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Abstract

We study sequential decisions for a firm in a supply chain with one supplier and one company. There are
demand risk and supply risk in our problem, and they are from the market and the supplier, respectively.
A company may desire to maximize its benefits in the sense of expectation criterion, it can make sequential
price decision and quantity decision to minimize its total losses. We establish several new expected value
models and derive their optimal decisions. We further analyze the relationship between the optimal
decision and supply risk, and conclude that the threshold level of supply risk increases when the firm
reduces its quantity decision. Numerical examples are presented to demonstrate our new methods.
c©2015 World Academic Press, UK. All rights reserved.
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1 Introduction

Production and sale are two most basic aspects for a company, they should handle the relationship between
the supplier and the consumer. Even in a simple supply chain problem, a company is usually faced with the
demand risk and the supply risk. The demand risk is from the market since the company doesn’t know the
complete information about the market demand of the product. The supply risk from the supplier is affected by
the quality of the production equipment, the degree of proficiency of workers and the third party logistics in the
process of transportation accident. These two risks interact and jointly affect the company’s profitability. Some
researchers have studied the joint price and quantity decision-making problems, especially the simultaneous
decision-making problems. Deng [3] analyzed joint pricing-production decisions under different supply chain
settings and restrictions. Lim [8] presented a joint optimal pricing and order quantity model, in which the
demand is modeled as a function of price and the cost is modeled as a function of quantity. Yano et al. [11]
provided a comprehensive review of simultaneous pricing and production decisions. Hu et al. [5] analyzed
purchasing decisions under stochastic price and given the approximate solution for order time, order quantity
and supplier selection. Dadal et al. [2] studied the production decisions under random production and price
uncertainty.

Since the whole supply chain process is dynamic, the flexible decision making problem has been studied in
the literature. Lin [9] considered a sequential dynamic pricing model for a seller sells stock. They all showed
the dynamic pricing make sellers get more profits. Inderfurth and Clemens [6] analyzed risk sharing contracts
can facilitate decision making and improved supply chain performance. Zhang and Brorsen [12] discussed
quantity-price strategic decisions for oligopoly. Xiao et al. [10] discussed ordering, wholesale pricing and lead
time decisions in a three-stage supply chain consisting of one retailer, one manufacturer and one subcontractor.
He [4] studied four cases of sequential decision-making under supply risk and demand risk. In the present
paper, we further analyze several new sequential decision-making problems that often happen in our real life.
Since stochastic optimization method is a useful tool to analyze practical decision-making problems [1, 7],
we build our optimization models by two-stage stochastic programming, in which the decisions are divided
into two groups according to the sequential decision-making methods. In some cases, we can provide the
analytical solutions to stochastic expectation models. For some hard expectation models, we can also derive
the corresponding optimal strategies when stochastic variables follow some special probability distributions
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like uniform distribution. Finally, we analyze the impact of supply risk and market sensitivity on optimal
decisions.

The paper is organized as follows. In Section 2, we build several new stochastic expected value models
for sequential decision-making problems. We also solve the proposed stochastic optimization models in this
section by using two-stage analysis method. Section 3 conducts some numerical experiments to illustrate our
new optimization methods. Finally, Section 4 summarizes the main work in this paper.

2 New Stochastic Models and Their Analytical Solutions

In this paper, we assume that a firm faces uncertain demand determined by price and other factors. If the firm
decides to order a certain amount of products, then the actual number of the available products is usually less
than the required number. We assume that any unsatisfied demand incurs penalty. To describe our sequential
decision problem, we adopt the following notations.
Decision variables

p is the price of production (the price decision), and Q is the quantity of production (the quantity decision).
Uncertain parameters

x is the supply uncertainty on support [0, 1]; y is the demand uncertainty on support [YL, YH ]; D is the
market demand with D = y − bp, and Z is the actual number of available products with Z = xQ.
Fixed parameters

b is the sensitivity of market with b > 0; c is the production cost per unit input; s is the value of the
remaining products per unit; π is the penalty cost of unsatisfied demand per unit; x̄ is the expected value of
x; ȳ is the expected value of y; X is the realization of x, and Y is the realization of y.

2.1 Models Based on Price Decision before Quantity Decision

In this section, we assume that the firm first makes price decision p. This case is suitable for goods whose
volatility is very high and the supply lead time is relatively short and reliable. In this situation, the demand
information is crucial for the supply chain. We usually take price decision for fashion goods like clothing.
The whole supply is a dynamic process, during which the information is often being updated. The company
can also obtain more information about x and determine the value of the supply uncertainty through some
channels. However, due to some kind of contracts, the firm has to make quantity decision before knowing
demand uncertainty. In other words, the demand uncertainty is known after making price decision and
quantity decision. The second-stage program is an expected value model. To model this kind of decision-
making problems, we build the following expected value model,

max Π1 = Ex,y[p ·min(y − bp, xQ) + s(xQ− y + bp)+ − π(y − bp− xQ)+]− cQ
s. t. p ≥ 0,

(1)

where Q is the optimal solution of the following expected value model,

max Π2 = Ey[p ·min(y − bp,XQ) + s(XQ− y + bp)+ − π(y − bp−XQ)+]− cQ
s. t. Q ≥ 0.

(2)

The following theorem describes the optimal decision of model (1), where g(y) is density function of y.

Theorem 1. Assume that a firm makes the price decision before the quantity decision and cannot postpone
the quantity decision, then the optimal Q∗ is unique and determined by the following equation∫ YH

bp+XQ

g(y)dy =
c− sX

(p+ π − s)X
.

Proof. Let’s analysis the second-stage programming problem. The profit function in this problem can be
rewritten as

Π2 =

∫ bp+XQ

YL

p(y − bp)g(y)dy +

∫ YH

bp+XQ

p ·XQg(y)dy + s

∫ bp+XQ

YL

(XQ− y + bp)g(y)dy

− π
∫ YH

bp+XQ

(y − bp−XQ)g(y)dy − cQ.
(3)
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We next discuss the property of Eq. (3), dΠ2

dQ = X(p + π − s)
∫ YH

bp+XQ
g(y)dy + sX − c. Furthermore, we

have d2Π2

dQ2 = −X2(p+ π − s)g(bp+XQ). Obviously d2Π2

dQ2 < 0, so Π2 is a concave function. According to the

properties of concave function Π2, it reaches its maximum at dΠ2

dQ = 0. So Q∗ is determined by dΠ2

dQ = 0.

Furthermore, we assume the demand uncertainty follows a uniform distribution on the interval [YL, YH ]
and let YH − YL = L. Then its density function g(y) = 1/(YH − YL) = 1/L. According to Theorem 1, we

have Q∗(p) = YH−bp
X − (c−sX)L

(p+π−s)X2 , which is denoted as Q∗ for convenience. Here, we set the threshold level

as 1/2. Therefore, if the company invests Q units raw materials or orders Q units products, then the actual
number of received is not less than Q/2. We discuss a special situation that the supply uncertainty x follows
a uniform distribution on the interval [1/2, 1]. When xQ∗ = y − bp, we have x = cL

(p+π)YH−sYL−(p+π−s)y .

Denote h(y) = cL
(p+π)YH−sYL−(p+π−s)y . If x > h(y), then we have xQ∗ > y − bp. If x < h(y), then we have

xQ∗ < y − bp. As a consequence, the first-stage profit function can be rewritten as

Π1 =
−2pcYH
p+ π − s

ln
s

p+ π
+

2pcYL − 2πcL

p+ π − s
ln

c

p+ π
+
−pcL · ln4 + s2L− πcL · ln4 + c2L · ln4− scL

p+ π − s

− 2pcYH − 2csL

p+ π − s
ln
c

s
− bp2 + (bc · ln4 + YL)p− cYH · ln4− πL

2
.

In this case, the value of the second-order derivative d2Π1

dp2 depends on the assumed parameter values. The
next theorem describes the corresponding optimal strategies.

Theorem 2. Assume that a firm makes the price decision before the quantity decision and cannot postpone
the quantity decision, the supply uncertainty and the demand uncertainty follow uniform distributions on the

interval [1/2, 1] and [YL, YH ], respectively. If d2Π1

dp2 < 0, then p∗ is the solution of the following equation

2cL

p+ π − s
+

2csL

(p+ π − s)2
ln

s

p+ π
+
L(s− c)(c · ln4− s)

(p+ π − s)2
− 2bp+ bc · ln4 + YL = 0.

2.2 Models Based on Quantity Decision before Price Decision

In this section, we study the sequential decision-making problem when operations department moves first
and the price decision follows. Some agriculture products, which take several months to grow, are typical
examples. To be more precise, the first-stage decision is represented by Q, while the second-stage decision is
represented by p. Before the second-stage, the random variables x, y become known. Although the sequence
of realized x and y cannot affect the optimal decisions, we still give them an order – x realized after y. In [4],
the author just analyzed the cases that y is a constant and y follows a simple Bernoulli distribution. In this
section, we assume y is a general random variable, and build the following two-stage expected value model,

max Π1 = Ex,y[p ·min(y − bp, xQ) + s(xQ− y + bp)+ − π(y − bp− xQ)+]− cQ
s. t. Q ≥ 0,

(4)

where p is the optimal solution of the following programming model,

max Π2 = p ·min(Y − bp,XQ) + s(XQ− Y + bp)+ − π(Y − bp−XQ)+ − cQ
s. t. p ≥ 0.

(5)

Given realizations of x and y, the second-stage problem is a deterministic mathematical model. The next
theorem describes the corresponding optimal strategies.

Theorem 3. Assume that a firm makes the quantity decision before the price decision and can postpone the
price decision after the uncertainties are revealed, then the optimal strategy is Q∗ = x̄ȳ−bc

2x̄2 .

Proof. In the second-stage problem, we have Y − bp = XQ and p∗ = (Y −XQ)/b. Substitute p∗ into
Π1(p,Q(p)), we have

Π1 = E(x,y)[
y − xQ

b
· xQ− cQ] =

ȳ − x̄Q
b

· x̄Q− cQ =
−x̄2

b
Q2 + (

x̄ȳ

b
− c)Q.
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So Π1 is a quadratic function of Q, we have Q∗ = x̄ȳ−bc
2x̄2 and p∗ =

Y−X· x̄ȳ−bc

2x̄2

b . Thus, the company eventually

get the profit is Π1 = x̄2ȳ2−2bcx̄ȳ+b2c2

4bx̄2 .

In the following, the company first makes the quantity decision. Before making the price decision, it is
required to do some market surveys to get more market information. The company can use the obtained
information to determine the demand uncertainty. According to the contract, the company must develop a
price decision before knowing the value of supply uncertainty. In this case, the second-stage problem is an
expected value model.

Formally, we model this sequential decision-making problem as the following two-stage expectation model,

max Π1 = Ex,y[p ·min(y − bp, xQ) + s(xQ− y + bp)+ − π(y − bp− xQ)+]− cQ
s. t. Q ≥ 0,

(6)

where p is the optimal solution of the following expected value model,

max Π2 = Ex[p ·min(Y − bp, xQ) + s(xQ− Y + bp)+ − π(Y − bp− xQ)+]

s. t. p ≥ 0.
(7)

Let’s first analyze the second-stage problem. When Y −bp = xQ, we have x = (Y − bp)/Q. If x ≥ (Y − bp)/Q,
then Y − bp ≤ xQ. If x < (Y − bp)/Q, then Y − bp > xQ. Because x ∈ [0, 1], we divide our discussion into
two cases.

Case I: (Y − bp)/Q ≥ 1, that is p ≤ (Y −Q)/b. In this situation, we have Y −bp ≥ xQ. Thus the second-
stage profit function can be rewritten as Π2(p) = Ex[p · xQ− π(Y − bp− xQ)] = (x̄Q+ πb)p− πY + πx̄Q, it
is maximum at p∗ = (Y −Q)/b. The first-stage profit function can be rewritten as

Π1(Q) = Ex,y[p · xQ− π(Q− xQ)]− cQ = − x̄
b
Q2 − (π − πx̄+ c− x̄ȳ

b
)Q.

Obviously, Π1(Q) is a concave function, it is maximum at Q = (x̄ȳ − (π − πx̄+ c)b)/2x̄. The next theorem
describes the corresponding optimal decisions.

Theorem 4. Assume that a firm makes the quantity decision before the price decision, the demand uncertainty
is realized before making the price decision, and the supply uncertainty is realized after making the price

decision. If the inequality Y − bp ≥ Q holds, then the optimal quantity decision is Q∗ = x̄ȳ−(π−πx̄+c)b
2x̄ and the

profit is Π1 = (x̄ȳ−bπ+bπx̄−bc)2

4bx̄ .

Case II: (Y − bp)/Q < 1. If 0 < x ≤ (Y − bp)/Q, then Y − bp ≥ xQ. If (Y − bp)/Q ≤ x ≤ 1, then
Y − bp ≤ xQ. In this situation, the profit function Π2(p|(Q,Y )) can be rewritten as

p

∫ Y −bp
Q

0

xQf(x)dx+ p

∫ 1

Y −bp
Q

(Y − bp)f(x)dx+ s

∫ 1

Y −bp
Q

(xQ− Y + bp)f(x)dx− π
∫ Y −bp

Q

0

(Y − bp− xQ)f(x)dx.

Furthermore, we have d2Π2

dp2 < 0, Π2 is a concave function. Given the quantity decision and the market
realization, the following theorem describes the optimal price decision in the second-stage expected value
model.

Theorem 5. Assume that a firm makes the quantity decision before the price decision, the demand uncertainty
is realized before making the price decision, and the supply uncertainty is realized after making the price
decision. If the inequality Y − bp < Q holds, and p′ is solution of the following equation

2bp−
∫ Y −bp

Q

0

(xQ+ πb− Y + 2bp− sb)f(x)dx = Y + sb,

then the optimal price decision p∗ = max(p′, Y−Qb ).
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3 Numerical Experiments

Suppose a clothing firm decides to order clothes from a supplier and sell the products in different regions with
various market sensitive coefficients. In our problem, we only analyze the influences of the supply uncertainty
x and parameter b. The related dada used in our experiments are provided in Table 1.

Table 1: The data used in the numerical experiments

cost per unit c penalty value π remaining product value s YL YH
10 U 2 U 12 U 50 100

We first analyze the impact of the supply uncertainty x. We set b = 2, and employ MATLAB software to
solve our optimization problem. The computational results are collected in Table 2.

Table 2: The optimal solutions with different X

b = 2 price decision p∗ quantity decision Q∗ profit Π1

X = 0.90 25.4148 57.8374 193.6905
X = 0.85 25.4148 58.7454 193.6905
X = 0.80 25.4148 59.4357 193.6905
X = 0.75 25.4148 59.7940 193.6905
X = 0.70 25.4148 59.6519 193.6905
X = 0.65 25.4148 58.7569 193.6905
X = 0.60 25.4148 56.7224 193.6905

From Table 2, we find that the realization of supply uncertainty cannot affect optimal price decision and
final profit. However, as X decreases, the firm’s optimal quantity decision Q∗ will change accordingly. When
the supply risk increases, the firm have to order more products from the supplier to meet the demand of the
market. But the firm cannot always increase the quantity to avoid the loss. There exists a threshold level of
supply risk, over which the firm will reduce the quantity decision.

In this following, we discuss impact of the market sensitivity b, and let X = x̄ = 0.75. We report the
computational results about the influence of different b on decision variables and profit in Table 3.

Table 3: The optimal solutions with different b

X = 0.75 price decision p∗ quantity decision Q∗ profit Π1

b = 0.5 67.9446 86.5029 1737.479
b = 1.0 40.3008 76.6654 755.1614
b = 1.5 30.5194 67.9626 387.2008
b = 2.0 25.4148 59.7940 193.6905
b = 2.5 22.2540 51.8994 76.3050

From Table 3, we observe that the increase of market sensitivity will lead to the decrease of the optimal
decision and profits. The greater b is, the more price-sensitive consumers are. So the firm should develop a
lower price decision to achieve the lower profit.

4 Conclusions

On the basis of stochastic optimization theory, we studied the sequential price and quantity decision problem,
and obtained the following new results.
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Firstly, several new stochastic expected value models for sequential decision problems were proposed and
analyzed. For models based on price decision before quantity decision, we can obtain their analytical solutions.

Secondly, the expectation models based on quantity decision before price decision are hard optimization
problems, and their analytical solutions are usually unavailable in general case. To avoid this difficulty, we
assumed random variables follow uniform distributions, and solved the proposed expectation models by using
MATLAB software.

Finally, some numerical experiments were performed to demonstrate our new modelling ideas. From the
computational results, we observed that when the supply risk increased, the firm’s optimal decisions first
increased then decreased, in which the threshold level was the maximum acceptable risk.
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