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Abstract

This paper introduces two uncertain continuous portfolio selection models under the assumption that
securities follow uncertain differential equations. The models are established to be consistent with the
goals of investors based on expected value criterion. Solution methods for the models are proposed based
on the a-pathes of uncertain differential equation and genetic algorithm. An example is presented to
validate the approaches.
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1 Introduction

Portfolio selection problem is a classical problem in financial economics. The problem concerns on optimization
of allocating a wealth to some securities. Since mean-variance theory was introduced by Markowitz in 1952 [18]
19], portfolio selection has been an interesting field of study in finance, and many relative literatures appeared,
for example, [21], [T0L 20, 6, 9], 25| [1, B, 11]. In these literatures, there were two types of papers under the
assumption that securities are assumed to have random returns: one is on discrete-time portfolio selection
and the other is on continuous-time portfolio selection. In continuous-time models, a stock price is assumed
to be determined by an Ito’s stochastic differential equation.

However, the security market is complex. Liu [16] pointed out that the real stock price may be impossible
to follow any Ito’s stochastic differential equation. It was suggested that a new uncertain finance theory should
be developed based on uncertainty theory and uncertain differential equation. The uncertainty theory was
established by Liu [I4] in 2007 and refined in 2010 [I5]. In 2009, Liu [I7] introduced a canonical process as a
counterpart of a Wiener process and proposed uncertain differential equation driven by a canonical process.
Some results on uncertain differential equations may be seen in literatures [2, B, [, [7, 8, 24]. Uncertain
differential equation was first introduced into finance by Liu [I7] in which an uncertain stock model was
proposed and European option price formulas were documented.

Based on the uncertainty theory, an continuous-time uncertain portfolio selection model was studied by
Zhu [26] in 2010. While an uncertain portfolio selection model was established by Huang [12] for a discrete
case in 2011. In [26], a security is assumed to have an uncertain return which follows an uncertain differential
equation, and the expected value of the return is maximized. In addition, Sheng and Zhu [22] dealt with an
uncertain portfolio selection model based on optimistic value criterion.

In this paper, we will introduce two uncertain portfolio selection models which differ from the existing
ones. In our proposed models, an investor’s goal will be satisfied based on expected value criterion in that one
is at the final time and the other is at the earliest time. The solution methods integrate a-path of uncertain
differential equation for expressing expected values and genetic algorithm.

The structure of the paper is as follows: first, some concepts and results in uncertainty theory will be
reviewed. Then, two uncertain portfolio selection models will be established. Next, the solution methods for
the models will be presented. Finally, an example will be given to validate the proposed approaches.
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2 Preliminary

To begin with, we review some useful concepts and results in uncertainty theory founded by Liu [I4]. Let T’
be a nonempty set, and £ be a o-algebra over I'. Each element A € £ is called an event.

Definition 1 Set function M from L to [0,1] is called an uncertain measure if it satisfies three azioms:
(normality) M{T'} = 1; (duality) M{A} + M{A°} = 1 for any event A; and (countable subadditivity)
MA{Uso Ai} < D02 M{A;} for every countable sequence of events Ay, As, . . ..

The triplet (T, £, M) is called an uncertainty space. In order to obtain an uncertain measure of compound
event, a product uncertain measure was defined by Liu [I7]: Let (T, L, M) be uncertainty spaces for k =
1,2,.... The product uncertain measure M is an uncertain measure satisfying M{[]>~; Ay} = _O/Sle{Ak},

1=
where Ay are arbitrarily chosen events from L for k = 1,2,.. ., respectively.

An uncertain variable ¢ is defined by Liu [I4] as a function from an uncertainty space (I', £, M) to the
set R of real numbers such that the set {{ € B} is in £ for any Borel set B. The uncertainty distribution
® : R — [0, 1] of an uncertain variable £ is defined by ®(z) = M{¢ < z} for z € R. The expected value of an
uncertain variable £ is defined by

E[¢] = o M{& > ridr — ’ M{¢ < ridr

0 —o0

provided that at least one of the two integrals is finite. The variance of ¢ is defined by V[£] = E[(§ — E[€])?].
A normal uncertain variable with expected value e and variance o2 has the uncertainty distribution

oo (1o (")) e

which is denoted by & ~ N(e, o).
The uncertain variables &1, o, . .. &, are said to be independent [I7] if

M{Q(& € Bi)} = min M{& € Bi}
for any Borel sets By, Bs, ... By, of real numbers. For numbers a and b, E[a{ + bn] = aE[{] + bE[n] if £ and
71 are independent uncertain variables.

Liu [I3] defined uncertain process as a measurable function from S x (I', £, M) to the set of real numbers
where S is a totally ordered set.

Definition 2 ([I7]) An uncertain process Cy is called a canonical process if it satisfies: (i) Co = 0 and
almost all sample paths are Lipschitz continuous; (i) Cy has stationary and independent increments; (iii)
every increment Csyy — Cs is a normal uncertain variable with expected value 0 and variance t2, denoted by
Csrt — Cs ~ N(0, ).

For any partition of closed interval [a,b] with @ = t; < to < -+ < tx11 = b, the mesh is written as
A = maxi<;<g |ti+1 —t;|. Then the uncertain integral of an uncertain process X; with respect to C is defined
by Liu [I7] as

b k
X =1 X - o, —Ch,
/a +dCY Alino ; t; (Ctlﬂ Ctl)

provided that the limit exists almost surely and is finite. If there exist two uncertain processes p; and o; such
that Z; = Zo—l—fot ﬂsd8+f()t 0sdC for any t > 0, then we say Z; has an uncertain differential dZ; = pydt+o0,dC4.
An uncertain differential equation driven by a canonical process C; is defined as

dX; = f(t7 Xt)dt + g(t> Xt)dCt (1)

where f and g are two given functions. A solution X; of the uncertain differential equation is equivalent to a
solution of the uncertain integral equation

t t
Xt:Xo—i—/ f(s,XS)ds—i—/ 9(s, Xs)dCs.
0 0
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Definition 3 ([23]) Let 0 < oo < 1. An uncertain differential equation is said to be have an a-path X7 if
it solves the corresponding ordinary differential equation

dXF = f(t, XP)dt + [g(t, X7) |7 (a)dt (2)
where ®~1(a) is the inverse standard normal uncertainty distribution, i.e.,

_ V3.«
o l(a):7ln1—o¢'

Theorem 1 ([23]) Let X; and X be the solution and a-path of the uncertain differential equation
dX, = f(t, Xp)dt + g(t, X;)dCy,
respectively. Then the solution X; has an inverse uncertainty distribution
U a) = X2

Furthermore, for any monotone (increasing or decreasing) function J, we have
1
ElJ(X)] = / J(X%)da.
0

3 Portfolio Selection Models

Portfolio selection problem studies allocating personal wealth between investment in a risk-free security and
investment in a risk asset. Under the assumption that the risk asset earns a random return, Merton [20]
studied a portfolio selection model by stochastic optimal control. If we assume that the risk asset earns
an uncertain return, this Merton type of model may be solved by uncertain optimal control introduced by
Zhu [26].

Let X; be the wealth of an investor at time ¢. The investor allocates a fraction w of the wealth in a sure
asset and remainder in a risk asset. The sure asset produces a rate of return b. The risk asset is assumed to
earn an uncertain return, and yields a mean rate of return p (> b) along with a variance of 02 (o > 0) per
unit time. That is, the risk asset earns a return dry in time interval (¢,¢ + dt), where dr; = udt + odC}, and
C} is a canonical process. Thus

Xirar = Xt + bwXedt + dre(1 — w) X
= X + [bw + p(1 — w)] Xpdt + o(1 — w) X, dC,y.

That is

The a-path of the uncertain differential equation is

dXP = [bw + p(l — w)] X2dt + o(1 — w) XFP ™ (a)dt (4)
where
V3 «
P l(a)= 1
(a) T 11—«
It follows that the solution of is
X5 = 2o exp{f(w, @)t} (5)

where zq is the initial wealth of the investor and

f(w,a):u—I—(b—u)w—i—a(l—w)glnlfa.
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Assume that an investor has the initial wealth zy and is interested in assigning a target rate of income p
and minimizing the deviation of expected income from the target income at the final time 7". Then a portfolio
selection model is provided by

min |E[X7] — zo(1 + p)]
wel0,1]
subject to (6)

Theorem 2 The problem (@ is equivalent to the following optimization problem:

VBIT (1)

win o(u) = fexp{lu+ 0~ wul) | ( *) do— (1+7)]. 7)

wel0,1] 11—«

Proof: It follows from Theorem |1| and that

1
B[Xs] = / X2da
0

a \/E:T (1—w)
da.

= xo exp{[p + (b — p)w]T} /01 (

11—«
Then

\/§7raT (1—w)

c da— (1 —p)

min |E[X7] —zo(1+p)| = wgl[ior,lu xo |exp{[n + (b— u)w}T}/O (

wel0,1] 11—«

which is equivalent to the form . The theorem is proved.

If an investor hope to minimize the deviation at the earliest time, then another portfolio selection model
is provided by

in min |E [X;] - zo(1
min min [E[X] - zo(1+p)]

subject to (8)
dXt = [wat + M(l — U))Xt}dt + 0'(1 — UJ)XtdCt

By the similar method to the proof of Theorem [2| we can get the following conclusion.
Theorem 3 The problem (@ is equivalent to the following optimization problem:
7‘/‘1‘” (1—w)

i min h(w,1) = exp{n+ (b= pult} | <1f‘a> da— (1 +p)]. (9)

Remark 1 It is seen that the optimal fraction of portfolio selection problem @ and optimal fraction and
earliest time of portfolio selection problem are independent of the investor’s wealth by Theorem [2| and
Theorem [3] respectively.

4 Solution Methods

It can be seen from (7)) and (9) that we need to calculate a type of improper integral:

/01 <1fa)7da, 7€ (0,1).
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This type of improper integral can be approximated by compound Simpson formula as follows:

1 « T h iy (67 T o+ h/2 T Q41 i
/0 <1—04> daNG;Kl—ai) +4<1—az‘—h/2) +(1—C¥z‘+1>} 10)

for sufficient large number n, and h = (1 — ¢)/n with small e > 0, a; =i x (1 —¢)/n (i =0,1,2,...,n).
Thus the solution of problem can be approximatively derived from the solution of the following problem:

et ain [ (2 ) (o2

() -a +p>T 1)

where 7 = /30T (1—w) /7. And the solution of problem @) can be approximatively derived from the solution
of the following problem:

in gw) = =
min w = —
wE[O,l]g 6

% exp{[u + (b — p)w]t} {nz:l <1 fiai)T

i (%)T+<};ﬂ>r}(l+p)‘ (12)
where 7 = V3at(1 —w) /.

Now we will employ the genetic algorithm (GA) to solve the problems and .

min min h(w,t)
t wel0,1]

5 Example

Assume that b = 0.021, p = 0.035, ¢ = 0.06, T = 1. An investor wishes to earn a profit 3% of his initial
wealth, i.e., p = 0.03. Let n = 128 and £ = 0.00001. For portfolio selection problem @, the optimal fraction is
w = 0.373 derived from the solution of model by GA. That is to say, 37.3% of the total wealth is invested
for the sure asset and the remainder for the risk asset so that the investor achieves his goal at final time
T = 1. For portfolio selection problem ({8)), the optimal fraction is w = 0.0852 and optimal time is ¢ = 0.8677
derived from the solutions of model by GA. That is to say, 8.52% of the total wealth is invested for the
sure asset and the remainder for the risk asset so that the investor achieves his goal at time ¢ = 0.8677.

6 Conclusions

Two uncertain portfolio selection models were established based on expected value criterion. The expected
values in the models are expressed by the integrals of a-pathes of uncertain differential equations while the
relative integrals are approximated by the compound Simpson formula. Genetic algorithm was employed to
find the optimal solutions. A numerical example showed the efficiency of the proposed models and methods.
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