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Abstract

Software systems are ubiquitous in modern life. Every time a vulnerability is discovered in one of the
widely use software systems (e.g., in an operating system), a large amount of effort is spent on dealing
with this vulnerability. It is therefore desirable to be able to predict the number of vulnerabilities that will
be discovered at different future time intervals. There exist empirical formulas which allow us to use the
past performance of the software system to provide a reasonably good prediction of this future number.
In this paper, we provide a theoretical justification for these empirical formulas.
c©2015 World Academic Press, UK. All rights reserved.
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1 Formulation of the Problem

Need to predict the number of software vulnerabilities. Nowadays, the whole world depends on
computers, and thus, depends on large software systems like operating systems. While every effort is made
to make these systems secure, vulnerabilities are discovered in all the systems all the time.

Each newly discovered vulnerability requires spending a considerable amount of effort – temporarily dis-
rupting potentially vulnerable services, checking whether any of these services have actually been compro-
mised, performing updates, etc. It is therefore desirable to be able to predict an approximate number of new
vulnerabilities that would be discovered in a given system.

Predicting the number of vulnerabilities is possible. Predicting vulnerabilities themselves is a very
difficult task – these systems are complex, a vulnerability can happen in each of the numerous systems, and
it is difficult to check them all. In contrast, predicting the number of vulnerabilities is possible.

This possibility is easy to explain on the qualitative level:

• if an operating system has a history of continuously showing new vulnerabilities, it is safe to predict
that many new vulnerabilities will be discovered in the future as well;

• on the other hand, if an operating system has been unusually safe, with very few vulnerabilities discovered
so far, it is safe to predict that few vulnerabilities will be discovered in the future as well.

Such a prediction – based on the past history of the software system – is possible not only on the qualitative
level, it is also possible on the quantitative level. In other words, it is possible to predict how the total number
y(t) of vulnerabilities discovered in the system by time t changes with time.

Specifically, in [1], it was shown that this dependence is well described by a differential equation
dy

dt
= f(y),

where the function f(y) is:

• either a constant f(y) = a, in which case the number of discovered vulnerabilities grows linearly with
time t,
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• or a quadratic expression f(y) = b · y + c · y2, in which case the dependence of discovered vulnerabilities
on time t is described by a logistic formula

y(t) =
k1

1 + k2 · exp(−At)
.

In both cases, the function f(y) is a quadratic function: f(y) = a + b · y + c · y2.

Is this empirical formula a crude approximation, or is it theoretically justified? How much can
we trust the above empirical formula?

It could be that this formula is just a crude approximation to reality, with no theoretical justification, in
which case we should not put much trust in this formula – after all, any function f(y) can be expanded in
Taylor series and thus, approximated by a quadratic expression.

It could also be that this formula is not only empirically valid, it also has a deeper theoretical meaning.
In this case, we have reasons to believe that this formula is applicable to other software systems as well – and
thus, we should place more trust in predictions based on this formula.

What we do in this paper. In this paper, we provide a possible theoretical explanation for the above
empirical formula.

This theoretical explanation makes us more confident that this formula can be applied not only to describe
how many vulnerabilities appeared in the past, this formula can also be confidently for predicting how many
vulnerabilities will appear in the future.

2 Analysis of the Problem

How to count the number of vulnerabilities? To derive and test the formula for the dependence of
the number of discovered vulnerabilities y on time t, the paper [1] tries to match the recorded numbers of
vulnerabilities y(ti) at different moments of time ti.

A natural question is: where do these numbers come from? How do we count the number of vulnerabilities
in the first place?

At first glance, the answer sounds simple: just count. However, if one looks deeper, the answer becomes
less clear. Let us explain what we mean.

When do we start counting? Shall we start counting vulnerabilities when the software system was released
for beta-testing? when the system was commercially released?

Shall we also count vulnerabilities discovered when the system was still being designed? This may be
helpful: if we know that a large number of vulnerabilities have been discovered at the design stage, and only
a few after that, then should be more confident in the system.

Depending on when we start counting, we will get different numerical values of the quantity y: if we start
counting earlier, then, instead of the original value y, we have a modified value y′ = y + y0, where y0 is the
number of vulnerabilities discovered when we started counting originally.

Do we count related vulnerabilities? Subsystems of software systems are usually closely inter-related. As
a result, a discovery vulnerability in one subsystem often leads to a discovery of related vulnerabilities. Do we
count all these related vulnerabilities in our count – or do we count the whole group of related vulnerabilities
as a single vulnerability? Or shall we only group together very similar and closely related vulnerabilities.

Depending on how we count:

• we may get y vulnerabilities – if we count only groups of related vulnerabilities;

• or we may get y′ = c · y vulnerabilities – if we count all individual vulnerabilities, related or nor (her c
is the average number of related vulnerabilities in a single group).

Let us come up with a family of approximating functions. We want to approximate functions f(y)
corresponding to different software systems. A natural way to do it is to select a small number of basic

functions f1(y), . . . , fk(y), and to approximate the dependence f(y) of
dy

dt
on y by linear combinations of the

basic functions: f(y) ≈ C1 · f1(y) + · · ·+ Ck · fk(y).
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Reasonable requirements on the family of approximating functions. Since the value y is determined
modulo transformations

• y → y′ = y + y0 (shift) and

• y → y′ = c · y (scaling),

it is reasonable to require that for the selected basic functions fi(y), the resulting family of approximating
functions, i.e., the family of all the functions of the type C1 · f1(y) + · · ·+Ck · fk(y), should not change under
these transformations.

An additional requirement: that all approximating functions are differentiable. In practice, the
values y(t) are integers, so the dependence y(t) is discontinuous: it jumps to the next value y + 1 every time
we discover a new vulnerability. However, following [1], we consider a smooth (differentiable) approximation
to this dependence, in which the function y(t) is differentiable.

In this approximation, it is reasonable to require that the approximating basic functions be differentiable
as well.

Now, we are ready to formulate the problem in precise terms.

3 Definitions and the Main Result

Definition 1. By an approximating family, we mean the family of all the functions of the type

C1 · f1(y) + · · ·+ Ck · fk(y),

where f1(y), . . . , fk(y) are fixed linearly independent differentiable functions, and C1, . . . , Ck are arbitrary
real numbers.

Example. The family of all quadratic functions a + b · y + c · y2 is an approximating family, with f1(y) = 1,
f2(y) = y, and f3(y) = y2.

Definition 2. We say that an approximating family F is shift-invariant if for every function f(y) ∈ F and
for every real number y0, the function f(y + y0) also belongs to the family F .

Definition 3. We say that an approximating family F is scale-invariant if for every function f(y) ∈ F and
for every real number c, the function f(c · y) also belongs to the family F .

Example. One can easily check that the family of all quadratic functions is shift- and scale-invariant. It
turns out that all shift- and scale-invariant families of functions are families of polynomials:

Proposition. Every shift- and scale-invariant family of functions is the family of all polynomials of order
≤ k − 1.

Discussion. Thus, for 3-parametric families of approximating functions, with k = 3, we get a theoretical
explanation for why quadratic functions f(y) are a good approximation – because such functions are the only
family which satisfies the reasonable conditions of shift- and scale-invariance.

This result also shows what we need to do if we want to come up with even more accurate approximations:
consider families of cubic, quartic, etc, functions f(y).

4 Proof of the Proposition

0◦. The main ideas of this proof are similar to the ideas of proof of similar results described in [5, 6].

1◦. Each of the basic functions fi(y) belongs to the approximating family: it corresponds to Ci = 1 and
Cj = 0 for all j 6= i. Thus, due to shift-invariance, for each y0, the function fi(y + y0) also belongs to the
approximating family. By definition of the family, this means that for every y0, there exist values Cij(y0) for
which

fi(y + y0) = Ci1(y0) · f1(y) + · · ·+ Cik(y0) · fk(y). (1)
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2◦. We know that the functions fi(y) are differentiable. Let us prove that the functions Cij(y0) are differen-
tiable as well.

Indeed, if we take the equation (1) for k different values y1, . . . , yk, then we get a system of k linear
equations for k unknowns Ci1(y0), . . . , Cik(y0):

fi(y1 + y0) = Ci1(y0) · f1(y1) + · · ·+ Cik(y0) · fk(y1);

fi(y2 + y0) = Ci1(y0) · f1(y2) + · · ·+ Cik(y0) · fk(y2); (2)

...

fi(yk + y0) = Ci1(y0) · f1(yk) + · · ·+ Cik(y0) · fk(yk).

Due to the well-known Cramer’s rule (see, e.g. [3]), each component of a solution to the system of linear
equations can be described as a ratio of two determinants, i.e., as a differentiable function of coefficients and
free terms. The coefficients fj(y`) do not depend on y0 at all; the free terms fi(yj + y0) are differentiable
functions of y0 (since fi(y) is a differentiable function). Thus, the functions Cij(y0) are indeed differentiable.

3◦. Since all the functions fi(y) and Cij(y0) are differentiable, we can differentiate both sides of equation (1)
with respect to y0, and then take y0 = 0. As a result, we get the following equation:

f ′i(y) = ci1 · f1(y) + · · ·+ cik · fk(y), (3)

where f ′i(y) denotes the derivative and cij
def
= C ′ij(0).

By combining the equations (3) corresponding to i = 1, . . . , k, we conclude that the functions fi(y) satisfy
a system of ordinary differential equations with constant coefficients cij .

It is known (see, e.g., [2, 4, 7]) that each solution to such a system is a linear combination of functions of
the type yn · exp(a · y), where n = 0, 1, 2, . . . is a natural number and a can be any complex number.

Thus, each function fi(y) is a linear combination of such functions.

4◦. Let us now use scale-invariance. Due to scale-invariance, for each real number c, the function fi(c · y)
also belongs to the approximating family. By definition of the family, this means that for every c, there exist
values Aij(c) for which

fi(c · y) = Ai1(c) · f1(y) + · · ·+ Aik(c) · fk(y). (4)

5◦. We know that the functions fi(y) are differentiable. Let us prove that the functions Aij(c) are differentiable
as well.

Indeed, if we take the equation (4) for k different values y1, . . . , yk, then we get a system of k linear
equations for k unknowns Ai1(c), . . . , Aik(c):

fi(c · y1) = Ai1(c) · f1(y1) + · · ·+ Aik(c) · fk(y1);

fi(c · y2) = Ai1(c) · f1(y2) + · · ·+ Aik(c) · fk(y2); (5)

...

fi(c · yk) = Ai1(c) · f1(yk) + · · ·+ Aik(c) · fk(yk).

Due to the Cramer’s rule, each component of a solution to this system of linear equations is a differentiable
function of coefficients fj(y`) and free terms fi(c·yj). The coefficients fj(y`) do not depend on c at all; the free
terms fi(c · yj) are differentiable functions of c (since fi(y) is a differentiable function). Thus, the functions
Aij(c) are indeed differentiable.

6◦. Since all the functions fi(y) and Aij(c) are differentiable, we can differentiate both sides of equation (4)
with respect to c, and then take c = 1. As a result, we get the following equation:

y · f ′i(y) = ai1 · f1(y) + · · ·+ aik · fk(y), (6)
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where aij
def
= A′ij(1).

For each function f(y), the product y · df
dy

can be described as
df

dY
, where we denoted dY

def
= dy/y. By

integrating this relation, we get Y = ln(y).

Thus, if we introduce a new variable Y = ln(y) (for which y = exp(Y )) and new functions Fi(Y )
def
=

fi(exp(Y )), then for these new functions, the equation (6) takes the form

F ′i (Y ) = ai1 · F1(y) + · · ·+ aik · Fk(y). (7)

Thus, the functions Fi(Y ) are solutions to a system of linear ordinary differential equations with constant
coefficients. Therefore, each function Fi(Y ) is a linear combination of terms of the type Y m · exp(b ·Y ), where
m is a natural number and b is, in general, a complex number.

Once we know the functions Fi(Y ), we can determine the original functions fi(y) as fi(y) = Fi(ln(Y )).
By substituting Y = ln(y) into the formula Y m · exp(b · Y ), we conclude that each original functions fi(y) is
a linear combination of terms of the type (ln(y))m · exp(b · ln(y)). Here,

exp(b · ln(y)) = eb·ln(y) =
(
eln(y)

)b

= yb.

Thus, we conclude that each function fi(y) is a linear combination of functions (ln(y))m · yb.

7◦. From the shift-invariance, we know that every function fi(y) is a linear combination of terms of the type
yn · exp(a · y).

Both these functions and the functions described in Part 6 of this proof are analytical functions, so they
can be extended to the complex values of y. If at least one of the terms yn · exp(a · y) has a 6= 0, then the
corresponding function grows exponentially in the complex domain and thus, we cannot represent this term
as a linear combination of slower-growing terms of the type (ln(y))m · yb.

Therefore, a = 0 and thus, each function fi(y) is a linear combination of terms xn for natural n – i.e., a
polynomial.

8◦. Let us prove that if the family F contains a polynomial of order m, then it contains all polynomials of
order ≤ m.

Indeed, let f(y) ∈ F be a polynomial of order m, i.e., f(y) = am · ym + am−1 · ym−1 + · · · , where am 6= 0.
Since the family F is a linear space, it also contains a polynomial gm(y) = a−1m · f(y) which has the form
gm(y) = ym + bm,m−1 · ym−1 + · · · , for some values bm,i.

Since the family F is shift-invariant, it also contains a shifted polynomial gm(y + 1). Since F is a linear
space, it also contains the difference

gm(y + 1)− gm(y) = ((y + 1)m − ym) + bm,m−1 · ((y + 1)m−1 − ym−1) + · · ·

Here, for every degree d, we have

(y + 1)d − yd = d · yd−1 +
d · (d− 1)

2
· yd−2 + · · · ,

hence
gm(y + 1)− gm(y) = m · ym−1 + c · ym−2 + · · ·

for some c.
Since F is a linear space, it also contains the polynomial

gm−1(y)
def
=

1

m
· (gm(y + 1)− gm(y))

which thus has the form
gm−1(y) = ym−1 + bm−1,m−2 · ym−2 + · · ·

By applying a similar construction to this polynomial gm−1(y), we conclude that the family F contains a
polynomial gm−2(y) of the type

gm−2(y) = ym−2 + bm−2,m−3 · ym−3 + · · ·
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and, in general, for each k ≤ m, a polynomial

gk(y) = yk + bk,k−1 · yk−1 + · · · .

Let us now prove, by induction over k, that for each k ≤ m, the family F contains all polynomials of order
≤ k.

Indeed, for k = 0, the family F contains the constant function g0(y) = 1, and since F is a linear space, it
contains all constant functions f(y) = const.

Let us now assume that for some k ≤ m, we have already proven that the family F contains all the
polynomials of order ≤ k−1, let us now prove that this family contains all the polynomials of order k as well.
Indeed, the family F contains the function gk(y) = yk +(bk,k−1 ·yk−1+ · · · ). Since the terms bk,k−1 ·yk−1+ · · ·
form a polynomial of order ≤ k − 1, they are also contained in the family F . Since the family F is a linear
space, this family contains the difference

gk(y)− (bk,k−1 · yk−1 + · · · ) = yk.

Again, since the family F is a linear space, and it contains yk and all the monomials yp with p ≤ k − 1, it
thus contains all linear combinations of these monomials – i.e., all polynomials of order ≤ k. The statement
is proven.

9◦. Because of Parts 7 and 8 of this prove, the family F consists of all polynomials of order m, for some m.
The family F is a set of all linear combinations of k linearly independent functions, so its dimension is k.
The family of all polynomials of order m is the set of all linear combinations of m+1 functions ym, ym−1, . . . ,

y0. Thus, its dimension is m + 1.
From k = m + 1, we conclude that m = k − 1. The proposition is thus proven.
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