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Abstract

Once we have a collection of values corresponding a class of objects, a usual way to decide whether
a new object with the value of the corresponding property belongs to this class is to check whether this
value belongs to interval from mean E minus k sigma σ to mean plus k sigma, where the parameter k is
determined by the degree of confidence with which we want to make the decision. For each value x, the
degree of confidence that x belongs to the class depends on the smallest value k for which x belongs to the
corresponding interval, i.e., on the ratio r of σ and |E − x|. In practice, we often only know the intervals
that contain the actual values. Different values from these intervals lead, in general, to different values of
r, so it is desirable to compute the range of corresponding values of r. Polynomial-time algorithms are
known for computing this range under certain conditions; whether it is always possible to compute this
range in polynomial time was unknown. In this paper, we prove that the problem of computing this range
is NP-hard. A similar NP-hardness result is proven for a similar ratio between the variance V and the
mean E which is used in clustering.
c©2015 World Academic Press, UK. All rights reserved.
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1 Formulation of the Problem

A practical problem: checking whether an object belongs to a class. In many practical situations,
we want to check whether a new object belongs to a given class. In such situations, we usually have a sample
of objects which are known to belong to this class. For example, a biologists who is studying bats has observed
several bats from a local species; the question is whether a newly observed bat belongs to the same species –
or to a different bat species.

To solve this problem, we usually measure one or more quantities for the objects from this class and for the
new object, and compare the resulting values. For the simplest case of a single quantity, we have a collection
of values x1, . . . , xn corresponding to objects from the known class, and a value x corresponding to the new
object.

A standard way to decide whether an object belongs to a class. A usual way to decide whether a
new object with the value x belongs to the class characterized by the values x1, . . . , xn is to check whether
the value x belongs to the “k sigma” interval [E − k · σ,E + k · σ], where:

• E def
=

n∑
i=1

xi/n is the sample mean,

• σ =
√
V , where V

def
=

n∑
i=1

(xi − E)2/n is the sample variance, and
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• the parameter k is determined by the degree of confidence with which we want to make the decision;
usually, we take k = 2 (corresponding to confidence 0.9), k = 3 (corresponding to 0.999), or k = 6
(corresponding to 1− 10−8);

see, e.g., [7, 8].

How confident are we about this decision? For each value x, when k is large enough, the value x
belongs to the interval [E − k · σ,E + k · σ]. Our degree of confidence that x belongs to the class depends on
the smallest values k− for which x ≥ E − k− · σ and on the smallest value k+ for which x ≤ E + k+ · σ. For
example, if one of the values k− and k+ is larger than 2, then our confidence is smaller than 1− 0.9 = 10%;
if one of these values exceeds 3, our confidence is ≤ 0.1%, etc.

How to compute the parameters describing confidence? The inequality x ≥ E − k− · σ is equivalent
to k− · σ ≥ E − x and k− ≥ (E − x)/σ. Thus, when x < E, the corresponding smallest value is equal to
k− = (E − x)/σ.

Similarly, the inequality x ≤ E + k+ · σ is equivalent to k+ · σ ≥ x−E and k+ ≥ (x− E)/σ. Thus, when
x > E, the corresponding smallest value is equal to k+ = (x− E)/σ.

So, to determine the parameter describing confidence, we must compute one of the ratios k−
def
= (E − x)/σ

or k+
def
= (x− E)/σ. Often, reciprocal ratio are used:

r−
def
=

1

k−
=

σ

E − x

and

r+
def
=

1

k+
=

σ

x− E
.

Case of interval uncertainty. The traditional formulas are based on the simplifying assumptions that
we know the exact values x1, . . . , xn of the corresponding quantity. In practice, these values come from
measurement, and measurements are never absolutely accurate; see, e.g. [7]. It is therefore necessary to take
this measurement uncertainty into account when computing the corresponding ratios. In other words, it is
necessary to take into account that the measured values x̃1, . . . , x̃n are, in general, different from the actual
(unknown) values x1, . . . , xn.

Traditional engineering techniques for taking uncertainty into account assume that we know the probabil-

ities of different values of measurement errors ∆xi
def
= x̃i − xi. In many practical situations, however, we only

know the upper bound ∆i on this measurement error, i.e., the value for which |∆xi| ≤ ∆i; see, e.g., [7]. In
this case, once we know the measurement results x̃1, . . . , x̃n, the only information that we have about each

actual value xi is that this value belongs to the interval xi
def
= [x̃i −∆i, x̃i + ∆i].

Different possible values xi ∈ xi lead, in general, to different values of the corresponding ratios r(x1, · · · , xn).
Thus, it is desirable to compute the range of possible values of this ratio:

r = [r, r]
def
= {r(x1, · · · , xn) |x1 ∈ x1, . . . , xn ∈ xn}. (1)

Comment. This problem is a particular case of a problem of computing the range of a function under interval
uncertainty, the problem known as interval computation; see, e.g., [3, 5].

What is known. The problem of computing the range (1) was analyzed in [4] – together with similar
problems of computing ranges for the thresholds E − k · σ and E + k · σ for a given k; see also [1]. In these
papers, feasible algorithms are described for computing the upper bounds for E − k · σ, and for computing
the lower bounds for E + k · σ, σ/(E − x), and σ/(x− E).

Algorithms are also described for computing the remaining bounds under certain conditions on the inter-
vals: namely, for computing the lower bounds for E−k ·σ, and for computing the upper bounds for E+k ·σ,
σ/(E − x), and σ/(x− E). Such conditions are necessary: in [4], it is proven that, in general, the problems of
computing the lower bound for E− k ·σ and the upper bounds for E+ k ·σ are NP-hard – which means that,
unless P=NP, these problems cannot be, in general, solved in polynomial (= feasible) time; see, e.g., [2, 6].
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What we do in this paper. While it was known that computing bounds for the thresholds E − k · σ and
E+k ·σ, whether the problem for computing the range of the ratio is NP-hard was not known. In this paper,
we prove that this problem is also NP-hard.

We use the same idea to prove the NP-hardness of a similar problem: of computing the range of a ratio
V/E used in clustering.

2 Results

Discussion. In order to prove that a problem is NP-hard, it is sufficient to prove that a particular case of
this problem is NP-hard. Thus, to prove that the general problem of computing the upper bound of the
ratios σ/(E − x) and σ/(x− E) is NP-hard, it is sufficient to prove that computing the range of the standard-
deviation-to-mean ratio σ/E (corresponding to x = 0) is NP-hard. Moreover, it is sufficient to prove this for
the case when all the intervals [xi, xi] contain only non-negative values, i.e., when xi ≥ 0 for all i.

Theorem 1. The following problem is NP-hard:

• given: a natural number n and n (rational-valued) intervals [xi, xi],

• compute: the upper endpoint r of the range

r = [r, r] = {r(x1, · · · , xn) |x1 ∈ [x1, x1], . . . , xn ∈ [xn, xn]}

of the ratio r =
√
V /E, where E =

n∑
i=1

xi/n and V =
n∑

i=1

(xi − E)2/n.

Comment. For readers’ convenience, all the proofs are placed in the special Proofs section.

Theorem 2. The following problem is NP-hard:

• given: a natural number n and n (rational-valued) intervals [xi, xi],

• compute: the upper endpoint r of the range

r = [r, r] = {r(x1, · · · , xn) |x1 ∈ [x1, x1], . . . , xn ∈ [xn, xn]}

of the ratio r = V/E, where E =
n∑

i=1

xi/n and V =
n∑

i=1

(xi − E)2/n.

3 Proofs

3.1 Proof of Theorem 1

1◦. The above expression for the ratio r uses a square root – to compute σ =
√
V . In optimization, we usually

use derivatives, and the square root function f(x) =
√
x has infinite derivative when x = 0. To avoid this

problem, we can use the fact that r =
√
R, where R

def
= V/E2, and that the function

√
x is strictly increasing.

Thus,

• the smallest possible value r of r is equal to the square root of the smallest possible value of R: r =
√
R;

and

• the largest possible value r of r is equal to the square root of the largest possible value of R: r =
√
R.

Thus, the problem of computing the range of the ratio r is feasibly equivalent to the problem of computing
the range [R,R] of the new ratio R. In particular, this means that to prove NP-hardness of the original range
computation problem, it is sufficient to prove that the new range computation problem is NP-hard.

2◦. Similarly to the NP-hardness proofs for the thresholds [4], to prove the NP-hardness of our problem, we
will show that a known NP-hard problem – the subset sum problem – can be reduced to it. In this problem,
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we are given n positive integers s1, . . . , sn, and we need to check whether there exists signs ηi ∈ {−1, 1} for

which
n∑

i=1

ηi · si = 0.

Specifically, we will prove that such signs exist if and only if for an appropriately chosen integer N and for
the intervals xi = [N − si, N + si], the upper endpoint R of the range [R,R] of the variance-to-squared-mean

ratio R is greater than or equal to R0
def
= M0/N

2, where M0
def
=

n∑
i=1

s2i /n.

Comment. Such a reduction is a standard way of proving NP-hardness. Indeed, by definition, a problem is
NP-hard if every problem from a certain class NP can be reduced to it [2, 6]. Thus, if a known NP-hard
problem P can be reduced to a given problem P0, then, since every problem from the class NP can be reduced
to P and P can be reduced to P0, every problem from the class NP can also be reduced to P0 – and thus,
our problem P0 is indeed NP-hard.

3◦. Let us prove that the ratio R = V/E2 attains its maximum on the box [x1, x1]× · · · × [xn, xn] when each
of the variables xi is equal to one of the endpoints xi or xi.

We will prove this statement by contradiction. Let us assume that for some i, the function R(x1, . . . , xn)
attains its maximum on an interval [xi, xi] at an internal point xi ∈ (xi, xi). In this case, according to

calculus, at this point, the partial derivative
∂R

∂xi
should be equal to 0, and the second derivative

∂2R

∂x2i
should

be non-positive.

Here,

∂E

∂xi
=

∂

∂xi

 1

n
·

n∑
j=1

xj

 =
1

n
(2)

and, since V = M − E2, where M
def
=

n∑
j=1

x2j/n, we have

∂V

∂xi
=
∂M

∂xi
− ∂E2

∂xi
. (3)

Here,

∂E2

∂xi
= 2 · E · ∂E

∂xi
= 2 · E · 1

n
. (4)

Since

∂M

∂xi
=

∂

∂xi

 1

n
·

n∑
j=1

x2j

 =
1

n
· 2xi, (5)

we have
∂V

∂xi
=

1

n
· 2xi − 2 · E · 1

n
. (6)

Thus,

∂R

∂xi
=

∂

∂xi

(
V

E2

)
=

∂V

∂xi
· E2 − V · ∂E

2

∂xi
E4

=

(
1

n
· 2xi − 2 · E · 1

n

)
· E2 − V · 2 · E · 1

n

E4
= 2 · xi · E − E

2 − V
n · E3

. (7)

Thus, when
∂R

∂xi
= 0, we get

xi =
E2 + V

E
=
M

E
. (8)
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Differentiating
∂R

∂xi
with respect to xi, and using the expressions (2) and (6), we get the following expression

for the second derivative:
∂2R

∂x2i
= 2 · 3 · V + (3 + n) · E2 − 4 · xi · E

n2 · E4
. (9)

The denominator is positive, so since the second derivative is non-positive, we conclude that the numerator
must be non-positive as well, i.e., that

3 · V + (3 + n) · E2 − 4 · xi · E
= 3 · (M − E2) + (3 + n) · E2 − 4 · xi · E
= 3 ·M + n · E2 − 4 · xi · E
≤ 0.

(10)

By definition,

E =
1

n
·

n∑
j=1

xi =
1

n
· xi +

1

n
· Ei, (11)

where we denoted

Ei
def
=
∑
j 6=i

xj . (12)

Similarly,

M =
1

n
· x2i +

1

n
·Mi, (13)

where

Mi
def
=
∑
j 6=i

x2j . (14)

Substituting the formulas (11) and (13) into the right-hand side of the inequality (10), we conclude that

3 ·
(

1

n
· x2i +

1

n
·Mi

)
+ n ·

(
1

n
· xi +

1

n
· Ei

)2

− 4 · xi ·
(

1

n
· xi +

1

n
· Ei

)
≤ 0. (15)

Multiplying both sides of this inequality by n, we get

3 · (x2i +Mi) + (xi + Ei)
2 − 4 · xi · (xi + Ei) ≤ 0. (16)

Opening parentheses, we get

3 · x2i + 3 ·Mi + x2i + 2 · xi · Ei + E2
i − 4 · x2i − 4 · xi · Ei = 3 ·Mi + E2

i − 2 · xi · Ei ≤ 0. (17)

Here, due to (8), we have xi · E = M , hence, substituting expressions (11) and (13)

xi ·
(

1

n
· xi +

1

n
· Ei

)
=

1

n
· x2i +

1

n
·Mi. (18)

Multiplying both sides of this equality by n and canceling equal terms x2i in both sides, we get xi · Ei = Mi.
Substituting Mi instead of xi ·Ei into the right-hand side of the inequality (17), we conclude that Mi+E

2
i ≤ 0.

However, for large enough N (specifically, for N > max
i
si), we have xj ≥ N−sj > 0, hence Ei =

∑
j 6=i

xj > 0,

Mi =
∑
j 6=i

x2j > 0, and thus, Mi+E
2
i > 0. This contradiction shows that the maximum of the ratio R cannot be

attained at an internal point of the interval (xi, xi). Thus, this maximum can only be attained when xi = xi
or xi = xi.

4◦. Let us now prove that the maximum R is greater than or equal to R0 = M0/N
2 if and only if there exist

signs ηi ∈ {−1, 1} for which
n∑

i=1

ηi · si = 0.
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4.1◦. If such signs exist, then we can take xi = N + ηi · si. For these values, due to the properties of the signs,
we have E = N and therefore, xi − E = ±si and

V =
1

n
·

n∑
i=1

(xi − E)2 =
1

n
·

n∑
i=1

s2i = M0,

and R = V/E2 = M0/N
2. The largest possible value R must therefore be larger than or equal to this value.

4.2◦. Vice versa, let us assume that R ≥ R0. Let xi be the values for which the ratio R attains its maximum
value R.

Due to Part 3 of this proof, this maximum is attained when each variable xi is equal to either N − si or

to N + si, i.e., when xi = N + ti with ti = ηi · si. In this case, E = N + e, where e
def
=

n∑
i=1

ti/n. Since the

variance does not change if we simply shift all the values by N , we have

V (x1, · · · , xn) = V (t1, · · · , tn) =
1

n
·

n∑
i=1

t2i − e2.

Since ti = ±si, we have t2i = s2i and thus,

1

n
·

n∑
i=1

t2i =
1

n
·

n∑
i=1

s2i = M0

and V = M0 − e2. Thus,

R =
V

E2
=

M0 − e2

(N + e)2
,

and the inequality R ≥ R0 takes the form

M0 − e2

(N + e)2
≥ M0

N2
. (19)

Multiplying both sides by the common denominator (N + e)2 ·N2 and opening parentheses, we conclude that

N2 ·M0 − e2 ·N2 ≥M0 ·N2 + 2M0 ·N · e+M0 · e2.

Canceling the term M0 ·N2 in both sides, and moving all the terms to the right-hand side, we get

e2 · (N2 +M0) + 2 ·M0 ·N · e ≤ 0. (20)

If e > 0, then the left-hand side is positive and cannot be ≤ 0, so e ≤ 0. If e < 0, then (20) becomes

|e|2 · (N2 +M0)− 2 ·M0 ·N · |e| ≤ 0. (21)

Dividing both sides by |e| > 0, we get

|e| · (N2 +M0)− 2 ·M0 ·N ≤ 0, (22)

hence

|e| ≤ 2 ·M0 ·N
N2 +M0

. (23)

When N increases, the right-hand side of this inequality tends to 0. However, by definition, all the values si

are integers, so all the values ti = ±si are also integers, the sum n · e =
n∑

i=1

ti is an integer. Since e 6= 0, the

absolute value |n · e| of this integer must be at least 1, so |n · e| ≥ 1 and |e| ≥ 1/n.
Since

2 ·M0 ·N
N2 +M0

→ 0

as N →∞, for sufficiently large N , we have

1

n
>

2 ·M0 ·N
N2 +M0

, (24)

and thus, the inequality (23) is impossible. This shows that e cannot be negative, hence e = 0, and thus,

n · e =
n∑

i=1

ηi · si = 0. The theorem is proven.
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3.2 Proof of Theorem 2

1◦. We will reduce our problem to the same known NP-hard problem as in the proof of Theorem 1: given

n integers s1, . . . , sn, check whether there exists signs ηi ∈ {−1, 1} for which
n∑

i=1

ηi · si = 0. Specifically, we

will show that for a sufficiently large N , if we take xi ∈ [N − si, N + si], then the upper endpoint r of the

ratio r = V/E is greater than or equal to r0
def
= M0/N , where M0

def
=

n∑
i=1

s2i /n if and only if there exists signs

ηi ∈ {−1, 1} for which
n∑

i=1

ηi · si = 0.

2◦. Let us prove that the ratio r = V/E attains its maximum on the box [x1, x1] × · · · × [xn, xn] when each
of the variables xi is equal to one of the endpoints xi or xi.

Indeed, as in the proof of Theorem 1, if the maximum is attained inside an interval (xi, xi), then we should

have
∂r

∂xi
= 0 and

∂2r

∂x2i
≤ 0.

Here,

∂r

∂xi
=

∂

∂xi

(
V

E

)
=

∂V

∂xi
· E − V · ∂E

∂xi
E2

. (25)

Using the formulas (2) and (6), we conclude that

∂r

∂xi
=

2 · xi · E − 2 · E2 − V
nE2

. (26)

Similarly, by using the same formulas (2) and (6), we conclude that

∂2r

∂x2i
=

∂

∂xi

(
∂r

∂xi

)
= 2 · V − 2xi · E + (n+ 1) · E2

n2E3
. (27)

Since V = M − E2, we have

∂2r

∂x2i
= 2 · M − E

2 − 2xi · E + (n+ 1) · E2

n2E3
= 2 · M − 2xi · E + n · E2

n2E3
. (28)

Multiplying both the numerator and the denominator by n and taking into account that

n ·M2 =

n∑
j=1

x2j = x2i +
∑
j 6=i

x2j ,

we conclude that

∂2r

∂x2i
= 2 ·

∑
j 6=i

x2j + (n · E)2 − 2 · n · E · xi + x2i

n3 · E3
. (29)

The last three terms in the numerator form a full square, so

∂2r

∂x2i
= 2 ·

∑
j 6=i

x2j + (n · E − xi)2

n3 · E3
. (30)

When N > max(si), we have xi ≥ N − si > 0 hence
∂2r

∂x2i
> 0. Thus, the maximum cannot be attained at

any internal point. The statement is proven.
3◦. Let us now prove that the maximum r is greater than or equal to r0 = M0/N if and only if there exist

signs ηi ∈ {−1, 1} for which
n∑

i=1

ηi · si = 0.
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3.1◦. If such signs exist, then we can take xi = N + ηi · si. For these values, due to the properties of the signs,
we have E = N and therefore, xi − E = ±si and

V =
1

n
·

n∑
i=1

(xi − E)2 =
1

n
·

n∑
i=1

s2i = M0,

and r = V/E = M0/N. The largest possible value r must therefore be larger than or equal to this value.

3.2◦. Vice versa, let us assume that r ≥ r0. Let xi be the values for which the ratio r attains its maximum
value r.

Due to Part 2 of this proof, this maximum is attained when each variable xi is equal to either N − si or

to N + si, i.e., when xi = N + ti with ti = ηi · si. In this case, E = N + e, where e
def
=

n∑
i=1

ti/n. Since the

variance does not change if we simply shift all the values by N , we have

V (x1, · · · , xn) = V (t1, · · · , tn) =
1

n
·

n∑
i=1

t2i − e2.

Since ti = ±si, we have t2i = s2i and thus,

1

n
·

n∑
i=1

t2i =
1

n
·

n∑
i=1

s2i = M0

and V = M0 − e2. Thus,

r =
V

E
=
M0 − e2

N + e
,

and the inequality r ≥ R0 takes the form
M0 − e2

N + e
≥ M0

N
. (31)

Multiplying both sides by the common denominator (N + e) · N and opening parentheses, we conclude
that

N ·M0 − e2 ·N ≥M0 ·N +M0 · e.

Canceling the term M0 ·N in both sides, and moving all the terms to the right-hand side, we get

e2 ·N +M0 · e ≤ 0. (32)

If e > 0, then the left-hand side is positive and cannot be ≤ 0, so e ≤ 0. If e < 0, then (32) becomes

|e|2 ·N −M0 · |e| ≤ 0. (33)

Dividing both sides by |e| > 0, we get
|e| ·N −M0 ≤ 0, (34)

hence

|e| ≤ M0

N
. (35)

When N increases, the right-hand side of this inequality tends to 0. However, as we have mentioned in the
proof of Theorem 1, when e 6= 0, we have |e| ≥ 1/n.

Since M0/N → 0 as N →∞, for sufficiently large N , we have

1

n
>
M0

N
, (36)

and thus, the inequality (35) is impossible. This shows that e cannot be negative, hence e = 0, and thus,

n · e =
n∑

i=1

ηi · si = 0. The theorem is proven.
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