and
DMU4 are expectation-efficient. From Table 3, we can also see that DMU2 is the most efficient, follows with
DMU4 and DMU5.

Table 3: Results of evaluation with α = 0.95 in model (2)

DMUs Optimal solution(u,v) Optimal value Evaluating analysis
DMU1 (0.0025, 0.0214, 0.0054, 0.0048) 1.129857 Inefficiency
DMU2 (0.0036, 0.0172, 0.0103, 0.0016) 0.974755 Efficiency
DMU3 (0.0058, 0.0147, 0.0119, 0.0006) 1.148728 Inefficiency
DMU4 (0.0032, 0.0451, 0.0046, 0.0142) 0.998820 Efficiency
DMU5 (0.0120, 0.0062, 0.0136, 0.0005) 1.102718 Inefficiency

According to the computational results shown in Tables 2 and 3, we know that the identical DMU has the
same relative efficiency which are evaluated by the two types of proposed fuzzy expected value DEA models
with the same credibility levels. For the identical expectation-inefficient DMU in the two types of fuzzy DEA
models, however, if it wants to improve its inferior position in competition, it should take different measures
according to the model in which it is evaluated. Hence, the decision makers play a very important role in the
evaluating relative efficiency using the credibilistic DEA models. They can reasonably choose the fuzzy DEA
model in the light of their pursing orientation to deal with the relative efficiency evaluation of the DMUs.

6 Conclusions

On the basis of credibility measure theory, this paper studied fuzzy DEA from a new viewpoint. The major
new results of this paper included the following several aspects.

Firstly, we developed the input-oriented and the output-oriented credibilistic DEA models with fuzzy
inputs and fuzzy outputs to estimate the relative efficiency of the evaluated DMUs, in which we employed the
expected value operator to construct the objective functions and credibility measure to construct the constraint
functions. The definitions of expectation efficiency of the evaluated DMUs to the proposed expected value
DEA models were introduced.

Secondly, for general credibilistic DEA models, we adopted AA to evaluate the expectation objective and
credibility constraint functions. The reasonableness of the method are ensured by two related convergent
results (Theorems 4.1 and 4.2).

Finally, an approximation-based hybrid algorithm was designed for solving our credibilistic EDA models.
The hybrid algorithm is the integration of AA, NN, and the SA algorithm. One numerical example was
provided to illustrate the feasibility and effectiveness of the approximation-based hybrid SA algorithm, and
the DMUs’ relative efficiency was analyzed via numerical experiments.
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