
Journal of Uncertain Systems
Vol.9, No.2, pp.95-102, 2015

Online at: www.jus.org.uk

Towards Fast and Reliable Localization of an Underwater Object:

An Interval Approach

Quentin Brefort1, Luc Jaulin1, Martine Ceberio2,∗, Vladik Kreinovich2

1ENSTA-Bretagne, LabSTICC, IHSEV, OSM, 2 rue François Verny, 29806 Brest, France
2Department of Computer Science, University of Texas at El Paso, El Paso, Texas 79968, USA

Received 1 June 2014; Revised 16 June 2014

Abstract

To localize an underwater object, we measure the distance to this object from several sonar sensors with
known locations. The problem is that the signal sent by some of the sonars is reflected not by the desired
object(s), but by some auxiliary object and thus, the values measured by these sensors are drastically
different from the distance to the desired object. To solve this problem, currently probabilistic methods
are used; however, since we do not know the exact probability distributions, these methods may miss
the actual location of the object. There exist interval-based methods which provide guaranteed (reliable)
bounds on the object’s location, but these methods sometimes require too much computation time. In
this paper, we propose a new faster algorithm for reliable localization of underwater objects.
c©2015 World Academic Press, UK. All rights reserved.

Keywords: localization of underwater objects, interval computations, reliable bounds

1 Formulation of the Problem

Localizing an underwater object: general idea. In some practical situations, we need to find the spatial
location ~x = (x1, x2, x3) of an underwater object: for example, of a mobile underwater robot or an adversary’s
submarine.

To locate this object, we can use a network of stationary omnidirectional sonars whose locations ~s1, . . . , ~sn
are known. A sonar emits an acoustic signal. This signal is reflected by the object, and the reflection is
detected by a sensor attached to the sonar. The sensor measures the time that passes from the emission of
the original signal to the detection of the reflected signal. Since we know the speed of sound in water, we can
thus measure the distance d(~si, ~x) from the i-th sensor to the object.

Once we know the distances from the object to several sensors, we can determine the coordinates ~x of this
object.

Comment. A similar problem occurs in GPS-based localization; see, e.g., [1].

In principle, this problem is solvable. Once we know the distance di
def
= d(~si, ~x) from the object to the

i-th sensor, we thus get an equation with three unknown coordinates x1, x2, and x3.

In general, once the number of equations is larger than or equal to the number of unknowns, this system
of equations has a unique solution. Thus, if we use at least three different sensors, we can find all three
coordinates and so, locate the object.

In practice, we face challenges. The above argument describes the ideal case, when all the measurements
are exact, and all the measurement results are absolutely reliable.

In practice, measurements are never absolutely exact, the measurement result d̃i is, in general, somewhat
different from the actual (unknown) distance di; see, e.g., [8].

∗Corresponding author.
Emails: Quentin.Brefort@ensta-bretagne.org (Q. Brefort), luc.jaulin@ensta-bretagne.fr (L. Jaulin), mceberio@utep.edu

(M. Ceberio), vladik@utep.edu (V. Kreinovich).

96 Q. Brefort et al.: Towards Fast and Reliable Localization of an Underwater Object

Also, sometimes the signal from some sonars gets reflected not from the desired object, but from some
other objects – or from the shore, or from a surface separating two layers of water. In this case, the reading
d̃i of this sensor is an outlier, it has nothing to do with the actual distance di.

How this problem is solved now: probabilistic approach. We cannot predict the exact values of the

measurement error ∆di
def
= d̃i − di, we can, at best, based on our prior experience, predict how frequent are

different values of measurement error. In other words, we can, in principle, determine the probabilities of
different values ∆di.

Similarly, we cannot easily determine which measurement results correspond to reflections from the object
and which to reflection from other objects. However, in principle, based on the prior experiences, we can
determine the probability of a measurement result being an outlier.

Because of this, traditionally, probabilistic methods are used to locate an underwater robot.

Limitations of the probabilistic approach. The probabilistic approach is a perfect way to solve the
localization problem in situations when we know all the probabilities. In most practical situations, however,
we only have a partial knowledge of these probabilities – i.e., we have an approximate probabilistic model. We
then use this approximate model.

It is worth mentioning that as we perform more and more measurements, we can use the measurement
results to update the corresponding probability distributions – e.g., by using the Kalman filter techniques.

The problem with this approach is that it uses a (very) approximate probabilistic model which is, in
general, different from the actual (unknown) probabilities. As a result, this method may miss the object.

For example, if we assume that the measurement errors are normally distributed, then, with probability
99.9%, all measurement results are within the 3 standard deviations (3σ) from the measured values; thus,

with this high confidence, we conclude that the object is at a distance between d̃i− 3σ and d̃i + 3σ. However,
for many measurement procedures, the corresponding probability decreases with ∆x as a power law [8], for
which deviations larger than 3σ are probable. When such a deviation occurs, the actual distance from the
sensor is outside the interval [d̃i − 3σ, d̃i + 3σ] that our method reports.

Such a miss can be disaster: in research and underwater mineral exploration, we may lose an expensive
robots; in military applications, losing track of an adversary’s attack-capable submarine may lead to an even
more serious disaster.

To avoid such disasters, we need to produce guaranteed (reliable) bounds on the location of the object.

Reliable methods for localizing underwater robots: interval approach. The manufacturer of the
measuring instrument always provides us with the upper bound ∆ on the measurement error. For measuring
distance, this manufacturer-provided upper bound, in general, depends on the distance: usually, shorter
distances are measured more accurately than the longer ones. As a result, for each measured value d̃i, we
know the upper bound ∆i on the corresponding measurement error ∆di = d̃i − di: |∆di − di| ≤ ∆i.

As a result, once we know the measurement result d̃i, we can conclude that the actual (unknown) distance

di is between the bounds: d̃i −∆i ≤ di ≤ d̃i + ∆i. In other words, we conclude that the distance di belongs
to the interval [d̃i −∆i, d̃i + ∆i].

Situations when for each measured quantity, we only know an interval containing its actual value, are
ubiquitous; see, e.g., [8]. To process such data, special interval computations techniques have been invented;
see, e.g., [2, 7]. It is therefore reasonable to use interval methods to get guaranteed (reliable) bounds on the
actual (unknown) location of the robot.

Such a scheme is presented, e.g., in [3]. For each sonar i, the robot is located in the ring Si formed by the

two circles centered around this sonar: the ring between the circle corresponding to distance d̃i −∆i and the
circle corresponding to the distance d̃i + ∆i. If all the recorded values d̃i corresponded to the robot, then we
could find the set S of possible locations of the robot as the intersection of the sets Si corresponding to all m
sonars. In real life, as we have mentioned, some measurements come from other objects; in this case, some of
the sets Si reflect locations of these other objects, and thus, the overall intersection may be empty. We need
to take this fact into account.

The actual location of the robot belongs to the intersection of all the sets Si for all i for which the i-th
sensor detects the reflection from the robot. One or more other sensors may detect reflection from another
object(s); thus, the intersection of the corresponding sets Sj contains the location of that other object. Usually,
most sensors detect reflection from the sensor, so we can find the actual location of the sensor as a non-empty

Journal of Uncertain Systems, Vol.9, No.2, pp.95-102, 2015 97

intersection of a subfamily of the family of all the sets Si – a subfamily for which the number of intersecting
sets with non-empty intersection is the largest possible.

To locate the robot, we therefore use a Guaranteed Outlier Minimal Number Estimator (GOMNE) de-
scribed in [2, 4, 5]. This algorithm first finds the largest possible value q for which the intersection of q
sets Si is non-empty, then finds the corresponding “q-relaxed intersection”, i.e., the union of all non-empty
intersections of q sets Si:

⋃
I:#(I)=q

⋂
i∈I

Si. To compute the corresponding intersections, GOMNE uses SIVIA

(Set Inversion via Interval Analysis), an algorithm described in [2].
Simulations show that in more than 90% of the cases, the resulting algorithm finds the correct location of

the robot, which is much more efficient than for the previously known reliable methods of locating underwater
robots.

Main limitation of the existing interval approach: it is too slow. Off-line, the above interval methods
works perfectly well. However, we need to determine the object’s coordinates in real time. The object is
moving, so we need to know its location before it moved away from this location. As the number of sensors
increases, the needed computation time increases drastically – so that it exceeds the time needed to real-time
computations.

It is therefore necessary to develop faster algorithms for reliable localization of underwater objects.

What we do in this paper. In this paper, we propose a new interval-based method for fast and reliable
localization of underwater objects.

Comment. To make our description clearer, we illustrate our main ideas on the simplified example of a 2-D
localization. These ideas can be easily expanded to a more realistic 3-D localization problem – and in our
description, we explain how they can be expanded.

2 Analysis of the Problem

Two stages of localization. Once we have located an object, we repeatedly send sonar signals to find its
updated location. In this paper, we will denote the time interval between two sequential measurements by ∆t.

From the computational viewpoint, it is therefore reasonable to consider two stages of the localization
process:
• first, we have no prior information on where the object is, and we need to find its initial coordinates ~x;

• on the second stage, we know the approximate location ~x0 ≈ ~x(t − ∆t) of the object at the previous
moment of time t−∆t (and we know the accuracy ε0 of this approximation), and we want to use this
information, as well as the results of the measurements performed at the current moment of time t, to
find the object’s current location ~x(t).

Which stage is easier? In general, the more information we have, the better: we get more accurate
estimates, and we can often use more computationally efficient algorithms. For sure, the additional information
cannot worsen the performance: if the new information does not lead to a more accurate or faster estimation,
we can simply ignore it.

From this viewpoint, let us compare the two stages that we described in the previous subsection. At the
first stage, all we know are measurement results. At the second stage, in addition to the measurement results,
we also have an additional information: we know the previous location of the object. Thus, the localization
problem corresponding to the second stage is easier to solve.

Because of this comparison, we will start our analysis with this easier-to-solve second stage, and then we
will explain how our ideas can be expanded to the more-difficult-to-solve second stage.

Measurements are frequent. To prevent losing track of the object, the existing sonar systems perform
measurements very frequently. Thus, the time interval ∆t between the two consequent measurements is
usually very small.

We know the upper bound v on the velocity of the underwater object. Thus, during the time ∆t, the

object cannot move further away than the distance ε
def
= v ·∆t: d(~x(t), ~x(t−∆)) ≤ ε.

We also know the approximate location ~x0 of the object at moment t−∆t, and we know the accuracy ε0
of this approximation. Thus, we have d(~x(t−∆t), ~x0) ≤ ε0. By the triangle inequality, we now have

d(~x(t), ~x0) ≤ d(~x(t), ~x(t−∆)) + d(~x(t−∆t), ~x0) ≤ ε+ ε0.

98 Q. Brefort et al.: Towards Fast and Reliable Localization of an Underwater Object

Resulting constraints on ∆~x
def
= ~x(t)− ~x0. The result d̃i of the i-th measurements constraints the actual

location ~x(t). Let us reformulate this constraint in terms of the difference ∆~x
def
= ~x(t)− ~x0.

Once we know this difference, we can easily reconstruct the actual location ~x as ~x = ~x0 + ∆~x.
We know that d̃i−∆i ≤ d(~x(t), ~si) ≤ d̃i + ∆i. By squaring all three sides of this double inequality, we get

(d̃i −∆i)
2 ≤ d2(~x(t), ~si) ≤ (d̃i + ∆i)

2. (1)

Here,
d2(~x(t), ~si) = (~x(t)− ~si)2.

In terms of the difference ∆~x, we have ~x(t) = ~x0 + ∆x, thus

d2(~x(t), ~si) = (~x0 + ∆~x− ~si)2 = ((~x0 − ~si) + ∆~x)2 = (~x0 − ~si)2 + 2∆~x · (~x0 − ~si) + (∆~x)2. (2)

Substituting the expression (2) into the formula (1), we get

(d̃i −∆i)
2 ≤ (~x0 − ~si)2 + 2∆~x · (~x0 − ~si) + (∆~x)2 ≤ (d̃i + ∆i)

2.

Subtracting (~x0 − ~si)2 + (∆~x)2 from all the sides of this inequality, we get

(d̃i −∆i)
2 − (~x0 − ~si)2 − (∆~x)2 ≤ 2∆~x · (~x0 − ~si) ≤ (d̃i + ∆i)

2 − (~x0 − ~si)2 − (∆~x)2. (3)

We know that 0 ≤ (∆~x)2 ≤ (ε+ ε0)2, so −(ε+ ε0)2 ≤ −(∆~x)2 ≤ 0 and thus, (3) implies that

(d̃i −∆i)
2 − (~x0 − ~si)2 − (ε+ ε0)2 ≤ 2(~x0 − ~si) ·∆~x ≤ (d̃i + ∆i)

2 − (~x0 − ~si)2, (4)

or, equivalently,
vi ≤ ~ai ·∆~x ≤ vi, (5)

where we denoted
~ai

def
= 2(~x0 − ~si), (6)

vi
def
= (d̃i −∆i)

2 − (~x0 − ~si)2 − (ε+ ε0)2, (7)

and
vi

def
= (d̃i + ∆i)

2 − (~x0 − ~si)2. (8)

For interval computations, it is often convenient to express an interval [vi, vi] by its midpoint ṽi
def
= vi + vi/2

and its radius (half-width) δi
def
= vi − vi/2; see, e.g., [2, 7]. In these terms, the interval takes the form

[vi, vi] = [ṽi − δi, ṽi + δi], and the double inequality (5) takes the form

~ai ·∆~x ∈ [ṽi − δi, ṽi − δi]. (9)

In our case, from (7) and (8), we conclude that

ṽi = (d̃i)
2 + ∆2

i − (~x0 − ~si)2 −
1

2
· (ε+ ε0)2; (10)

δi = 2d̃i ·∆i +
1

2
· (ε+ ε0)2. (11)

Let us consider all pairs of sensors (triples, in 3-D case). Let us first consider a 2-D case. Let us
assume that two sensors i and j both detect the reflection from the object. In this case, the difference ∆~x
satisfies two conditions:

~ai ·∆~x ∈ [ṽi − δi, ṽi + δi]; (12a)

~aj ·∆~x ∈ [ṽj − δj , ṽj + δj]. (12b)

Journal of Uncertain Systems, Vol.9, No.2, pp.95-102, 2015 99

The fact that the scalar (dot) product ∆~x ·~ai belongs to the interval [ṽi− δi, ṽi + δi] means that the absolute

value of the difference ∆vi
def
= ∆~x ·~ai− ṽi does not exceed δi: |∆vi| ≤ δi. In terms of the values ∆vi and ∆vj ,

the conditions (12a) and (12b) can be described as

~ai ·∆~x = ṽi + ∆vi; (13a)

~aj ·∆~x = ṽj + ∆vj . (13b)

with |∆vi| ≤ δi and |∆vj | ≤ δj .
In coordinate terms, ∆~x = (∆x1,∆x2), ~ai = (ai1, ai2), ~aj = (aj1, aj2), and the system (13) takes the form

ai1 ·∆x1 + ai2 ·∆x2 = ṽi + ∆vi; (14a)

aj1 ·∆x1 + aj2 ·∆x2 = ṽj + ∆vj , (14b)

i.e., in matrix form,
A(∆x) = v, (15)

where

A
def
=

(
ai1 ai2
aj1 aj2

)
.

Thus, for the matrix B = A−1 with components B =

(
b1i b1j
b2i b2j

)
, we have ∆x = B · v, i.e., we have, for

m = 1, 2,
∆xm = bmi · (ṽi + ∆vi) + bmj · (ṽj + ∆vj). (16)

From (16), we get
∆xm = x̃m + δxm, (17)

where
x̃m

def
= bmi · ṽi + bmj · ṽj ; (18)

δxm
def
= bmi ·∆vi + bmj ·∆vj . (19)

We know that |∆vi| ≤ δi and |∆vj | ≤ δj . In general, by considering two cases c ≥ 0 and c ≤ 0, one can
easily check that the largest value of a linear function c · x for |x| ≤ t is equal to |c| · t. Thus, the largest
possible value of the expression (19) is equal to

rm
def
= |bmi| · δi + |bmj | · δj . (20)

Thus, for each m = 1, 2, if both measurements i and j measure reflections from the desired object (and not
from some other object), then we conclude that

∆xm ∈ [xm, xm]
def
= [x̃m − rm, x̃m + rm]. (21)

In the 3-D case, formulas are similar, the only difference is that to find three coordinates, we need to
consider triples of sensors (i, j, k), and thus, we need to invert the corresponding 3× 3 matrices.

From intervals corresponding to all possible pairs (or triples) to actual location of the under-
water object. We assume that out of n sensors, the vast majority q detect the reflection from the actual
object. Thus, out of possible n · (n− 1)/2 pairs of sensors, for q · (q − 1)/2 pairs – the majority – the above
procedure will lead to an interval containing the actual location of the robot.

For some other pairs of sensors, we will get the location of an auxiliary object (when both sensors detect
signals reflected form that object) or just a meaningless interval – when two sensors detect reflections from
different objects.

As a result, the intersection of all the intervals [xm, xm] corresponding to all possible pairs is usually
empty: the actual locations are contained in many such intervals, while the locations of auxiliary objects are
contained in few such intervals.

For each real number, we can find the number of intervals [xm, xm] containing this number. Based on
the above analysis, as possible locations of the object, we should select the set of all the points for which the
number of containing intervals is the largest possible.

This set can be computed as follows (see, e.g., [6]):

100 Q. Brefort et al.: Towards Fast and Reliable Localization of an Underwater Object

• first, we sort all the endpoints xm and xm corresponding to all the pairs (triples) of sensors, into an
increasing sequence

x(0)
def
= −∞ < x(1) ≤ x(2) ≤ · · · ≤ x(N) < x(N+1)

def
= +∞;

• then, for k = 0, 1, . . . , N , we sequentially compute the number Ik of intervals [xm, xm] that contain
values from the interval [x(k), x(k+1)] as follows:

– we start with I0 = 0;

– once we know Ik−1, we take Ik = Ik−1+1 if x(k) is one of the lower bounds xm (so, a new containing
interval is added) and we take Ik = Ik−1 − 1 if x(k) is one of the upper bounds xm (so, one of the
containing intervals is deleted).

• Then, we find the largest of the values I0, . . . , IN , and we return the interval [x(k), x(k+1)] for which
Ik is equal to this largest value. If there are several such indices k corresponding to different values k,
we return the interval [x(k), x(k+1)], where k is the smallest of such indices and k is the largest of such
indices.

What about the first stage. The above ideas described the second stage, when we already know the
location of the robot at the previous moment of time t−∆t.

What about the first stage, when we have no prior information about the robot’s location? On the first
stage, we can repeat the same procedure – i.e., consider all pairs (or all triples) of sensors, and find the interval
corresponding to the majority of sensors.

The only difference is that we do not know the previous location ~x0 and thus, we cannot use the above
linearization technique – when we represented the unknown location ~x as ~x0 + ∆~x and took into account that
the difference ∆~x is small. Instead, to find a possible location, we have to use the original inequalities

(d̃i −∆i)
2 ≤ (~x− ~si)2 ≤ (d̃i −∆i)

2; (22a)

(d̃j −∆j)
2 ≤ (~x− ~sj)2 ≤ (d̃j −∆j)

2; (22b)

(d̃k −∆k)2 ≤ (~x− ~sk)2 ≤ (d̃k −∆k)2. (22c)

If we knew the exact values di, dj , and dk of the distances, then we would get a system

(~x− ~si)2 = (~x)2 − 2~si ·∆x+ (~si)
2 = d2i ; (23a)

(~x− ~sj)2 = (~x)2 − 2~sj ·∆x+ (~sj)
2 = d2j ; (23b)

(~x− ~sk)2 = (~x)2 − 2~sk ·∆x+ (~sk)2 = d2k. (23c)

If we subtract equation (23a) from each of the equations (23b) and (23c), then we get two equations which are
linear in ~x, i.e., linear in terms of the three coordinates x1, x2, and x3. We can use these two linear equations
to express x2 and x3 as linear functions of x1. Substituting these linear expressions into the equation (23a),
we will then get an easy-to-solve quadratic equation for x1.

The only remaining problem is to take into account that instead of the exact values d2i , we only have an

interval of possible values [(d̃i −∆i)
2, (d̃i + ∆i)

2]. This can be taken into account by using standard interval
computations techniques such as centered form [2, 7].

Thus, we arrive at the following algorithm.

3 Resulting Algorithm

What is known. Before we start the measurements, we know:

• the time interval ∆t between two consequent measurements,

• the upper bound v on the possible velocity of the detected object, and

• for each i from 1 to n, the location ~si of the i-th sensor.

Journal of Uncertain Systems, Vol.9, No.2, pp.95-102, 2015 101

Based on these values, we pre-compute the value ε = v ·∆t.
After the measurements are performed, we know, for each i from 1 to n,

• the result d̃i of the i-th distance measurement, and

• the upper bound ∆i on the accuracy of this measurement.

At the first stage, when we have no prior information about the location of the robot, this is all we know.
Once we have detected the object, we reach the second stage, at which, at each moment of time t, we also
know:

• the estimated location ~x0 = (x01, x02, x03) of the robot at the previous moment of time t−∆t, and

• the accuracy ε0 with which we know this location, i.e., an upper bound on the distance d(~x(t−∆t), ~x0).

Algorithm: general description. First, we consider all possible triples of sensors (pairs in the 2-D case),
and we use the measurement results of these three sensors to find, for each of the 3 coordinates m = 1, 2, 3,
the interval [xm, xm] of possible values of xm(t) (on the first stage) or ∆xm = xm(t) − x0m (on the second
stage).

For each m, we then:

• sort all the endpoints xm and xm into an increasing sequence

x(0)
def
= −∞ < x(1) ≤ x(2) ≤ · · · ≤ x(N) < x(N+1)

def
= +∞;

• then, for k = 0, 1, . . . , N , we sequentially compute the number Ik as follows:

– we start with I0 = 0;

– once we know Ik−1, we take Ik = Ik−1 + 1 if x(k) is one of the lower bounds xm, and we take
Ik = Ik−1 − 1 if x(k) is one of the upper bounds xm.

• Then, we find the largest of the values I0, . . . , IN , and we return the interval [x(k), x(k+1)] for which
Ik is equal to this largest value. If there are several such indices k corresponding to different values k,
we return the interval [x(k), x(k+1)], where k is the smallest of such indices and k is the largest of such
indices.

These intervals describe the object’s location:

• on the first stage, the intervals’ midpoints form the approximate location vector ~x0;

• on the second stage, these midpoints, when added to the previous location ~x0, form the new approximate
location vector ~x0.

On both stages, the square root of the sum of squares of radii of these intervals is the (new) location accuracy ε0.

How to compute the intervals [xm, xm]? To complete this description, we need to describe how to compute
the intervals [xm, xm] corresponding to different triples of sensors.

This computation is different on the first stage, when we do not yet have any prior information about the
object, and on the second stage, when we already know the object’s previous location. We will describe these
two cases one by one.

How to compute an interval [xm, xm] corresponding to sensors i, j, and k: first stage. If we knew
the exact values di, dj , and dk of the distances, then we would get a system

(~x)2 − 2~si ·∆x+ (~si)
2 = d2i ; (24a)

(~x)2 − 2~sj ·∆x+ (~sj)
2 = d2j ; (24b)

(~x)2 − 2~sk ·∆x+ (~sk)2 = d2k. (24c)

We subtract equation (24a) from each of the equations (24b) and (24c); as a result, we get two equations which
are linear in ~x, i.e., linear in terms of the three coordinates x1, x2, and x3. We use these two linear equations

102 Q. Brefort et al.: Towards Fast and Reliable Localization of an Underwater Object

to express x2 and x3 as linear functions of x1. Substituting these linear expressions into the equation (24a),
we get an easy-to-solve quadratic equation for x1. Once we know x1, we can use the known linear formulas
describing x2 and x3 in terms of x1 to find the values of x2 and x3.

To take into account that instead of the exact values d2i , we only have an interval of possible values

[(d̃i −∆i)
2, (d̃i −∆i)

2], we use standard interval computations techniques such as centered form.

How to compute an interval [xm, xm] corresponding to sensors i, j, and k: second stage. For each
sensor, we compute the values

ṽi = (d̃i)
2 + ∆2

i − (~x0 − ~si)2 −
1

2
· (ε+ ε0)2;

δi = 2d̃i ·∆i +
1

2
· (ε+ ε0)2;

and the vector ~ai = 2(~x0 − ~si) with coordinates (ai1, ai2, ai3).
Then, we form a matrix

A =

ai1 ai2 ai3
aj1 aj2 aj3
ak1 ak2 ak3

 ,

and compute its inverse matrix

B =

b1i b1j b1k
b2i b2j b2k
b3i b3j b3k

 .

For each m = 1, 2, 3, we compute x̃m = bmi · ṽi + bmj · ṽj + bmk · ṽk, rm = |bmi| · δi + |bmj | · δj + |bmk| · δk,
xm = x̃m − rm, and xm = x̃m + rm.

Acknowledgments

This work was supported in part by the US National Science Foundation grants 0953339, HRD-0734825
and HRD-1242122 (Cyber-ShARE Center of Excellence) and DUE-0926721. The work was performed when
Quentin Brefort was visiting the University of Texas at El Paso. This visit was supported by ENSTA-Bretagne.

References

[1] Drevelle, V., and P. Bonnifait, iGPS: global positioning in urban canyons with road surface maps, IEEE Intelligent
Transportation Systems Magazine, vol.4, no.3, pp.6–18, 2012.

[2] Jaulin, L., Kieffer, M., Didrit, O., and E. Walter, Applied Interval Analysis, Springer Verlag, London, 2001.

[3] Jaulin, L., Stancu, A., and B. Desrochers, Inner and outer approximations of probabilistic sets, Proceedings of the
American Society of Civil Engineers (ASCE) Second International Conference on Vulnerability and Risk Analysis
and Management ICVRAM’2014 and Sixth International Symposium on Uncertainty Modelling and Analysis
ISUMA’2014, 2014.

[4] Jaulin, L., and E. Walter, Guaranteed robust nonlinear minimax estimation, IEEE Transaction on Automatic
Control, vol.47, no.11, pp.1857–1864, 2002.

[5] Jaulin, L., Walter, E., and O. Didrit, Guaranteed robust nonlinear parameter bounding, Proceedings of Symposium
on Modelling, Analysis and Simulation, part of IMACS Multiconference on IMACS Multiconference, Computa-
tional Engineering in Systems Applications CESA’96, vol.2, pp.1156–1161, 1996.

[6] Marzullo, K.A., Maintaining the Time in a Distributed System: an Example of a Loosely-Coupled Distributed
Service, Stanford University, PhD Dissertation, 1984.

[7] Moore, R.E., Kearfott, R.B., and M.J. Cloud, Introduction to Interval Analysis, SIAM Press, Philadelphia, Penn-
sylviania, 2009.

[8] Rabinovich, S.G., Measurement Errors and Uncertainty: Theory and Practice, Springer Verlag, Berlin, 2005.

	jus-9-2-2bradyFormatted.pdf
	Introduction
	Towards an Optimal Trajectory
	What if We Want Different Coverage in Different Sub-Regions
	Tailwind Problem
	Missed Spot Problem

	jus-9-2-3brefortFormatted.pdf
	Formulation of the Problem
	Analysis of the Problem
	Resulting Algorithm

	jus-9-2-4mishaFormatted.pdf
	Introduction: Formulation of the Problem
	How to Describe Symmetries of a Transformation: Analysis of the Problem
	Invariant Transformations: Definitions and the Main Results
	Proofs
	Proof of Theorem 1
	Proof of Theorem 2

	jus-9-2-5misha2Formatted.pdf
	Introduction
	DNA, Algorithmic Information Theory, and Kolmogorov Complexity: a Brief Reminder
	Towards a New Definition of Redundancy-Related ``Approximate'' Incompressibility
	Applications to DNA
	Conclusions

	jus-9-2-6loFormatted.pdf
	Formulation of the Problem
	Results
	Proofs
	Proof of Theorem 1
	Proof of Theorem 2

	jus-9-2-7riveraFormatted.pdf
	Formulation of the Problem
	Analysis of the Problem
	Definitions and the Main Result
	Proof of the Proposition

	jus-9-2-8sunFomatted.pdf
	Formulation of the Problem
	Analysis of the Problem
	Definitions and the Main Result
	Proof

	jus-9-2-9diversityFormatted.pdf
	Introduction
	Two Competing Research Groups: Description of a Model
	Analysis of the Model

	jus-9-2-10wangFormatted.pdf
	Formulation of the Problem: The Notion of Stochastic Affiliation is Difficult to Explain
	Stochastic Affiliation: Our Explanation

	jus-9-2-11zapataFormatted.pdf
	Basic Empirical Dependencies of Systems Engineering
	Rule of Thumb Related to System Hierarchy: A Possible Geometric Explanation
	Rule of Thumb Related to Relative Cost of Correcting a Defect at Different Stages of the System Life-Cycle

	jus-9-2-12.pdf
	Introduction
	The Cross Selections of Parametric Interval-Valued Fuzzy Variables
	The Cross Selection of Parametric Interval-Valued Trapezoidal Fuzzy Variable
	The Cross Selection of Parametric Interval-Valued Normal Fuzzy Variable
	The Cross Selection of Parametric Interval-Valued Erlang Fuzzy Variable

	Conclusions

