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Abstract

In this paper the notion the nexuses over an ordinal is defined and some related results are investigated.
In particular, all prime and maximal subnexuses of a nexus over an ordinal are characterized. Furthermore,
the notion of the fractions of a nexus N over an ordinal is introduced and finally, we show that the fraction
S−1N is a bounded distributive lattice which has only one maximal ideal, where S is a meet closed subset
of the nexus N over an ordinal.
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1 Introduction

The basic idea of a nexus has been further developed as a mathematical object for general use (see [1, 2, 3, 13]).
The aim of this recent study is to evolve a mathematical object that allows complex processes on groups of
mathematical objects to be formulated with ease of elegance. This notion is very useful for the study of space
structures (see [7, 8, 9, 10, 11, 12]). In this paper the notion nexus over an ordinal is defined and some related
results are obtained. Nexus over an ordinal is generalized of nexus.

This paper is structured as follows. After the introduction, in section 2, we recall some basic notions and
results on ordinals and inf semilattices. In Section 3, the notion of the nexuses over an ordinal is introduced
and we have studied order on a nexus over an ordinal. In Section 4, the notion of the prime subnexuses of
a nexus over an ordinal is introduced. Next some important properties of prime subnexuses of a nexus over
an ordinal will be studied. In Section 5, maximal subnexuses of a nexus over an ordinal will be studied. Also
by an example we show that Theorem 1.14 in [1] and Theorem 3.6 in [13], is incorrect (see Example 5.6) and
a corrected version of the Theorem 1.14 in [1] and the Theorem 3.6 in [13], is considered Proposition 5.7.
Finally, in Section 6, the notion of the fractions of a nexus over an ordinal is introduced. Next some important
properties of the fractions of a nexus over an ordinal will be studied. Also by an example we show that
Theorem 2.26 (i) in [1] is incorrect (see Example 6.14) and a corrected version of the Theorem 2.26 (i) in [1]
is considered Proposition 6.15. The continuation of this article can be followed in [5].

2 Preliminaries

An ordered set A that for every x, y ∈ A either x ≤ y or y ≤ x is said to be linearly ordered or totally ordered.
An ordered set A is said to be well ordered if and only if whenever B is any nonempty subset of A, then B
has a least element. Every well ordered set is linearly ordered.

Let (X,≤) be a well ordered set, a ∈ X. By the segment Xa of X determined by a we mean the set
Xa = {x ∈ X|x < a}. An ordinal number is a well ordered set α where for all x ∈ α, αx = x. The collection
of all ordinal numbers is a proper class and we denote by O. Let α be an ordinal. If a ∈ α, then αa is an
ordinal. Also, If Y ⊆ α is an ordinal, then Y = αa, for some a ∈ α. If α, β are ordinals, then α ∩ β is an
ordinal. Every well ordered set is isomorphic to a unique ordinal.
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It is common in contemporary set theory to reserve lower-case Greek letters α, β, . . . to denote ordinals.
It is also customary to denote the order relation between ordinals by α < β instead of the two equivalent
forms α ⊂ β, α ∈ β, though the latter is also quite common. If α is an ordinal, then by definition we will
have α = {β ∈ O|β < α}. That is, an ordinal is the set of all smaller ordinals. In general, if α is an ordinal,
the next ordinal will be α ∪ {α}. It is customary to denote the first ordinal after α by α + 1, the (ordinal)
successor of α. Thus α + 1 = α ∪ {α}. If β = α + 1, then we define β − 1 = α. An ordinal number greater
than 0 that is not the successor of any other ordinal number is said to be a limit ordinal. An ordinal that is
the successor of some ordinal is called a successor ordinal or non-limit ordinal.

If α, β ∈ O, then either α < β, or β < α, or α = β. If A is a set of ordinals, then
⋃
A is an ordinal.

An inf semilattice is a poset S in which any two elements a, b have an inf, denoted by a ∧ b or simply by
ab. Equivalently, an inf semilattice is a poset in which every nonempty finite subset has an inf.

An inf semilattice homomorphism is a function f : N → M between inf semilattices N and M such that
f(x ∧ y) = f(x) ∧ f(y) for all x and y in N . Each inf semilattice homomorphism is isotone, that is, x ≤ y
implies that f(x) ≤ f(y).

Let A be a poset. For X ⊆ A and x ∈ A we write:

1. ↓ X = {a ∈ A : a ≤ x for some x ∈ X}.

2. ↑ X = {a ∈ A : a ≥ x for some x ∈ X}.

3. ↓ x =↓ {x}.

4. ↑ x =↑ {x}.

For undefined terms and notations, see [4, 6].

3 Order on Nexus over an Ordinal

In this section the notion of nexus over an ordinal is defined and we have studied order on a nexus over an
ordinal.

Definition 3.1. Let γ, δ ∈ O, γ ≥ 1 and δ ≥ 1. An address over γ is a function a : δ → γ, such that a(i) = 0
implies that a(j) = 0 for all j ≥ i. We denote by A(γ), the set of all address over γ.

Let a : δ → γ be an address over γ. If for every i ∈ δ, a(i) = 0, then it is called the empty address and
denoted by (). If a is a nonempty address, then there exists a unique element β ∈ δ + 1 such that for every
i ∈ β, a(i) 6= 0 and for every β ≤ i ∈ δ, a(i) = 0. We denote this address by (ai)i∈β , where ai = a(i) for every
i ∈ β.

Let a : δ → γ and b : β → η be addresses and δ ≤ β. We say a = b, if for every i ∈ δ, ai = bi and for every
i ∈ β \ δ, bi = 0. In other words, there exists a unique element β ∈ O such that a = (ai)i∈β = b.

Definition 3.2. The level of a ∈ A(γ) is said to be:

1. 0 , if a = ().

2. β, if () 6= a = (ai)i∈β .

The level of a is denoted by l(a).

Definition 3.3. Let a, b be two elements of A(γ). Then we say a ≤ b if l(a) = 0 or one of the following cases
satisfies for a = (ai)i∈β and b = (bi)i∈δ:

1. If β = 1, then a0 ≤ b0.

2. If β ≥ 2 is a non-limit ordinal, then a|β−1 = b|β−1 and aβ−1 ≤ bβ−1.

3. If β is a limit ordinal, then a = b|β .

Proposition 3.4. (A(γ),≤) is an inf semilattice.
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Proof. Clearly ≤ is reflexive. Let a, b ∈ A(γ), a ≤ b and b ≤ a. Thus l(a) ≤ l(b) and l(b) ≤ l(a) and this
implies that l(a) = l(b) = β, for some β ∈ O. Now, suppose that a = (ai)i∈β , b = (bi)i∈β and β 6= 0. If
β is a limit ordinal, then a = b|β and a|β = b, which follows that a = b. If β is a non-limit ordinal, then
a|β−1 = b|β−1, aβ−1 ≤ bβ−1 and bβ−1 ≤ aβ−1, which follows that a = b. Thus ≤ on A(γ) is antisymmetric.

Now, let a ≤ b and b ≤ c. If l(a) = 0, it is clear that a ≤ c. Let l(a) = β 6= 0, a = (ai)i∈β , b = (bi)i∈δ, and
c = (ci)i∈η. Then β ≤ δ ≤ η.

Case 1: Let β = 1. Then δ ≥ 1 and a0 ≤ b0. If δ = 1, then b0 ≤ c0. Hence a0 ≤ c0, that is, a ≤ c. If
δ > 1, then there exists 1 ≤ σ ∈ δ such that b|σ = c|σ, which follows that a0 ≤ b0 = c0, that is, a ≤ c.

Case 2: If 1 < β, δ are limit ordinals, then a = b|β and b = c|δ, which follows that a = c|β . Hence a ≤ c.
Case 3: Assume that 1 < β and δ are limit and non limit ordinal, respectively. Then β ≤ δ − 1, a = b|β ,

b|δ−1 = c|δ−1 and bδ−1 ≤ cδ−1. Hence a = c|β , which follows that a ≤ c.
Case 4: Assume that 1 < β and δ are non limit and limit ordinal, respectively. Then β + 1 ≤ δ,

a|β−1 = b|β−1, aβ−1 ≤ bβ−1 and b = c|δ. Hence a|β−1 = c|β−1 and aβ−1 ≤ bβ−1 = cβ−1, which follows that
a ≤ c.

Case 5: If 1 < β, δ are non limit ordinals, then a|β−1 = b|β−1, aβ−1 ≤ bβ−1, b|δ−1 = c|δ−1, and bδ−1 ≤ cδ−1.
Hence a|β−1 = c|β−1 and aβ−1 ≤ bβ−1 ≤ cβ−1, which follows that a ≤ c.

Therefore, ≤ on A(γ) is transitive.
Let a = (ai)i∈β , b = (bi)i∈δ be two elements of A(γ). If a = () or b = (), then a ∧ b = (). Now, suppose

that a 6= () and b 6= (). We put T = {i ∈ β ∧ δ : ai 6= bi}. Let η be the smallest ordinal such that aη 6= bη.
We define c : η + 1→ γ by

ci =

{
ai if i ∈ η
aη ∧ bη if i = η.

By some manipulations we can see a ∧ b = c.

Corollary 3.5. Let a, b ∈ A(γ). Then a ∧ b = () if and only if a = () or b = ().

Proof. By the end of the proof of Proposition 3.4, it is evident.

Proposition 3.6. (A(γ),≤) is a lattice if and only if γ = 1 or γ = 2.

Proof. If γ = 1, then A(γ) = {()}, which follows that (A(γ),≤) is a lattice. Let γ = 2. Then () 6= (ai)i∈β ∈
A(γ) if and only if for every i ∈ β, ai = 1. Therefore, if a, b are two nonempty elements of A(γ), then a ≤ b
or b ≤ a, which follows that (A(γ),≤) is a lattice.

Let γ ≥ 3, a = (2, 2) and b = (1, 1). If c ∈ A(γ) such that a ≤ c and b ≤ c, then a1 = c1 = b1, which is a
contradiction. Therefore, (A(γ),≤) is a lattice if and only if γ = 1 or γ = 2.

Let () 6= a = (ai)i∈β be an element of A(γ). For every δ ∈ β and 0 ≤ j ≤ aδ, we put a(δ,j) : δ + 1 → γ
such that for every i ∈ δ + 1,

a
(δ,j)
i =

{
ai if i ∈ δ
j if i = δ.

Definition 3.7. A nexus N over γ is a set of addresses with the following properties:

1. ∅ 6= N ⊆ A(γ).

2. If () 6= a = (ai)i∈β ∈ N , then for every δ ∈ β and 0 ≤ j ≤ aδ, a(δ,j) ∈ N .

Proposition 3.8. Let N be the set of addresses over γ.Then N is a nexus over γ if and only if ∅ 6= N ⊆ A(γ)
and for every (a, b) ∈ N ×A(γ), b ≤ a implies that b ∈ N .

Proof. It is evident.

Definition 3.9. Let N be a nexus over γ and ∅ 6= M ⊆ N . M is called a subnexus of N , if M itself is a nexus
over γ. The set of all subnexuses of N is denoted by Sub(N). It is clear that {()}, N are trivial subnexuses
of the nexus N .

Proposition 3.10. If N is a nexus over γ and {Mi}i∈I ⊆ Sub(N), then
⋃
i∈IMi ∈ Sub(N) and

⋂
i∈IMi ∈

Sub(N).

Proof. It is evident.
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Definition 3.11. Let N be a nexus over γ and X ⊆ N . The smallest subnexus of N containing X is called
the subnexus of N generated by X and denoted by < X >. If |X| = 1, then < X > is called a cyclic subnexus
of N . It is clear that < ∅ >= {()} and < N >= N .

Remark 3.12. Let ∅ 6= N ⊆ A(γ). N is a nexus over γ if and only if

N =↓ N =
⋃
a∈N
↓ a.

Proposition 3.13. Let N be a nexus over γ and ∅ 6= X ⊆ N . Then

< X >=↓ X =
⋃
x∈X
↓ x.

Proof. By Proposition 3.8,
⋃
x∈X ↓ x is a subnexus of N and X ⊆

⋃
x∈X ↓ x. Hence < X >⊆

⋃
x∈X ↓ x.

On the other hand, if M is a subnexus of N such that X ⊆M , then by Proposition 3.8,
⋃
x∈X ↓ x ⊆M . So

< X >=
⋃
x∈X ↓ x.

Proposition 3.14. Let N be a nexus over γ. (N,≤) is an inf semilattice.

Proof. Argument similar to the proof of Proposition 3.4.

Proposition 3.15. If N is a cyclic nexus over γ, then every two elements of N are comparable and so (N,≤)
is a bounded distribiutive lattice.

Proof. Let N =< a > and a = (ai)i∈β . By Proposition 3.13, N =↓ a. Let () 6= b = (bi)i∈δ and () 6= c = (ci)i∈η
be two elements of N . Without loss of generality, suppose that δ ≤ η. By the definition of ≤ on nexus, we
have δ ≤ η ≤ β and:

Case 1: If η = 1, then δ = 1. Since b0, c0 ∈ O, we conclude that b0 ≤ c0 or c0 ≤ b0, it follwos that b ≤ c
or c ≤ b.

Case 2: Let δ = 1 < η. Then b0 ≤ a0 and there exists 1 ≤ σ ∈ η such that c|σ = a|σ. Hence b0 ≤ c0, which
follows that b ≤ c.

Case 3: If 1 < δ, η are limit ordinals, then b = a|δ and c = a|η. So b = c|δ and b ≤ c.
Case 4: If 1 < δ and 1 < η are non limit ordinals, then b|δ−1 = a|δ−1, bδ−1 ≤ aδ−1, c|η−1 = a|η−1 and

cη−1 ≤ aη−1. Hence b|δ−1 = c|δ−1 and bδ−1 ≤ cδ−1, that is, b ≤ c.
Case 5: Assume that 1 < δ and 1 < η are limit and non limit ordinal, respectively. Then b = a|δ,

c|η−1 = a|η−1 and cη−1 ≤ aη−1. Since δ ≤ η − 1, we conclude that b = c|δ, that is, b ≤ c.
Case 6: Assume that 1 < δ and 1 < η are non limit and limit ordinal, respectively. Then b|δ−1 = a|δ−1,

bδ−1 ≤ aδ−1 and c = a|η. Hence b|δ−1 = c|δ−1, bδ−1 ≤ cδ−1, that is, b ≤ c.
Therefore, every two elements of N are comparable and so, (N,≤) is a bounded distribiutive lattice.

Let T and S be two nonempty subsets of a nexusN over γ. We define the set T∧S = {t∧s| t ∈ T and s ∈ S}.

Proposition 3.16. Let N be a nexus over γ and a, b ∈ N .

(1) < a > ∧ < b >=< a ∧ b > .

(2) If a and b are not comparable addresses, then ↑ a∩ ↑ b = ∅.

(3) If a and b are not comparable addresses, then ↑ a∧ ↑ b = {a ∧ b}.

Proof. (1) Since ↓ a∧ ↓ b =↓ (a ∧ b), we have < a > ∧ < b >=< a ∧ b > .
(2) If c ∈↑ a∩ ↑ b, then a, b ∈< c > and by Proposition 3.15, a ≤ b and b ≤ a, which is a contradiction.
(3) It is clear that () 6= a = (ai)i∈β and () 6= b = (bi)i∈δ. We put T = {i ∈ β ∧ δ : ai 6= bi}. Let η be the

smallest ordinal such that aη 6= bη. We define c : η + 1→ γ with

ci =

{
ai if i ∈ η
aη ∧ bη if i = η.

Hence a∧ b = c. It is clear that a∧ b ∈↑ a∧ ↑ b. Now, suppose that β ≤ δ and d ∈↑ a∧ ↑ b. Then there exists
x = (xi)i∈µ ≥ a and y = (yi)i∈σ ≥ b such that d = x ∧ y.
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Case 1: If β and δ are limit ordinals, then a = x|β and b = y|δ, which follows that η is the smallest ordinal
such that xη 6= yη. Since η ∈ β ∩ δ, we conclude that xη ∧ yη = aη ∧ bη. Therefore, d = x ∧ y = a ∧ b.

Case 2: Assume that β and δ are limit and non-limit ordinal, respectively. Hence a = x|β , b|δ−1 = y|δ−1
and bδ−1 ≤ yδ−1. Also, η is the smallest ordinal such that xη 6= yη. Since β is a limit ordinal and η ∈ β ≤ δ,
we conclude that η ∈ δ − 1, which follows that xη ∧ yη = aη ∧ bη. Therefore, d = x ∧ y = a ∧ b.

Case 3: Assume that β and δ are non-limit and limit ordinal, respectively. Hence a|β−1 = x|β−1, aβ−1 ≤
xβ−1 and b = y|δ. If η < β − 1, then since η is the smallest ordinal such that xη 6= yη, we conclude that
xη ∧ yη = aη ∧ bη. Therefore, d = x ∧ y = a ∧ b.

Now, assume that η = β − 1. If aη ≤ bη, then a ≤ b, which is a contradiction. Hence yη = bη ≤ aη ≤ xη
and we infer that xη ∧ yη = yη = bη = aη ∧ bη. Therefore, d = x ∧ y = a ∧ b.

Case 4: Assume that β and δ are non-limits. Hence a|β−1 = x|β−1, aβ−1 ≤ xβ−1, b|δ−1 = y|δ−1 and
bδ−1 ≤ yδ−1. If η < β − 1, then since η is the smallest ordinal such that xη 6= yη, we conclude that
xη ∧ yη = aη ∧ bη. Therefore, d = x ∧ y = a ∧ b.

Now, assume that η = β − 1. If aη ≤ bη, then a ≤ b, which is a contradiction. Hence bη ≤ aη. If
β = δ, then b ≤ a, which is a contradiction. So β < δ and we infer that yη = bη ≤ aη ≤ xη. Hence,
xη ∧ yη = yη = bη = aη ∧ bη. Therefore, d = x ∧ y = a ∧ b.

Definition 3.17. Let a = (ai)i∈β be an address of nexus N over γ. The set {b ∈ N | a = b|β and a 6= b} is
called the remus of a and is denoted by ra. Let S be a non-empty subset of N , then rS =

⋃
a∈S ra.

Definition 3.18. A subset X of a nexus N over γ is called closed under finite meet operation, if a ∧ b ∈ S,
for all a, b ∈ S.

Proposition 3.19. Let N be a nexus over γ and a = (ai)i∈β ∈ N . Then

(1) r() = N \ {()}.

(2) ra ⊂↑ a.

(3) ra is closed under finite meet operation.

(4) ra = ∅ if and only if a is maximal element of N if and only if ↑ a = {a}.

(5) If ra 6= ∅ and b : β + 1→ γ with

bi =

{
ai if i ∈ β
1 if i = β,

then
∧
ra = b ∈ ra.

(6) If for every k ∈ β \ {0}, a(k) : β + 1→ γ with

a(k)(i) =

{
ai if i ∈ β
k if i = β,

then rra = ra \ {a(k)|k ∈ β \ {0}}.

Proof. By definition of ra, the proof is trivial.

Proposition 3.20. Let N be a nexus over γ and a, b ∈ N . If a < b and l(a) = l(b), then

(1) ra ∩ rb = ∅.

(2) ra ∧ rb = {a}.

Proof. Suppose that a = (ai)i∈β and b = (bi)i∈β . If β is limit ordinal, then a = b|β = b, which is a
contradiction. Hence β is non-limit ordinal, a|β−1 = b|β−1 and aβ−1 < bβ−1 .

(1) If d ∈ ra ∩ rb, then a = d|β = b, which is a contradiction.
(2) Let d ∈ ra ∧ rb. Then there exists x ∈ ra and y ∈ rb such that d = x ∧ y. Hence a = x|β and

b = y|β . So β − 1 is the smallest ordinal such that xβ−1 6= yβ−1. Since xβ−1 ∧ yβ−1 = aβ−1, we conclude that
d = x ∧ y = a. Therefore, ra ∧ rb ⊆ {a}. If x = (xi)i∈β+1 and y = (yi)i∈β+1 such that a = x|β , b = y|β and
xβ = 1 = yβ , then x ∈ ra, y ∈ rb and a = x ∧ y ∈ ra ∧ rb. Therefore, ra ∧ rb = {a}.
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Proposition 3.21. Let N be a nexus over γ and a ∈ N . If ra 6= ∅ and f : N → N with

f(b) =

{
a if b ∈ ra
b if b 6∈ ra,

then f is a homomorphism.

Proof. We show that f(x ∧ y) = f(x) ∧ f(y), for every x, y ∈ N . If a = (), then by Proposition 3.20,
r() = N \ {()}. It is clear that f(x ∧ y) = f(x) ∧ f(y), for every x, y ∈ N . Let () 6= a = (ai)i∈β . If x, y 6∈ ra,
then x∧ y 6∈ ra, which follows that f(x∧ y) = x∧ y = f(x)∧ f(y). If x, y ∈ ra, then x∧ y ∈ ra, which follows
that f(x ∧ y) = a = f(x) ∧ f(y). Let x = (xi)i∈δ ∈ ra and y = (yi)i∈η 6∈ ra. Hence a = x|β , a < x, and y = a
or a 6= y|β .

Case 1: If y = a, then x ∧ y = y 6∈ ra and it implies that f(x ∧ y) = b = f(x) ∧ f(y).
Case 2: Let a 6= y|β and t be the least element of {i ∈ β : yi 6= ai}. If t ∈ β \ η, then yt = 0 and

x ∧ y = y 6∈ ra. Hence f(x ∧ y) = b = f(x) ∧ f(y). Let t ∈ β ∩ η and c : t+ 1→ γ with

ci =

{
xi if i ∈ t
xi ∧ yi if i = t.

then x ∧ y = c. If c ∈ ra, then β < t + 1, which is a contradiction. Hence x ∧ y 6∈ ra and f(x ∧ y) = b =
f(x) ∧ f(y).

Function of Proposition 3.21 is called pruning and denoted by fra .

Proposition 3.22. Let N be a nexus over γ and a ∈ N . If f : N → N with

f(b) =

{
a if b ∈↑ a
b if b 6∈↑ a,

then f is a homomorphism.

Proof. It is trivial.

The function introduced in Proposition 3.22 is usually denoted by f↑a.

4 Prime Subnexuses of a Nexus over an Ordinal

In this section the notion of prime subnexus of a nexus is defined and all prime subnexuses of a nexus over
an ordinal are characterized.

Definition 4.1. A proper subnexus P of a nexus N over γ is said to be a prime subnexus of N if a ∧ b ∈ P
implies that a ∈ P or b ∈ P , for any a, b ∈ N .

If N 6= {()}, then by Corollary 3.5, {()} is a prime subnexus of N .

Lemma 4.2. Let M and T are subnexuses of a nexus N over γ.

(1) M ∧ T is a subnexus of N .

(2) If for some a, b ∈ N , a ∧ b ∈M , then < M ∪ {a} > ∧ < M ∪ {b} >= M .

Proof. (1) Since by Remark 3.12, M ∧ T = (
⋃
m∈M ↓ m) ∧ (

⋃
t∈T ↓ t) =

⋃
(m,t)∈M×T ↓ (m ∧ t), we conclude

from the Remark 3.12 that M ∧ T is a subnexus of N .
(2) Since by Proposition 3.8, ↓ (a∧ b) ⊆M , we conclude from the Proposition 3.13 that < M ∪{a} > ∧ <

M ∪ {b} >= (
⋃
x∈M∪{a} ↓ x) ∧ (

⋃
y∈M∪{b} ↓ y) = (

⋃
m∈M ↓ m)∪ ↓ (a ∧ b) =

⋃
m∈M ↓ m = M.

Proposition 4.3. Let P be a proper subnexus of N over γ. Then the following are equivalent:

(1) P is a prime subnexus of N .

(2) K1 ∧K2 ⊆ P implies that K1 ⊆ P or K2 ⊆ P , for any subnexuses K1 and K2 of N .

(3) < a > ∧ < b >⊆ P implies that a ∈ P or b ∈ P , for any a, b ∈ N .

(4) K1 ∧K2 = P implies that K1 = P or K2 = P , for any subnexuses K1 and K2 of N .
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Proof. (1)⇒ (2) Let for some subnexuses K1 and K2 of N , K1 ∧K2 ⊆ P , K1 6⊆ P and K2 6⊆ P . Then there
exists a ∈ K1 \ P and b ∈ K2 \ P . Since a ∧ b ∈ K1 ∧K2 ⊆ P and P is a prime subnexus of N , we conclude
that a ∈ P or b ∈ P , and this is a contradiction.

(2)⇒ (3) It is evident.
(3)⇒ (4) Let for some subnexuses K1 and K2 of N , K1 ∧K2 = P , K1 6= P and K2 6= P . If p ∈ P , then

p = a ∧ b, for some (a, b) ∈ K1 ×K2. Hence p ≤ a and p ≤ b, which follows that P ⊆ K1 ∩K2. Therefore,
there exists a ∈ K1 \ P and b ∈ K2 \ P . Since < a > ∧ < b >⊆ K1 ∧K2 = P , we conclude that a ∈ P or
b ∈ P , which is a contradiction.

(4) ⇒ (1) Suppose that a ∧ b ∈ P , for some a, b ∈ N . By Lemma 4.2, < P ∪ {a} > ∧ < P ∪ {b} >= P .
Hence < P ∪ {a} >= P or < P ∪ {b} >= P , which follows that a ∈ P or b ∈ P . Therefore, P is a prime
subnexus of N .

Proposition 4.4. Let P be a proper subnexus of a nexus N over γ. Then P is a prime subnexus of N if and
only if N \ P is closed under finite meet operation.

Proof. Let P be a prime subnexus of N and a, b ∈ N \ P . If a ∧ b 6∈ N \ P , then since P is a prime subnexus
of N , we conclude that a 6∈ N \ P or b 6∈ N \ P , which is a contradiction. Hence N \ P is closed under finite
meet operation.

Let N \ P be closed under finite meet operation and a ∧ b ∈ P . Hence a 6∈ N \ P or b 6∈ N \ P , which
follows that P is a prime subnexus of N .

Lemma 4.5. Let N be a nexus over γ. For every ∅ 6= X ⊆ N , N\ ↑ X and N \ rX are subnexuses of N .

Proof. Let a ∈ N\ ↑ X, b ∈ N and b ≤ a. If b ∈↑ X, then there exists x ∈ X such that x ≤ b. By
Proposition 3.14, x ≤ a, that is, a ∈↑ X, which is a contradiction. Therefore, by Proposition 3.8, N\ ↑ X is
a subnexus of N .

The proof for N \ rX is similar.

Corollary 4.6. Let N be a nexus over γ. For every () 6= a ∈ N , N\ ↑ a is a prime subnexus of N .

Proof. Since for every a ∈ N , ↑ a is closed under finite meet operation, we conclude from the Proposition 4.4
and Lemma 4.5 that N\ ↑ a is a prime subnexus of N , for every a ∈ N .

Lemma 4.7. Let P be a prime subnexus of nexus N over γ and b ∈ N \P . Then ↓ b \P has a least element.

Proof. Let η be a least element of {l(x) : x ∈↓ b \ P}. Then
Case 1: Let η be a limit ordinal. Then there exists a = (ai)i∈η ∈↓ b \ P . Since a ∈↓ b, we have a = b|η.

Now, assume that x = (xi)i∈δ ∈↓ b \ P . Hence η ≤ δ. If δ is a limit ordinal, then x = b|δ, which follows that
a = x|η. Therefore, a ≤ x. If δ is a non-limit ordinal, then x|δ−1 = b|δ−1 and xδ−1 ≤ bδ−1. Since η ≤ δ − 1,
we conclude that a = x|η, which follows that a ≤ x. Hence a is a least element of ↓ b \ P .

Case 2: Let η be a non-limit ordinal and η = σ + 1. Suppose that tσ is the least element of

{t ∈ O|there exists an element of x ∈↓ b \ P such that l(x) = η and xσ = t}.

We define a : η → γ with

ai =

{
bi if i ∈ σ
tσ if i = σ.

By definition tσ, there exists x = (xi)i∈η ∈↓ b \ P such that xσ = tσ. Since x ≤ b, we conclude that
x|σ = b|σ = a|σ and aσ = tσ = xσ. Hence a = x ∈↓ b \ P .

Now, assume that x = (xi)i∈δ ∈↓ b \ P . We show that a ≤ x. By Proposition 3.15, a ≤ x or x ≤ a. If
x ≤ a, then l(x) ≤ l(a). So by definition η, l(a) = l(x). Since x|σ = a|σ and xσ ≤ aσ ≤ xσ, we conclude that
a = x. Hence a is a least element of ↓ b \ P .

Proposition 4.8. Every prime subnexus of a nexus N over γ is of the form of N\ ↑ a, for some a ∈ N .

Proof. Let P be a prime subnexus of N and b ∈ N \ P . By Lemma 4.7, ↓ b \ P has a least element, say a.
We show that P = N\ ↑ a. Let d ∈↑ a. If d ∈ P , then a ∈ p, which is a contradiction. Hence ↑ a ⊆ N \ P .
Now, suppose that d ∈ N \ P . If d 6∈↑ a, then a 6≤ d and so a ∧ d 6= a. Since a ∧ d < a and a ∧ d ∈↓ b, we
conclude that a∧ d ∈ P , which follows that a ∈ P or d ∈ P , which is a contradiction. Hence N \P ⊆↑ a, and
this completes the proof.
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Corollary 4.9. Let N be a nexus over γ. For every a ∈ N , if ra 6= ∅, then N \ ra is a prime subnexus of N .

Proof. Since for every a ∈ N , ra is closed under finite meet operation, we conclude from the Proposition 4.4
and Lemma 4.5 that N\ ↑ a is a prime subnexus of N , for every a ∈ N .

Corollary 4.10. Let N be a nexus over γ. For every a ∈ N , if ra 6= ∅, then there exists b ∈ N such that
ra =↑ b.

Proof. Let a ∈ N , then by Corollary 4.9, N \ ra is a prime subnexus of N . So by Proposition 4.8, there exists
b ∈ N such that N \ ra = N\ ↑ b, which follows that ra =↑ b.

Proposition 4.11. Let N be a nexus over γ and ∅ 6= X ⊆ N . If X is closed under finite meet operation,
then N\ ↑ X is a prime subnexus of N .

Proof. By Lemma 4.5, N\ ↑ X is a subnexus of N . Now, suppose that a ∧ b ∈ N\ ↑ X and a 6∈ N\ ↑ X, for
some a, b ∈ N . If b 6∈ N\ ↑ X, then there exists x1, x2 ∈ X such that x1 ≤ a and x2 ≤ b. Since X is closed
under finite meet operation and x1 ∧x2 ≤ a∧ b, we conclude that a∧ b ∈↑ X, which is a contradiction. Hence
N\ ↑ X is a prime subnexus of N .

Corollary 4.12. Let N be a nexus over γ and ∅ 6= X ⊆ N . If X is closed under finite meet operation, then
there exists a ∈ X such that ↑ a =↑ X and a =

∧
X.

Proof. By Proposition 4.11, N\ ↑ X is a prime subnexus of N . So by Proposition 4.8, there exists a ∈ N
such that N\ ↑ a = N\ ↑ X, which follows that ↑ a =↑ X. It is clear that a ∈ X and a =

∧
X.

Lemma 4.13. Let N be a nexus over γ and let P1 = N\ ↑ a and P2 = N\ ↑ b be prime subnexuses of N .
Then,

(1) If a and b are two comparable addresses, then P1 ∩ P2 is a prime subnexus of N .

(2) If a and b are not comparable addresses, then P1 ∩P2 is not a prime subnexus of N and N = P1 ∪P2.

Proof. (1) Without loss of generally, suppose that a ≤ b. Then N\ ↑ a ⊆ N\ ↑ b. Hence by Corollary 4.6,
P1 ∩ P2 = P1 is a prime subnexus of N .

(2) Since a and b are not comparable addresses, a ∧ b < a and a ∧ b < b. Hence a ∧ b ∈ P1 ∩ P2, a 6∈ P1

and b 6∈ P2. Therefore, P1 ∩ P2 is not a prime subnexus of N .
Let c ∈ N and c 6∈ P1. Then c ∈↑ a and a ≤ c. If c 6∈ P2, then b ≤ c. Hence by Proposition 3.15, a and b

are two comparable addresses, which is a contradiction. Thus c ∈ P2. Therefore, N = P1 ∪ P2.

Proposition 4.14. Let N be a nexus over γ. The following assertions are equivalent:

(1) Nexus N is linearly ordered.

(2) Every proper subnexus of N is prime.

Proof. (1) ⇒ (2) Let N be linearly ordered and N 6= P ∈ Sub(N). If a ∧ b ∈ P , since a ≤ B or b ≤ a, then
a ∈ P or b ∈ P . Hence P is a prime subnexus of N .

(2)⇒ (1) Let every proper subnexus of N be prime and a, b ∈ N . We put P1 = N\ ↑ a and P2 = N\ ↑ b.
If a and b are not comparable addresses, then by Lemma 4.13, the proper subnexus P1 ∩ P2 is not a prime
subnexus of N , which is a contradiction. Thus a and b are comparable addresses, that is, N is linearly
ordered.

Corollary 4.15. Let N be a finite nexus over γ. The following assertions are equivalent:

(1) The nexus N is cyclic.

(2) Every proper subnexus of N is prime.

Proof. By Propositions 3.15 and 4.14, it is clear.

By the following example, we prove that the condition being infinite on N does not imply N is cyclic if
and only if every proper subnexus of N is prime.
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Example 4.16. Let ω be the first countable limit ordinal. Hence if n ∈ ω, then n is a finite ordinal. For
every n ∈ ω, we define On : n+ 1→ 2 by On(i) = 1, for all i ∈ n+ 1.

Let N = {()} ∪ {On|n ∈ ω}. The following assertions hold:

1. N is an infinite nexus over 2.

2. N is a linearly ordered.

3. Every proper subnexus of N is prime.

4. The nexus N does not have any maximal subnexus.

5. N is not a cyclic nexus.

Proposition 4.17. Let S be a nonempty subset of nexus N over γ and () 6= a =
∧
S ∈ N . If for every s ∈ S,

Ps = N\ ↑ s, then P = N\ ↑ a is the largest prime subnexus of N such that P ⊆
⋂
s∈S Ps.

Proof. If s ∈ S and x ∈↑ s, then
∧
S ≤ s ≤ x, that is, x ∈↑ a. Hence

⋃
s∈S ↑ s ⊆↑ a and

P = N\ ↑ a ⊆ N \
⋃
s∈S
↑ s =

⋂
s∈S

N\ ↑ s =
⋂
s∈S

Ps.

Let Q be a prime subnexus of N such that Q ⊆
⋂
s∈S Ps. By Proposition 4.8, there exists b ∈ N such that

Q = N\ ↑ b, which follows that
⋃
s∈S ↑ s ⊆↑ b. Hence b ≤ a and it implies that ↑ a ⊆↑ b. Therefore,

Q ⊆ P .

Proposition 4.18. Let S be a nonempty subset of nexus N over γ and a =
∧
S ∈ N . The following assertions

hold:

(1) If for some b ∈ N , S ⊆↑ b, then ↑ a ⊆↑ b.

(2) If () 6= a, then P = N\ ↑ a is the largest prime subnexus of N such that S ∩ P = ∅.
Proof. It is evident.

Proposition 4.19. Let N and M be two nexuses and f : N →M be a homomorphism.

(1) If P is a subnexus of M , then f−1(P ) is a subnexus of N .

(2) If P is a prime subnexus of M and f−1(P ) 6= N , then f−1(P ) is a prime subnexus of N .

Proof. (1) Let a, b ∈ N such that a ≤ b ∈ f−1(P ). Then f(a) ≤ f(b) ∈ P , which follows that a ∈ f−1(P ).
Hence f−1(P ) =

⋃
x∈f−1(P ) ↓ x and by Proposition 3.8, f−1(P ) is a subnexus of N .

(2) Let a, b ∈ N such that a ∧ b ∈ f−1(P ). Then f(a ∧ b) = f(a) ∧ f(b) ∈ P , which follows that f(a) ∈ P
or f(b) ∈ P , that is, a ∈ f−1(P ) or b ∈ f−1(P ). By the statement (1), f−1(P ) is a prime subnexus of N .

Proposition 4.20. Every prime subnexus of a nexus N over γ is an inverse image of a set under f↑a, for
some a ∈ N .

Proof. Let P be a prime subnexus of N . By Proposition 4.8, there exists a ∈ N such that P = N\ ↑ a. Hence
by Proposition 3.22,

x ∈ f−1↑a (P ) ⇔ f↑a(x) ∈ P
⇔ x = f↑a(x) 6∈↑ a
⇔ x ∈ P.

Proposition 4.21. Let N and M be two nexuses, () 6= b ∈ M and f : N → M be a homomorphism. Then
f−1(↑ b) =↑ f−1(b).

Proof. By Corollary 4.6, M\ ↑ b is a prime subnexus of M . Since by Proposition 4.19, f−1(M\ ↑ b) is a
prime subnexus of N , we conclude that there exists a ∈ N such that N \ f−1(↑ b) = f−1(M\ ↑ b) = N\ ↑ a,
which follows that f−1(↑ b) =↑ a. Hence b ≤ f(a) and for every d ∈ f−1(b), f(a) ≤ f(d) = b and we
infer that f(a) = b. Since f−1(b) ⊆↑ a, we have for every d ∈ f−1(b), ↑ d ⊆↑ a, which means that
↑ f−1(b) =

⋃
d∈f−1(b) ↑ d ⊆↑ a. On the other hand, since a ∈ f−1(b), we conclude that ↑ a ⊆↑ f−1(b).

Therefore, f−1(↑ b) =↑ f−1(b).
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5 Maximal Subnexuses of a Nexus over an Ordinal

In this section the notion of a maximal subnexus of a nexus is defined and all maximal subnexuses of a nexus
over an ordinal are characterized.

Definition 5.1. A maximal subnexus a nexus N over γ is a subnexus M , not equal to N , such that there
are no subnexus in between M and N .

Lemma 5.2. If M is a maximal subnexus of a nexus N over γ, then a is a maximal element of N , for every
a ∈ N \M .

Proof. Let a ∈ N \M . If there exists b ∈ N such that a < b, then b 6∈ M and b 6∈↓ a. Hence M ⊂ M∪ <
a >⊂ N , which is a contradiction.

Proposition 5.3. Let M be a subnexus of a nexus N over γ. The following assertions are equivalent:

(1) M is a maximal subnexus of N .

(2) There exists a maximal element a ∈ N such that M = N \ {a}.

Proof. (1) ⇒ (2) By hypothesis there exists a ∈ N \ M . Let b ∈ N \ M and a 6= b. It is clear that
b ∈M∪ ↓ a = N . Hence b ≤ a and since by Lemma 5.2, b is a maximal element of N , we conclude that a = b,
which is a contradiction. Therefore, M = N \ {a}.

(2)⇒ (1) It is trivial.

Let N be a nexus over γ. By Proposition 5.3, the number of maximal subnexus of N is equal to the
number of maximal addresses of N .

Proposition 5.4. Every maximal subnexus of a nexus N over γ is prime.

Proof. Let M be a maximal subnexus of N . By Proposition 5.3, there exists a maximal element a ∈ N such
that M = N \{a}. Since ↑ a = {a}, we conclude from the Corollary 4.6 that M is a prime subnexus of N .

Proposition 5.5. Let N be a nexus over γ. The following assertions are equivalent:

(1) Every prime subnexus of N is maximal.

(2) N = {(), (1)}.

Proof. (1)⇒ (2) By Propositions 4.8 and 5.3, if () 6= a ∈ N , then ↑ a = {a}, that is, a is a maximal element
of N and since (1) ≤ a, we conclude that N = {(), (1)}.

(2)⇒ (1) It is trivial.

Example 5.6. For every n ∈ ω, we define tn : n+ 1→ 3 by

tn(i) =

{
2 if i = 0
1 if i 6= 0.

and On : n+ 1→ 3 by On(i) = 1, for all i ∈ n+ 1.

Let M = {()} ∪ {On|n ∈ ω} ∪ {tn|n = 0, 1}. The following assertions hold:

1. M is a nexus over 3.

2. {()} ∪ {On|n ∈ ω} is a subnexus of M .

3. t1 is the unqiue maximal element of M .

4. The subnexus M \ {t1} is the unqiue maximal subnexus of M .

5. For every 1 ≤ n ∈ ω, On 6≤ t1.

6. M is not a cyclic nexus.
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Hence Theorem 1.14 in [1] and Theorem 3.6 in [13], are incorrect.

Now correcting Theorem 1.14 in [1] and Theorem 3.6 in [13], can bring in the following.

Proposition 5.7. Let N be a nexus over γ. The following assertions are equivalent:

(1) N is a cyclic nexus.

(2) N has just one maximal subnexus and for every a ∈ N , there exists a maximal element b ∈ N such
that a ≤ b.

Proof. (1)⇒ (2) By Propositions 3.13, there exists a ∈ N such that N =↓ a. Since a is the unqiue maximal
element of N , we conclude from the Proposition 5.3 that N \ {a} is the unqiue maximal subnexus of N . It is
clear that for every x ∈ N , x ≤ a.

(2) ⇒ (1) Let M be unqiue maximal subnexus of N . By Proposition 5.3, M = N \ {a}, where a is the
unqiue maximal element of N . If b ∈ N , then by hypothesis, b ≤ a. Therefore, N =↓ a is a cyclic nexus.

6 The Fraction of a Nexus over an Ordinal

In this section the fractions of a nexus N over an ordinal is defined and denoted by S−1N , where S is a meet
closed subset of N . It is shown that this structure is isomorphic with a cyclic subnexus of N ; and it is a
bounded distributive lattice which has only one maximal ideal. Finally all ideals of S−1N are characterized.

Definition 6.1. A meet closed subset of nexus N over γ is a nonempty subset S of N such that () 6∈ S and
a ∧ b ∈ S, for all a, b ∈ S.

Let S be a meet closed subset of nexus N over γ. Introduce the following relation ∼S on N × S:

(a, s) ∼S (b, t)⇔ ∃u ∈ S such that (a ∧ t) ∧ u = (s ∧ b) ∧ u;

it will be proved shortly that ∼S is an equivalence relation. Write a/s for the class of (a, s). The set of all
equivalence classes ∼S on N × S is denoted by S−1N and it is called the fraction of N with respect to S.

Definition 6.2. Let S be a meet closed subset of nexus N over γ. Let a/s, b/t be two elements of S−1N .
Then we say a/s ≤ b/t, if there exists u ∈ S such that s ∧ b ∧ a ∧ u = s ∧ t ∧ a ∧ u.

Proposition 6.3. Let S be a meet closed subset of a nexus N over γ. Then (S−1N,≤) is a lattice. In
particular,

a

s
∧ b
t

=
a ∧ b
s ∧ t

and
a

s
∨ b
t

=
max{a ∧ s ∧ t, b ∧ s ∧ t}

s ∧ t
for every a/s, b/t ∈ S−1N . Also, for every s ∈ S, ⊥ = ()/s and > = s/s.

Proof. It is clear that ≤ on S−1N is reflexive. Let a/s ≤ b/t and b/t ≤ a/s, for some a/s, b/t ∈ S−1N .
Then there exists r, v ∈ S such that s ∧ b ∧ a ∧ r = s ∧ t ∧ a ∧ r and t ∧ a ∧ b ∧ v = t ∧ s ∧ b ∧ v. Hence
(a ∧ t) ∧ (s ∧ t ∧ r ∧ v) = a ∧ b ∧ s ∧ r ∧ t ∧ v = (b ∧ s) ∧ (s ∧ t ∧ r ∧ v). Since S be a meet closed subset of N ,
we conclude that s ∧ t ∧ r ∧ v ∈ S, which follows that a/s = b/t. Thus ≤ on S−1N is antisymmetric.

Let a/s ≤ b/t and b/t ≤ c/r, for some a/s, b/t, c/r ∈ S−1N . Then there exists v, w ∈ S such that
s ∧ b ∧ a ∧ v = s ∧ t ∧ a ∧ v and t ∧ c ∧ b ∧ w = t ∧ r ∧ b ∧ w. Hence

(s ∧ r ∧ a) ∧ (t ∧ v ∧ w) = (s ∧ t ∧ a ∧ v) ∧ (r ∧ w ∧ t)
= (s ∧ b ∧ a ∧ v) ∧ (r ∧ w ∧ t)
= (t ∧ r ∧ b ∧ w) ∧ (a ∧ s ∧ v)
= (t ∧ c ∧ b ∧ w) ∧ (a ∧ s ∧ v)
= (s ∧ b ∧ a ∧ v) ∧ (t ∧ c ∧ w)
= (s ∧ t ∧ a ∧ v) ∧ (t ∧ c ∧ w)
= (s ∧ c ∧ a) ∧ (t ∧ v ∧ w)

Since S is a meet closed subset of N , we conclude that t ∧ v ∧ w ∈ S, which follows that a/s ≤ c/r. Thus ≤
on S−1N is transitive and (S−1N,≤) is a partial order set.
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Let a/s, b/t ∈ S−1N . Since (s∧t)∧a∧(a∧b) = (s∧t)∧s∧(a∧b) and (s∧t)∧b∧(a∧b) = (s∧t)∧t∧(a∧b),
we conclude that

a ∧ b
s ∧ t

≤ a

s
and

a ∧ b
s ∧ t

≤ b

t
.

Now, let c/r ∈ S−1N such that c/r ≤ a/s and c/r ≤ b/t. Then there exists v, w ∈ S such that r ∧ a∧ c∧ v =
r ∧ s ∧ c ∧ v and r ∧ b ∧ c ∧ w = r ∧ t ∧ c ∧ w. Hence

(r ∧ a ∧ b ∧ c) ∧ (v ∧ w) = (r ∧ a ∧ c ∧ v) ∧ (r ∧ b ∧ c ∧ w)
= (r ∧ s ∧ c ∧ v) ∧ (r ∧ t ∧ c ∧ w)
= (r ∧ s ∧ t ∧ c) ∧ (v ∧ w).

Since S is a meet closed subset of N , we conclude that v ∧ w ∈ S, which follows that

c

r
≤ a ∧ b
s ∧ t

.

Therefore,
a

s
∧ b
t

=
a ∧ b
s ∧ t

.

Let a/s, b/t ∈ S−1N . Since a ∧ t ∧ s, b ∧ t ∧ s ∈↓ (t ∧ s), we conclude from Proposition 3.15 that a ∧ t ∧ s
and b ∧ t ∧ s are comparable. Let a ∧ t ∧ s ≤ b ∧ t ∧ s, that is, max{a ∧ t ∧ s, b ∧ t ∧ s} = b ∧ t ∧ s.

Since s ∧ (b ∧ s ∧ t) ∧ s = (a ∧ s ∧ t) ∧ (b ∧ s ∧ t) = s ∧ (s ∧ t) ∧ a, s ∧ (b ∧ s ∧ t) ∧ b = s ∧ (s ∧ t) ∧ b and
s ∧ t ∈ S, we conclude that

a

s
≤ b ∧ t ∧ s

s ∧ t
and

b

t
≤ b ∧ t ∧ s

s ∧ t
.

Now, let c/r ∈ S−1N such that a/s ≤ c/r and b/t ≤ c/r. Then there exists v, w ∈ S such that s∧ c∧ a∧ v =
s ∧ r ∧ a ∧ v and t ∧ c ∧ b ∧ w = t ∧ r ∧ b ∧ w. By attention to a ∧ t ∧ s ≤ b ∧ t ∧ s, we have

(t ∧ s) ∧ c ∧ (b ∧ t ∧ s) ∧ (v ∧ w) = b ∧ c ∧ s ∧ v ∧ t ∧ w
= [(s ∧ c ∧ a ∧ v) ∧ (t ∧ w)]∨

[(t ∧ c ∧ b ∧ w) ∧ (v ∧ s)]
= [(s ∧ r ∧ a ∧ v) ∧ (t ∧ w)]∨

[(t ∧ r ∧ b ∧ w) ∧ (v ∧ s)]
= t ∧ r ∧ b ∧ w ∧ v ∧ s
= (t ∧ s) ∧ r ∧ (b ∧ t ∧ s) ∧ (v ∧ w).

Thus
b ∧ t ∧ s
s ∧ t

≤ c

r
and hence

a

s
∨ b
t

=
max{a ∧ s ∧ t, b ∧ s ∧ t}

s ∧ t
.

Proposition 6.4. Let S be a meet closed subset of a nexus N over γ. For every a ∈ N and s, t ∈ S,
a/s = a/t.

Proof. Since (a ∧ t) ∧ (s ∧ t) = (a ∧ s) ∧ (s ∧ t) and t ∧ s ∈ S, we conclude that a/s = a/t.

Lemma 6.5. Let S be a meet closed subset of a nexus N over γ and m =
∧
S. For every a, b ∈ N and

s, t ∈ S,

(1) (a,m) ∼S (b,m) if and only if (a,m) ∼{m} (b,m).

(2) If a/s ≤ b/t in S−1N , then a/m ≤ b/m in {m}−1N .

Proof. (1) We first suppose that (a,m) ∼S (b,m). Then there exists t ∈ S such that a ∧m = a ∧m ∧ t =
b ∧m ∧ t = b ∧m, which follows that (a,m) ∼{m} (b,m).

Conversely, let (a,m) ∼{m} (b,m). Then a ∧m = b ∧m. Since by Corollary 4.12, m ∈ S, we conclude
that (a,m) ∼S (b,m).

(2) There exists r ∈ S such that s ∧ b ∧ a ∧ r = s ∧ t ∧ a ∧ r. Then m ∧ b ∧ a = s ∧ b ∧ a ∧ r ∧ m =
s ∧ t ∧ a ∧ r ∧m = m ∧ a, that is, a/m ≤ b/m in {m}−1N .
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Proposition 6.6. Let S be a meet closed subset of a nexus N over γ. If m =
∧
S, then S−1N ∼= {m}−1N

as lattices.

Proof. We define ϕ : S−1N → {m}−1N with ϕ(a/s) = a/m. Then by Lemma 6.5, ϕ is well-defined and
it also preserves the order. If ϕ(a/s) = ϕ(b/t), then a/m = b/m. Since by Corollary 4.12, m ∈ S and
a ∧ t ∧m = a ∧m = b ∧m = b ∧ s ∧m, we conclude that a/s = b/t, which follows that ϕ is one-to-one. Also,
by Corollary 4.12, m ∈ S, so ϕ is onto.

Let a/s, b/t ∈ S−1N . If a ∧ t ∧ s ≤ b ∧ t ∧ s, then a ∧m ≤ b ∧m and

ϕ(
a

s
∨ b
t
) = ϕ(

b ∧ s ∧ t
s ∧ t

) =
b ∧ s ∧ t
m

=
b ∧m
m

=
a

m
∨ b

m
= ϕ(

a

s
) ∨ ϕ(

b

t
).

Also,

ϕ(
a

s
∧ b
t
) = ϕ(

a ∧ b
s ∧ t

) =
a ∧ b
m

=
a

m
∧ b

m
= ϕ(

a

s
) ∧ ϕ(

b

t
).

It is clear that

ϕ(
()

s
) =

()

m
and ϕ(

s

s
) =

s

m
=
m

m
.

Proposition 6.7. Let S be a meet closed subset of a nexus N over γ. If m =
∧
S, then {m}−1N ∼=↓ m as

lattices.

Proof. We define ϕ : {m}−1N →↓ m with ϕ(a/m) = a ∧m. For every a, b ∈ N ,

a

m
=

b

m
⇔ a ∧m = b ∧m⇔ ϕ(

a

m
) = ϕ(

b

m
).

Hence ϕ is well-defined and one-to-one. It is clear that ϕ is onto. Let a/m, b/m ∈ {m}−1N . By Proposi-
tion 3.15, we can assume that a ∧m ≤ b ∧m. Hence

ϕ(
a

m
∨ b

m
) = ϕ(

b ∧m
m

) = b ∧m = (a ∧m) ∨ (b ∧m) = ϕ(
a

m
) ∨ ϕ(

b

m
).

Also,

ϕ(
a

m
∧ b

m
) = ϕ(

a ∧ b
m

) = a ∧ b ∧m = ϕ(
a

m
) ∧ ϕ(

b

m
).

It is clear that

ϕ(
()

m
) = () ∧m = () and ϕ(

m

m
) = m ∧m = m.

Corollary 6.8. Let S be a meet closed subset of a nexus N over γ. (S−1N,≤) is isomorphic with a cyclic
subnexus of (N,≤).

Proof. By Propositions 6.6 and 6.7, it is clear.

Corollary 6.9. Let S be a meet closed subset of a nexus N over γ. Then (S−1N,≤) is a bounded distributive
lattice.

Proof. By Propositions 6.6 and 6.7, it is clear.

Corollary 6.10. Let S1 and S2 be meet closed subsets of a nexus N over γ. If
∧
S1 =

∧
S2, then S−11 N ∼=

S−12 N .

Proof. By Propositions 6.6 and 6.7, it is clear.

Example 6.11. It is clear that N = A(ω) is a nexus. Hence S1 =↑ (2, 1) and S2 =↑ (3) are meet closed
subsets of nexus N over ω. Then

∧
S1 = (2, 1) 6= (3) =

∧
S2 and S−11 N ∼=< (2, 1) >∼=< (3) >∼= S−12 N .

Therefore, the converse of Corollary 6.10 is obviously false.
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Proposition 6.12. Let S be a meet closed subset of a nexus N over γ and m =
∧
S. Then ϕ : Id(S−1N)→

Sub(↓ m) with ϕ(I) = f(I) is a lattice isomophism, where f : S−1N →↓ m with f(a/s) = a ∧m.

Proof. Let I ∈ Id(S−1N). Then for every s ∈ S, ()/s ∈ I and f(()/s) = () ∈ f(I), that is, f(I) 6= ∅.
Now, let x ∈ f(I) and y ∈↓ m such that y ≤ x. Then there exists a/s ∈ I such that x = f(a/s) = a ∧m.
Since y = y ∧m ≤ x ∧m = a ∧m = x in ↓ m, we conclude that y/m ≤ a/m ≤ a/s ∈ I in S−1N , which
follows that y/m, a/m ∈ I. Hence y = f(y/m) ∈ f(I) and by Proposition 3.8, f(I) ∈ Sub(↓ m). Thus ϕ
is closed. Let I, J ∈ Id(S−1N). If I = J , then ϕ(I) = f(I) = f(J) = ϕ(J), that is, ϕ is well-defined. Let
ϕ(I) = f(I) = f(J) = ϕ(J) and a/s ∈ I. Then there exists b/t ∈ J such that a ∧ t ∧m = a ∧m = f(a/s) =
f(b/t) = b ∧m = b ∧ s ∧m. Since by Corollary 4.12, m ∈ S, we conclude that a/s = b/t ∈ J . Hence I = J
and ϕ is one-to-one. If K ∈ Sub(↓ m), then f−1(K) ∈ Id(S−1N) and f(f−1(K)) = K. Hence ϕ is onto. It
is clear that for every I, J ∈ Id(S−1N), ϕ(I ∧ J) = ϕ(I) ∧ ϕ(J) and ϕ(I ∨ J) = ϕ(I) ∨ ϕ(J). Therefore, ϕ is
a lattice isomophism.

Proposition 6.13. Let S be a meet closed subset of a nexus N over γ. Then (S−1N,≤) has a unique maximal
ideal.

Proof. By Propositions 5.7 and 6.12, it is clear.

Example 6.14. Let for every n ∈ ω, On be as in example 5.6 and O : ω → 3 by O(i) = 1, for all i ∈ ω. Let
N = {()} ∪ {On|n ∈ ω} ∪ {O}, I = {()} ∪ {On|n ∈ ω} and S = {O}. The following assertions hold:

1. N is a nexus over 3.

2. I is a subnexus of N .

3. I is not a cyclic nexus of N .

4. S−1I = { ()O} ∪ {
On

O |n ∈ ω} is an infinite ideal of S−1N and S−1I 6= S−1N .

5. If J is a proper cyclic subnexus of N , then S−1J is a finite ideal of S−1N .

Hence Theorem 2.26 (i) in [1] is incorrect.

Now correcting Theorem 2.26 (i) in [1], can bring in the following.

Proposition 6.15. Let S be a meet closed subset of nexus N over γ.

(1) Every ideal of S−1N is of the form of S−1I, where I is a subnexus of N .

(2) If K is a finite ideal of S−1N , then there exists a cyclic subnexus I of N such that K = S−1I.

Proof. (1) Let K be an ideal of S−1N and I = {a ∈ N | a/s ∈ K for some s ∈ S}. It is clear that I is a
subnexus of N and K = S−1I.

(2) Let K be a finite ideal of S−1N and m =
∧
S. Since by Propositions 3.15, 6.6 and 6.7, every two

elements of S−1N are comparable, we conclude that K has a maximal element, say a/s. Hence K =↓ a/s.
We put I =↓ a and we claim that K = S−1I. Let b/t ∈ K, then there exists r ∈ S, t∧ a∧ b∧ r = t∧ s∧ b∧ r,
which follows that (a ∧ b ∧ t) ∧ (t ∧ s ∧ r) = (b ∧ s) ∧ (t ∧ s ∧ r). Therefore, b/t = (a ∧ b)/s ∈ S−1I. Now, let
b ∈ I and t ∈ S. Then t∧ a∧ b∧m = b∧m = t∧ s∧ b∧m, which follows that b/t ≤ a/s ∈ K. Since K is an
ideal of S−1N , we conclude that b/t ∈ K, and this completes the proof.

Proposition 6.16. Let S be a meet closed subset of nexus N over γ. If I and J are two subnexuses of N ,
then S−1(I ∩ J) = S−1I ∩ S−1J .

Proof. It is clear.
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