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Abstract

One of the efficient methods of optimizing a complex function is a homotopy method, when we first
optimize a simpler approximate objective function and then gradually adjust this solution by solving
intermediate optimization problems obtained by an appropriate combination of the original and simplified
objective function, until we reach the desired maximum of the original objective function. The success
of this method depends on the selection of the appropriate combination function. Empirically, the most
successful combination function is the convexr homotopy function, i.e., a convex combination of the original
and simplified objective functions. In this paper, we provide a possible theoretical explanation for this
empirical success.
©2015 World Academic Press, UK. All rights reserved.
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1 Formulation of the Problem

Homotopy methods in optimization: brief reminder. In many practical problem, we want to find
the best possible solution: the best possible design, the best possible control, the clustering which is most
consistent with our intuition, etc.

To describe this problem in formal terms, we need to be able to gauge the quality of an alternative x by
an appropriate number F'(x) describing how good is this alternative. Once the corresponding function F'(z)
is defined, selecting the best alternative means finding an alternative x for which the value F(z) is the largest
possible.

In many cases, the function F(z) (describing our preferences) is very complex, so it is difficult to optimize
this function.

We can simplify the problem and find an approximate function G(x) which is easier to optimize. The
alternative x which optimizes the approximate function G(z) can be viewed as an approximate solution to
the original optimization problem F(z) — max. How can we use this approzimate solution to find the ezact
(or, at least, more accurate) solution to the original optimization problem?

A widely used method for doing this is known as the homotopy method; see, e.g., [4]. This method is based
on the fact that once we know a solution to an optimization problem, this usually helps us to find a solution
to a “nearby” optimization problem as well.

To use this idea, we form a continuous family of functions H (A, z) = f(\, F(z), G(z)) with a parameter
A € [0,1] that starts, for A = 0, at the simplified objective function H(0,2) = G(z) and ends up, for A =1,
at the desired complex objective function H(1,z) = F(x).

We then select a sequence of real numbers A\g = 0 < Ay < --- < Ay = 1 for which all the differences
Ai+1 — A; are small, and sequentially solve the optimization problem H(\;,z) — max for : = 0,1, ... k.

e We start by solving the optimization problem corresponding to Ao = 0 (i.e., to the objective function
G(z) = H(\o,x)), and getting an alternative x(A\g) which optimizes this simpler-to-optimize objective
function G(x).
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e For each 4, once we know the solution x();) which optimizes the objective function H(\;, z) — max, we
use this solution to find a solution z(c;11) to the “close” optimization problem H(\;41, ) — max.

Once we get to the value ¢ = k, we thus have a solution z(1) to the desired problem of maximizing the
objective function F(z) = H(\g,x) = H(1, z).

Convex homotopy. The success of a homotopy method depends on the proper selection of the combination
function f(A,a,b) which is used to form the appropriate family. The most widely used function is a function

FOua,b) =X a+(1—\)-b, (1)

known as convex homotopy function.

Problem. In many cases, the convex homotopy function leads to a successful solution to the original opti-
mization problem. However, while this success is an empirical fact, there seems to be no convincing theoretical
explanation for this empirical success — and thus, it is not clear whether the convex homotopy function is
indeed the best function or there may be other functions f(\,a,b) which may be even better (so that the
convex homotopy function is just a first approximation to a — yet to be determined — better function).

What we do in this paper. In this paper, we provide a possible theoretical explanation for the empirical
success of the convex homotopy function.

2 Analysis of the Problem

‘We need a family of homotopy functions. As we can see from our description of the homotopy method,
the exact parametrization of different functions f(A,a,b) is not that important; what is important is that we

have a family of functions g(a, b) def f (X, a,b) corresponding to different values of the parameter A.

Reasonable properties of functions from the homotopy family must satisfy. What properties should
these functions g(a,b) satisfy?

First, in the case when the original objective function F(z) is already simple, i.e., if G(z) = F(x) for all x,
then it is reasonable to require that the above procedure do not force us to perform any unnecessary job of op-
timizing any other objective function. In other words, for each of the homotopy functions g(a, b), the resulting
objective function H(x) = g(F(z),G(x)) = g(F(z), F(x)) should coincide with F(x): g(F(z), F(x)) = F(z)).

This property should be satisfied for all possible numerical values of F'(x). Thus, we must have g(a,a) = a
for all real values s.

Another reasonable property is related to the known fact that smooth (differentiable) functions are easier
to optimize than non-differentiable ones: starting from the gradient methods, many successful optimization
techniques require differentiability; see, e.g., [I]. It is therefore reasonable to require that if F(z) and G(x) are
differentiable functions, then the function H(x) = g(F'(z), G(x)) should also be differentiable. In particular,
for F(z) = x1 and G(z) = 2, this implies that the homotopy function g(z1,z2) itself be differentiable.

Finally, let us go back to the need for gauging the user preferences. In modern decision theory (see,
e.g., [3[7, 0 6]), a natural way to gauge user preferences is to use wtility functions, and utility functions are
determined modulo a linear transformation v — k - u + m where k& > 0; see Appendix for details.

This is a typical situation in measurement theory. For example, the numerical expression of the moment
of time is also only determined modulo a linear transformation: it depends on the starting point (birth of
Jesus Christ or the French Revolution) and on the measuring unit (year, second, etc.); see, e.g., [8].

The corresponding linear transformation does not change the meaning of the optimization problems. This

is similar to the fact in financial problem, maximizing the profit in dollars F'(z) is exactly the same optimization

problem as maximizing the profit in Euros F’(x) . F (x), where k is the current cost of 1 US dollar in

Euros.

It is therefore reasonable to require that the transformation corresponding to each homotopy function
should not depend on this choice of scale. In other words, if H(z) = g(F(z), G(x)), then for each k£ > 0 and
m, for the re-scaled functions F'(x) = k- F(z) + m, G'(x) = k- G(z) + m, and H'(x) = k- H(x) + m, we
should have the same dependence: H'(z) = g(F'(x), G'(z)).

Now, we are ready to formulate our main result.
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3 Definitions and the Main Result

Definition. Let us call a differentiable function g(a,b) of two variables a reasonable homotopy function if it
1s satisfies the following two properties:

e g(a,a) = a for all real numbers a;

e for all real numbers F, G, H, k > 0, and m, if H = g(F,G), F' =k-F+m, G =k-G+m, and
H =k -H+m, then H = g(F',G).

Comment. One can easily check that for every real number A, the function g(a,b) = A-a+ (1 —X)-bis
a reasonable homotopy function (in the sense of the above Definition). It turns out that these are the only
reasonable homotopy functions.

Proposition. FEvery reasonable homotopy function has the form g(a,b) = X-a+ (1 — X) - b for some real
number \.

Discussion. This result provided the desired theoretical justification for the convex homotopy function.

Comment. We are analyzing generic homotopy functions, i.e., homotopy functions which can be applied to
all possible optimization problems. For specific optimization functions, different homotopy functions — which
take the specific character of the corresponding optimization problem into account — are sometimes better
than the convex one; see, e.g., [2, ).

4 Proof

1°. By definition of a reasonable homotopy function g(a,b), we have g(a,b) = a when a = b. To complete our
description of the function g(a,b), we thus need to find the values g(a,b) for the cases when a < b and when
a > b. Let us consider these two cases one by one.

2°. Let us first consider the case when a < b.

The simplest such case is when a = 0 and b = 1. Let us denote the corresponding value ¢g(0,1) by v.

Let us now take any other pair (a,b) with a < b, and let us use the second property of a reasonable
homotopy function to find g(a,b). We will apply this property to values FF =0, G =1, H = v, m = a, and
k =b—a > 0. By definition of v as ¢(0,1), we have H = g(F,G). Here, F/ = k- F+m =m = q,

G=k-G+m=(b—-a)+a=0b,

and
H=k-H+m=0b-a)-v+a=a-(1-v)+b-v.

For defy v, we have v = 1 — p and thus, H = p-a+ (1 — u) - b. From the second property of a reasonable
homotopy function, we conclude that H' = g(F’,G), i.e., that

gla,b) = p-a+(1—p)-b, (2)

3°. Let us now consider the remaining case when a > b.

The simplest such case is when a = 1 and b = 0. Let us denote the corresponding value g(1,0) by A.

Let us now take any other pair (a,b) with a > b, and let us use the second property of a reasonable
homotopy function to find g(a,b). We will apply this property to values F =1, G =0, H = A\, m = b, and
k=a—b> 0. By definition of A as ¢(1,0), we have H = g(F, G). Here,

F'=k-F+m=(a—0b)+b=a,
G'=k-G+m=m=>b, and

H =k-H+m=(a—b)-A+b=X-a+(1—\)-b.
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From the second property of a reasonable homotopy function, we conclude that H' = g(F’,G’), i.e., that

gla,b)=X-a+(1—=X)-b. (3)

4°. The function g(a,b) should be differentiable, in particular, it should be differentiable when a = b, i.e.,
there should be a limit

_— = 1 .
Oa hli% h

Here:

e When h < 0, we have a = b+ h < b and thus, from the formula (2), we conclude that the limit is equal
to p.

e When h > 0, we have a = b+ h > b and thus, due to the formula (3), the limit is equal to A.

Since we should have the same limit for h < 0 and for h > 0, this means that g = A, and thus, the formula
(3) describes the function g(a, b) for all possible pairs (a, b).
The proposition is proven.
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Appendix: The Main Notions of Utility: Brief Reminder

What is utility. How can we describe the human preferences A < B between alternatives A and B in
numerical terms? A natural idea is to select two alternatives: a very bad alternative Ay and a very good
alternative Aj, so that every reasonable alternative is in between Ag and A;: Ag < A < A;. For example, in
financial situations, Ay can be “I lose everything”, while A; can be “I gain billion dollars”.

For each real number p from the interval [0, 1], we can form a lottery in which we get A; with probability
p and Ay with the remaining probability 1 — p. We will denote this lottery by L(p).

When p = 0, the lottery L(p) means that we get the bad alternative Ag. When p = 1, we get the good
alternative A;. The larger the probability p that we get Aj, the better: if p < p’ then L(p) < L(p’). Thus,
we get a continuous scale ranging from the very bad alternative Ag to the very good alternative Aj.

For every alternative A, we have Ay = L(0) < A and thus, L(p) < A for small p. Similarly, we have
A < A; = L(1) and thus, A < A(p) for p~ 1. So,

e for small p, the alternative A is better than the lottery L(p); while
e for large p, the lottery L(p) is better than the alternative A.

As p increases, the lottery L(p) becomes better and better; thus, there should be a point py at which we
switch from L(p) < A to A < L(p). This threshold value pg is called the wutility of the alternative A and
usually denoted by u(A). We can say that the alternative A is neither better than L(pg) nor worse than this
lottery, so A is equivalent to this lottery: A ~ L(po) = L(u(A)).

How the numerical value of utility depends on the choice of Ay and A;. In principle, we can choose
a different pair (Af), A}) of a very bad and a very good alternatives. Based on this new pair, we will form
different utility values u’(A). What is then the relation between the old utility values u(A) and the new utility
values u'(A)?

Let us first consider the case when Aj < Ag < A; < A}. In this case, since both Ay and A4; are in between
Ay and Af, each of these alternatives is equivalent to the corresponding lottery:
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e the alternative Ag is equivalent to the lottery in which we get A} with probability u'(Ag) and Af, with
the remaining probability 1 — «'(Ap); and

e the alternative A; is equivalent to the lottery in which we get A} with probability v/(A;) and A} with
the remaining probability 1 — u/(A;).
The alternative A is equivalent to a lottery in which we get A; with probability u(A) and Ag with the
remaining probability 1 — u(A).
Thus, the original alternative A is equivalent to a complex lottery in which:

o first, we select Ay with probability u(A) and Ay with probability 1 — u(A); and then,

e depending on the first choice of A4;, we select A} with probability u(A;) and Af with the remaining
probability 1 — u(A4;).

As a result of this complex lottery, we get either A} or Aj. The probability P(A}) of selecting A} can be
computed by using the complete probability formula as follows:

P(A}) = P(A} | Ay) - P(A1) + P(A] | Ag) - P(Ao) = u/(A1) - u(A) + v/ (Ao) - (1 — u(A)).
This formula can be equivalently rewritten as
P(AY) =k -u(A) +m,

where k & u'(Ar) — u'(Ap) and m Lf u'(Ap).

Thus, the alternative A is equivalent to a lottery in which we get A} with probability P(A4}) = k-u(A4)+m
and we get Aj with the remaining probability 1 — P(A}). By definition of utility, this means that in the new
scale, the utility «'(A) of the alternative A is equal to P(A}), i.e., that

W (A) =k -u(A)+m

for some real values k > 0 and m which do not depend on A.
We have shown this relation for the case when Aj < Ag < A; < A). In all other cases, we can construct
the alternatives Afj and AY for which Af < Ay < A; < A and Aj < A < A} = AY. For example:

e as Aj, we can take the worst of the alternatives Ag and Aj; and

e as A7, we can take the best of the alternatives A; and Aj.

In this case, from Aj < Ay < A; =< A} and Aj < Aj < A} < AY, we conclude that both utilities u(A) and
u’(A) can be obtained from u”(A) by an appropriate linear re-scaling — thus, they are linearly related to each
other as well.

So, utilities u(A) and u’'(A) corresponding to different scales are indeed connected with each other by a
linear transformation u'(A) =k - u(A) + m for some k > 0 and m.
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