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Abstract

In this paper, we introduce the notions of (∈,∈ ∨ q)-N -ideals and (γ, δ)-N -ideals of subtraction al-
gebras, which are generalization of N -ideals. Some characterization for these generalized N -ideals are
derived. Also, we introduce the notions of (∈,∈ ∨ q)-N -ideals and N -ideals with thresholds of subtrac-
tion algebras. The characterization of N -ideals with thresholds by their closed (f, t)-cut ideals over the
subtraction algebras X is also established.
c©2015 World Academic Press, UK. All rights reserved.
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1 Introduction

The systems of the form Φ, where (Φ; ◦, \), considered by Schein [19], is a set of functions closed under the
composition “ ◦ ” of functions (and hence (Φ; ◦) is a function semigroup) and the set theoretic subtraction “ \ ”
(and hence (Φ; \) is a subtraction algebra in the sense of [1]). He proved that every subtraction semigroup
is isomorphic to a difference semigroup of invertible functions. Zelinka [23] discussed a problem proposed
by Schein concerning the structure of multiplication in a subtraction semigroup. He solved the problem for
subtraction algebras of a special type, called the atomic subtraction algebras. Jun et al. [12] introduced
the notion of ideals in subtraction algebras and discussed characterization of ideals. In [11], Jun and Kim
established the ideal generated by a set, and discussed related results.

The theory of fuzzy sets which was introduced by Zadeh [22] is applied to many mathematical branches.
Rosenfeld [18] inspired the fuzzification of algebraic structures and introduced the notion of fuzzy subgroups.
Further, Lee et al. [16] introduced the notion of fuzzy ideals in subtraction algebras and discussed character-
ization of fuzzy ideals. The idea of quasi-coincidence of a fuzzy point with a fuzzy set, which is mentioned
in [17] played a vital role to generate some different types of fuzzy subgroups. A new type of fuzzy sub-
group (viz, (∈,∈ ∨ q)-fuzzy subgroup) was introduced in earlier paper [4, 5] by using the combined notions
of belongingness and quasi-coincidence of fuzzy point and fuzzy set. In fact, (∈,∈ ∨ q)-fuzzy subgroup is
an important and useful generalization of Rosenfelds fuzzy subgroup. This concept has been studied further
in [2, 3, 7, 8, 6, 15, 18, 20]. In [21], Yuan et al. introduced the definition of a fuzzy subgroup with thresholds
which is a generalization of Rosenfelds fuzzy subgroup and Bhakat and Dass fuzzy subgroup. In [13], Jun and
Song discussed some fundamental aspects of (∈,∈ ∨ q)-fuzzy interior ideals. They showed that (∈,∈ ∨ q)-fuzzy
interior ideals are generalization of the existing concepts fuzzy interior ideals. Now, it is natural to investigate
similar type of generalizations of the existing fuzzy subsystems of other algebraic structures.

A (crisp) set A in a universe X can be defined in the form of its characteristic function µA : X → 0, 1
yielding the value 1 for elements belonging to the set A and the value 0 for elements excluded from the set A.
So far most of the generalization of the crisp set have been conducted on the unit interval [0, 1] and they are
consistent with the asymmetry observation. In other words, the generalization of the crisp set to fuzzy sets
relied on spreading positive information that fit the crisp point 1 into the interval [0, 1]. Because no negative
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meaning of information is suggested, we now feel a need to deal with negative information. To do so, we also
feel a need to supply mathematical tool. To attain such object, Jun et al. [10, 14] introduced a new function
which is called negative-valued function, and constructed N -structures. Further, he applied this N -structure
theory in subtraction algebra and BCK/BCI-algebra and studied their related properties.

Our aim in this paper is to introduce and study a new type of N -ideals of a subtraction algebra, called
(∈,∈ ∨ q)-N -ideals. Also, we have proved that an N -structure (X, f) over a subtraction algebra X is an
(∈,∈ ∨ q)-N -ideal of X if and only if C(f ; t)( 6= ∅) is an ideal of subtraction algebra X for all t ∈ [−0.5, 0).
These showed that (∈,∈ ∨ q)-N -ideals are generalization of the existing concepts of N -ideals. More over, the
concepts of (γ, δ)-N -ideal, (∈,∈∨ q)-N -ideal and N -ideal with thresholds are introduced and some interesting
properties are investigated.

2 Preliminary

In this section, we cite the fundamental definitions that will be used in the sequel:

Definition 2.1. ([12]) A non-empty set X together with a binary operation “–” is said to be a subtraction
algebra if it satisfies the following:
(S1) x− (y − x) = x,
(S2) x− (x− y) = y − (y − x),
(S3) (x− y)− z = (x− z)− y, for all x, y, z ∈ X.

The last identity permits us to omit parentheses in expressions of the form (x − y) − z. The subtraction
determines an order relation on X : a ≤ b⇔ a− b = 0, where 0 = a− a is an element that does not depend
on the choice of a ∈ X. The ordered set (X;≤) is a semi-Boolean algebra in the sense of [1], that is, it is a
meet semilattice with zero 0 in which every interval [0, a] is a Boolean algebra with respect to the induced
order. Here a ∧ b = a− (a− b); the complement of an element b ∈ [0, a] is a− b; and if b, c ∈ [0, a]; then

b ∨ c = (b′ ∧ c′)
′

= a− ((a− b) ∧ (a− c))
= a− ((a− b)− ((a− b)− (a− c)).

In a subtraction algebra, the following are true (see [13]):

(a1) (x− y)− y = x− y,

(a2) x− 0 = x and 0− x = 0,

(a3) (x− y)− x = 0,

(a4) x− (x− y) ≤ y,

(a5) (x− y)− (y − x) = x− y,

(a6) x− (x− (x− y)) = x− y,

(a7) (x− y)− (z − y) ≤ x− z,

(a8) x ≤ y if and only if x = y − w for some w ∈ X,

(a9) x ≤ y implies x− z ≤ y − z and z − y ≤ z − x for all z ∈ X,

(a10) x, y ≤ z implies x− y = x ∧ (z − y),

(a11) (x ∧ y)− (x ∧ z) ≤ x ∧ (y − z),

(a12) (x− y)− z = (x− z)− (y − z).

Definition 2.2. ([12]) A nonempty subset A of a subtraction algebra X is called an ideal of X, denoted by
A / X, if it satisfies:
(b1) a− x ∈ A for all a ∈ A and x ∈ X,
(b2) for all a, b ∈ A, whenever a ∨ b exists in X, then a ∨ b ∈ A.
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Proposition 2.3. ([12]) A nonempty subset A of a subtraction algebra X is an ideal of X if and only if it
satisfies:
(b3) 0 ∈ A,
(b4) (∀x ∈ X) (∀y ∈ A) (x− y ∈ A⇒ x ∈ A).

Proposition 2.4. ([12]) Let X be a subtraction algebra and x, y ∈ X. If w ∈ X is an upper bound for x and
y, then the element

x ∨ y := w − ((w − y)− x)

is a least upper bound for x and y.

Definition 2.5. ([9]) Let X be a subtraction algebra and Y be a nonempty subset of X. Then Y is called a
subalgebra of X if x− y ∈ Y , whenever x, y ∈ Y .

Denote by F(X, [−1, 0]) the collection of functions, from a set X to [−1, 0]. We say that an element of
F(X, [−1, 0]) is a negative-valued function from X to [−1, 0] (briefly, N -function on X). By an N -structure
we mean an ordered pair (X, f) of X and an N -function f on X.

Remarks 1:

• Let f be an N -functions on X and (X, f) be an N -structure over a subtraction algebra X.

• For any N -function f on X and t ∈ [−1, 0), the set C(f ; t) := {x ∈ X | f(x) ≤ t} is called a closed (f, t)-
cut of (X, f).

Definition 2.6. ([10]) By an ideal (resp. subalgebra) of X based on N -function f (briefly, N -ideal (resp.
N -subalgebra) of X), we mean an N -structure (X, f) in which every nonempty closed (f, t)− cut of (X, f) is
an ideal (resp. subalgebra) of X, for all t ∈ [−1, 0).

Theorem 2.7. ([10]) An N -structure (X, f) is an N -ideal of X if and only if it satisfies the following
assertions:
(NI1) (x, y ∈ X) (f(x− y) ≤ f(x)),
(NI2) (x, y ∈ X) (∃(x ∨ y)⇒ f(x ∨ y) ≤ max{f(x), f(y)}).
Theorem 2.8. Let X be a subtraction algebra and (X, f) be an N -ideal of X. Then the closed (f, t)-cut
C(f ; t)( 6= ∅) is an ideal of X, for all t ∈ [−1, 0) if and only if C(f ; t) is an N -ideal of X.

Proof. Let C(f ; t) be an N -ideal of X. If x ∈ C(f ; t), y ∈ X and t ∈ [−1, 0), then f(x) ≤ t. Thus
f(x − y) ≤ f(x) ≤ t, which implies x − y ∈ C(f ; t). Also, if x, y ∈ C(f ; t) and t ∈ [−1, 0) then f(x) ≤ t and
f(y) ≤ t. Then there exists x ∨ y ∈ X such that f(x ∨ y) ≤ max{f(x), f(y)} = max{t, t} = t, which implies
x ∨ y ∈ C(f ; t). Hence C(f ; t) is an ideal of X.

Conversely, let C(f ; t) be an ideal of X. Let if possible, f(x − y) > f(x), for all x, y ∈ X. Choose
t0 ∈ [−1, 0) such that f(x − y) > t0 > f(x), which implies x − y /∈ C(f ; t0), for all x ∈ C(f ; t0) and
y ∈ X, which is a contradiction. Thus f(x − y) ≤ f(x). Also, let if possible, there exists x ∨ y such that
f(x ∨ y) > max{f(x), f(y)}, for all x, y ∈ X. Choose t1 ∈ [−1, 0) such that f(x ∨ y) > t1 > f(x) = f(y),
which implies x ∨ y /∈ C(f ; t1), for all x ∈ C(f ; t1) and y ∈ C(f ; t1), which is a contradiction. Thus
f(x ∨ y) ≤ max{f(x), f(y)}. Hence (X, f) is an N -ideal of X.

3 (∈,∈ ∨ q)-N -Ideals of Subtraction Algebras

In what follows, let X denote a subtraction algebra, f be an N -functions on X and (X, f) be an N -structure
over X unless otherwise specified.

Definition 3.1. An N -function f over a set (X, f) of the form

f (y) =

{
t 6= 0 if y = x,
0 if y 6= x.

is said to be an N -point with support x and value t, is denoted by xt.
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– 0 a b

0 0 0 0

a a 0 a

b b b 0

Table 1: Binary operation 1

Remarks 2:

• An N -point xt is said to be a belongs to in a set (X, f), written as xt ∈ f if f(x) ≤ t.

• An N -point xt is said to be a quasi-coincident with in a set (X, f), written as xtqf if f(x) + t < −1.

• If xt ∈ f or xtqf , then we write xt ∈ ∨qf .

• If xt ∈ f and xtqf , then we write xt ∈ ∧qf .

• An N -point xt is said to be a not belongs to in a set (X, f), written as xt∈f if f(x) � t.

• An N -point xt is said to be a not quasi-coincident with in a set (X, f), written as xtqf if f(x)+ t ≮ −1.

• If xt∈f or xtqf , then we write xt∈ ∨ qf .

• If xt∈f and xtqf , then we write xt∈ ∧ qf .

• The symbol ∈ ∨q means neither ∈ nor q hold.

Definition 3.2. An N -structure (X, f) is called an (∈,∈ ∨ q)-N -ideal of X if for all t, r ∈ [−1, 0) and
x, y ∈ X,
(GNI1) (xt ∈ f) ((x− y)t ∈ ∨qf),
(GNI2) (xt, yr ∈ f) ( ∃x ∨ y ∈ X ⇒ (x ∨ y)min{t, r} ∈ ∨qf).

Example 3.3. Let X = {0, a, b} be a subtraction algebra with the Cayley table which is given in Table 1.
Let (X, f) be an N -structure defined by:

f(0) = −0.7, f(a) = −0.6 and f(b) = −0.9.

It is easy to check that (X, f) is an (∈,∈ ∨ q)-N -ideal of X.

Theorem 3.4. An N -structure (X, f) is an (∈,∈ ∨ q)-N -ideal of X if and only if it satisfies the following
assertions:
(GNI3) (x, y ∈ X) (f(x− y) ≤ max {f(x),−0.5}),
(GNI4) (x, y ∈ X) (∃(x ∨ y) ⇒ f(x ∨ y) ≤ max {f(x), f(y),−0.5}).

Proof. Let x, y ∈ X. We consider the following cases: (a) f(x) > −0.5, (b) f(x) ≤ −0.5.
Case (a): Assume that f(x − y) > max {f(x),−0.5}), which implies that (f(x − y) > f(x). Choose

t ∈ [−1, 0) such that f(x− y) > t > f(x). Then xt, yt ∈ f , but (x− y)t∈ ∨ qf which is a contradiction.
Case (b): Assume that f(x − y) > −0.5. Then x−0.5, y−0.5 ∈ f , but (x − y)−0.5∈ ∨ qf , which is a

contradiction. Thus f(x− y) ≤ max {f(x),−0.5} .
Now, let x, y ∈ x, there exists x ∨ y ∈ X. we consider following cases: (a) max {f(x), f(y)}) > −0.5, (b)

max {f(x), f(y)}) ≤ −0.5.
Case(a): Assume that f(x∨y) > max {f(x), f(y),−0.5}), which implies that f(x∨y) > max {f(x), f(y)}).

Choose t ∈ [−1, 0) such that (f(x− y) > t > f(x). Then xt ∈ f , but (x− y)t∈ ∨ qf , which is a contradiction.
Case(b): Assume that f(x ∨ y) > −0.5. Then x−0.5 ∈ f , but (x ∨ y)−0.5∈ ∨ qf , which is a contradiction.

Thus f(x ∨ y) ≤ max {f(x), f(y)− 0.5} .
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Hence the conditions (GNI3) and (GNI4) holds.
Conversely, (X, f) satisfies (GNI3) and (GNI4). Let x, y ∈ X and t ∈ [−1, 0) be such that xt ∈ f . Then

f(x) ≤ t. Now, we have f(x − y) ≤ max {f(x),−0.5} ≤ max {t,−0.5}). If t < −0.5, then f(x − y) ≤ −0.5,
which implies that f(x− y) + t < −1. If t ≥ −0.5, then f(x− y) ≤ t. Thus (x− y)t∈ ∨qf .

Finally, let x, y ∈ X and t, r ∈ [−1, 0) be such that xt, yr ∈ f . Then f(x) ≤ t, f(y) ≤ r. Now, there
exist x ∨ y ∈ X , we have f(x ∨ y) ≤ max {f(x), f(y),−0.5} ≤ max {t, r,−0.5}). If max {t, r} < −0.5,
then f(x ∨ y) ≤ −0.5, which implies that (f(x ∨ y) + max {t, r}) < −1. If max {t, r} ≥ −0.5, then
f(x ∨ y) ≤ max {t, r}. Thus (x ∨ y)min{t, r}∈ ∨qf . Hence (X, f) is an (∈,∈ ∨ q)-N -ideal of X.

Proposition 3.5. Every N -ideal is an (∈,∈ ∨ q)-N -ideal.

However, the following example shows that the converse of Proposition 3.5 is not necessarily true.

Example 3.6. Let X = {0, a, b} be a subtraction algebra with the Cayley table which is given in Table 1.
Let (X, f) be a N -structure defined by:

f(0) = −0.7, f(a) = −0.8 and f(b) = −0.6.

It is easy to check that (X, f) is an (∈,∈ ∨ q)-N -ideal of X, but (X, f) is not an N -ideal of X. Since
f(a− a) = f(0) = −0.7 � −0.8 = f(a).

Definition 3.7. An N -function χ on B is called an N -charateristic function if

χB (x) =

{
−1, if x ∈ B,

0, otherwise.

Corollary 3.8. Let χA be an N -characteristic function of an ideal A of X. Then the Ā = (X,χA) is an
(∈,∈ ∨ q)-N -ideal of X.

Theorem 3.9. Every N -structure (X, f) of X is an (∈,∈ ∨ q)-N -ideal if and only if it satisfies
(GNI5) (∀a, b ∈ X)(f(x− ((x− a)− b)) ≤ max {f(a), f(b),−0.5}).

Proof. Let (X, f), be a N -ideal of X satisfying (GNI5). Using (a2) and (S3), we have

x− y = (x− y)− (((x− y)− x)− x),

for all x, y ∈ X. We have

f(x− y) = f((x− y)− (((x− y)− x)− x))

≤ max {f(x), f(x),−0.5}
= max {f(x),−0.5}.

Suppose x ∈ X is an upper bound for a and b, for all a, b ∈ X that is x := a ∨ b, then by Proposition 2.4 and
(S3), we have

a ∨ b = x− ((x− a)− b).

We have

f(a ∨ b) = f(x− ((x− a)− b)) ≤ max {f(a), f(b),−0.5}.

Thus (GNI2) and (GNI2) are valid. Hence (X, f) is an (∈,∈ ∨ q)- N -ideal of X.
Conversely, (X, f) is a (∈,∈ ∨ q)-N -ideal of X. If x ∈ X is an upper bound for a and b, for all a, b ∈ X

that is x := a ∨ b, then we have
a ∨ b = x− ((x− a)− b).

Thus
f(a ∨ b) = f(x− ((x− a)− b)) ≤ max {f(a), f(b),−0.5}.
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Proposition 3.10. Every (∈,∈ ∨ q)-N -ideal of X satisfies the following inequality
(GNI6) (∀x ∈ X) (f(0) ≤ max {f(x),−0.5}).

Proof. By taking y := x in (GNI3), we have

f(0) = f(x− x) ≤ max {f(x),−0.5}.

Example 3.11 shows that the converse of Proposition 3.10 need not be true.

Example 3.11. Let X = {0, a, b} be a subtraction algebra with the Cayley table which is given in Table 1.
Let (X, f) be a N -structure defined by:

f(0) = −0.7, f(a) = −0.4 and f(b) = −0.6.

It is clear that, (f(0) ≤ max {f(x),−0.5}), for all x ∈ X, but (X, f) is not an (∈,∈ ∨ q)-N -ideal of X.
Since

f(0− a) = f(a) = −0.4 � −0.5 = max{−0.7,−0.5} = max{f(0),−0.5}.

Corollary 3.12. Every (∈,∈ ∨ q)-N -ideal (X, f) satisfies
(GNI7) (∀x, y ∈ X) (x ≤ y ⇒ f(x) ≤ max {f(y),−0.5}.

Proof. Let x, y ∈ X be such that x ≤ y. Then x− y = 0 and so

f(x) = f(x− 0) = f(x− ((x− y)− y)) ≤ max{f(y), f(y),−0.5} = max {f(y),−0.5}.

by using (a2), (GNI5) and (GNI6). This completes the proof.

Theorem 3.13. An N -structure (X, f) is an (∈,∈ ∨ q)-N -ideal of X if and only if it satisfies the (GNI6),
(GNI7) and
(GNI8) (∀x, y, z ∈ X)(f(x− z) ≤ max{f((x− y)− z), f(y),−0.5}).

Proof. Assume that (X, f) is an (∈,∈ ∨ q)-N -ideal of X and satisfies (GNI8). Then the conditions (GNI6)
and (GNI7) are holds by Proposition 3.10. By (GNI5), we have

f(x− ((x− a)− y)) ≤ max{f(a), f(y),−0.5}. (1)

By setting

a = (x− y)− z (2)

for all z ∈ X. Now

((x− a)− y) = (x− ((x− y)− z))− y,
= (x− y)− (((x− y)− z)− y),by (a12)

= (x− y)− (((x− y)− y)− (z − y)),by (a12)

= (x− y)− ((x− y)− (z − y)),by (a1)

= (x− y)− ((x− z)− y),by (a12)

= (x− y)− ((x− y)− z),by (S3)

≤ z,by (a4).

Thus, by using (a9), for all x ∈ X
x− z ≤ x− ((x− a)− y).

This implies, by using (GNI7),

f(x− z) ≤ max{f(x− ((x− a)− y)),−0.5}. (3)
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Using (2), (3) in (1), we have

f(x− z) ≤ max{f(x− ((x− ((x− y)− z)− y))),−0.5} ≤ max{f((x− y)− z), f(y),−0.5}

for all x, y, z ∈ X.
Conversely, assume that N -structure (X, f), satisfied (GNI6), (GNI7), and (GNI8). By using (a2), (a3),

(GNI5), we have

f(x− y) = f((x− y)− (((x− y)− x)− x))

≤ max{f(x), f(x),−0.5}
= max{f(x),−0.5}.

Now, suppose x ∨ y exists for x, y ∈ X. Also, we have f(x ∨ y) ≤ max{f(x),−0.5}, such that

f(x ∨ y) ≤ max{f(x), f(y),−0.5}.

Thus N -structure (X, f) satisfies (GNI1) and (GNI2). Hence (X, f) is an (∈,∈ ∨ q)-N -ideal of X.

Theorem 3.14. An N -structure (X, f) is an (∈,∈ ∨ q)-N -ideal of X if and only if it satisfies the conditions
(GNI6) and
(GNI9) (∀x, y ∈ X) (f(x) ≤ max{f(x− y), f(y),−0.5}).

Proof. Assume that (X, f) is a (∈,∈ ∨ q)-N -ideal of X. Then the condition (GNI6) is valid by Proposition
3.10 and the conditions (GNI9) is valid by taking z = 0 in (GNI8).

Conversely, (X, f) satisfying (GNI6) and (GNI9). Then

(x− ((x− a)− b))− b = (x− b)− (((x− a)− b)− b),by (a12)

= (x− b)− ((x− a)− b),by (a1)

≤ x− (x− a),by (a7)

≤ a,by (a4).

That is ((x− ((x− a)− b))− b)− a = 0, for all x, a, b ∈ X, it follows from (GNI6) and (GNI9) that

f(x− ((x− a)− b)) ≤ max{f((x− ((x− a)− b))− b), f(b),−0.5}
≤ max{max{f(((x− ((x− a)− b))− b)− a), f(a)}, f(b),−0.5}
= max{max{f(0), f(a)}, f(b),−0.5}}
= max{f(a), f(b),−0.5}.

By Theorem 3.9, (X, f) is an (∈,∈ ∨ q)-N -ideal of X. This completes the proof.

Proposition 3.15. Every (∈,∈ ∨ q)-N -ideal (X, f) of X satisfies the following assertion:
(GNI10) (f(x− y) ≤ max{f((x− y)− y)),−0.5} ⇔ (f((x− z)− (y − z)) ≤ max{f((x− y)− z)),−0.5} for
all x, y, z ∈ X.

Proof. Assume that f(x− y) ≤ f((x− y)− y), for all x, y ∈ X. Also

((x− (y − z))− z)− z = ((x− z)− (y − z))− z ≤ (x− y)− z,

then, by Corollary 3.12,

f(((x− (y − z))− z)− z) ≤ max{f((x− y)− z),−0.5}.

Thus

f((x− z)− (y − z)) = f((x− (y − z))− z)− z),by (a1 and a12)

≤ max{f(((x− (y − z))− z)− z),−0.5},by (GNI10)

≤ max{f((x− y)− z),−0.5}.
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Conversely, suppose f((x− z)− (y − z) ≤ max{f((x− y)− z),−0.5} for all x, y, z ∈ X. Hence, we have

f(x− y) = f((x− y)− 0) = f((x− y)− (y − y)) ≤ max{f((x− y)− y),−0.5}.

This completes the proof.

Theorem 3.16. An N -structure (X, f) is an (∈,∈ ∨ q)-N -ideal of X if and only if it satisfies:
(GNI11) (∀a, b, x ∈ X)(x− a ≤ b⇒ f(x) ≤ max{f(a), f(b),−0.5}).

Proof. Assume that (X, f) is a (∈,∈ ∨ q)-N -ideal of X. Let a, b, x ∈ X be such that x − a ≤ b. Then
(x− a)− b = 0, and so

f(x) ≤ max{f(x− a), f(a),−0.5}, by (GNI9)

≤ max{max{f((x− a)− b), f(b)}, f(a),−0.5}, by (GNI9)

= max{max{f(0), f(b)}, f(a),−0.5}
= max{f(a), f(b),−0.5}.

Conversely, let (X, f) be an N -structure satisfying the conditions (GNI11). Since 0−x ≤ x, for all x ∈ X,
it follows from (GNI11) that

f(0) ≤ max{f(x), f(x),−0.5} = max{f(x),−0.5}

for all x ∈ X. Note that x − (x − y) ≤ y for all x, y ∈ X. Using (GNI11), we have f(x) ≤ max{f(x −
y), f(y),−0.5}, for all x, y ∈ X. Hence (X, f) is an (∈,∈ ∨ q)-N -ideal of X, by Theorem 3.16. This completes
the proof.

Theorem 3.17. An N -structure (X, f) is an (∈,∈ ∨ q)-N -ideal of X if and only if it satisfies:
(GNI12) f(x) ≤ max{{f(ai)|i = 1, 2, ..., n},−0.5} for all x, a1, a2, ..., an ∈ X with (· · · ((x− a1)− a2)− · · · )−
an = 0.

Proof. Assume that (X, f) is a (∈,∈ ∨ q)-N -ideal of X. If x − a = 0 for any x, a ∈ X, then f(x) ≤
max{f(a),−0.5} by Corollary 3.12. Let a, b, x ∈ X be such that (x− a)− b = 0. Then, by Theorem 3.16

f(x) ≤ max{f(a), f(b),−0.5}.

Now, let x, a1, a2, ..., an ∈ X be such that (· · · ((x − a1) − a2) − · · · ) − an = 0. By induction on n, we
conclude that f(x) ≤ max{{f(ai)|i = 1, 2, ..., n},−0.5}.

Conversely, for an N -structure (X, f) the condition (GNI12) is valid, for all x, a1, a2, ..., an ∈ X with
(· · ·((x−a1)−a2)−·· ·)−an = 0. Using (GNI11), we have f(x) ≤ max{f(y), f(z),−0.5}. Since (0−x)−x = 0
for all x ∈ X, it follows from (GNI11) that f(0) ≤ min{f(x), f(x),−0.5} = min{f(x),−0.5}. Hence (X, f) is
an (∈,∈ ∨ q)-N -ideal of X, by Theorem 3.16.

Remarks 3: For any element w ∈ X, define

(Xw, f) := {y ∈ X| f(y) ≤ max{f(w),−0.5}}.

Clearly, w ∈ (Xw, f), and so (Xw, f) is a non-empty subset of X.

Theorem 3.18. Let w be an element of X. If (X, f) is an (∈,∈ ∨ q)-N -ideal of X. Then (Xw, f) is an ideal
of X.

Proof. Obviously, 0 ∈ (Xw, f), by (GNI6). Let x ∈ (Xw, f) and y ∈ X be such that x− y ∈ (Xw, f). Then

f(x− y) ≤ max{f(w),−0.5}.

Since (X, f) is an (∈,∈ ∨ q)-N -ideal of X, it follows from (GNI9) that

f(x) ≤ max{f(x− y), f(y),−0.5} ≤ max{f(w),−0.5},

so that x ∈ (Xw, f). Hence (Xw, f) is an ideal of X.
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However, the following example shows that the converse of Theorem 3.18 is not necessarily true.

Example 3.19. Let X = {0, a, b} be a subtraction algebra with the Cayley table which is given in Table 1.
Let (X, f) be an N -structure defined by:

f(0) = −0.4, f(a) = −0.6 and f(b) = −0.9.

The (X0, f) = {0, a, b} is an ideal of X but (X, f) is not an (∈,∈ ∨ q)-N -ideal of X. Since

f(b− b) = f(0) = −0.4 
 −0.5 = max{f(b),−0.5}.

Theorem 3.20. Let w be an element of X. If (X, f) is an (∈,∈ ∨ q)-N -ideal of X. Then
(i) If (Xw, f) is an ideal of X, then (X, f) satisfies the following condition:
(GNI13) (∀x, y, z ∈ X) (f(x) ≥ max{f(y − z), f(z),−0.5} ⇒ f(x) ≥ max{f(y),−0.5}).
(ii) If (X, f) satisfies (GNI6) and (GNI13), then (Xw, f) is an ideal of X.

Proof. (i) Assume that (Xw, f) is an ideal of X, for each w ∈ X. Let x, y, z ∈ X be such that

f(x) ≥ max{f(y − z), f(z),−0.5}.

Then y − z ∈ (Xw, f) and z ∈ (Xw, f). Since (Xw, f) is an ideal of X, it follows that y ∈ (Xw, f), that is,
f(x) ≥ max{f(y),−0.5}.

(ii) Suppose that (X, f) satisfies (GNI6) and (GNI13). For each w ∈ X, let x, y ∈ X be such that
x − y ∈ (Xw, f) and y ∈ (Xw, f). Then f(x − y) ≤ max{f(w),−0.5} and f(y) ≤ max{f(w),−0.5}, which
implies that max{f(w),−0.5} ≥ max{f(x−y), f(y),−0.5}. Using (GNI9), we have max{f(w),−0.5} ≥ f(x).
Hence x ∈ (Xw, f). Obviously 0 ∈ (Xw, f). Therefore (Xw, f) is an ideal of X.

Remarks 4:

• For any N -function f on X, we denote

⊥ := −1− inf{f(x)|x ∈ X}.

• For any α ∈ [⊥, 0], we denote fα(x) = f(x) + α, for all x ∈ X.

Obviously, fα(x) is a mapping from X to [−1, 0], that is, fα(x) is an N -function on X, we say that (X, fα)
is a α-translation of (X, f).

Theorem 3.21. For every α ∈ [⊥, 0], the α-translation (X, fα) of an (∈,∈ ∨ q)-N -ideal (X, f) is an
(∈,∈ ∨ q)-N -ideal of X.

Proof. For any x, y ∈ X, we have

fα(x− y) = f(x− y) + α

≤ max{f(x),−0.5}+ α

= max{f(x) + α,−0.5}
= max{fα(x),−0.5}.

Also, there exist x ∨ y ∈ X such that

fα(x ∨ y) = f(x ∨ y) + α

≤ max{f(x), f(y),−0.5}+ α

≤ max{f(x) + α, f(y) + α,−0.5}
≤ max{fα(x), fα(y),−0.5}

Hence (X, fα) is an (∈,∈ ∨ q)-N -ideal of X.
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– 0 a b c d

0 0 0 0 0 0

a a 0 a 0 a

b b b 0 0 b

c c b a 0 c

d d d d d 0

Table 2: Binary operation 2

Theorem 3.22. For every α ∈ [⊥, 0], the α-translation (X, fα) is an (∈,∈ ∨ q)-N -ideal (X, f), then (X, f)
is an (∈,∈ ∨ q)-N -ideal of X.

Proof. For any x, y ∈ X, we have

f(x− y) + α = fα(x− y)

≤ max{f(x) + α,−0.5}
≤ max{f(x),−0.5}+ α.

Therefore
f(x− y) ≤ max{f(x),−0.5}.

Also, there exist x ∨ y ∈ X such that

f(x ∨ y) + α = fα(x ∨ y)

≤ max{fα(x), fα(y),−0.5}
≤ max{f(x) + α, f(y) + α,−0.5}
≤ max{f(x), f(y),−0.5}+ α

Thus
f(x ∨ y) ≤ max{f(x), f(y),−0.5}.

Hence (X, f) is an (∈,∈ ∨ q)-N -ideal of X.

Remarks 5: Let (X, f) and (X, g) be two N -structures. Then (X, f) is said to be a N -retrenchment of
(X, g) if g(x) ≥ max{f(x),−0.5}.

Definition 3.23. Let (X, f) be an N -structure. An N -structure (X, g) is called a created (∈,∈ ∨ q)-N -
ideal of (X, f) if it satisfies
(i) (X, g) is an N -retrenchment of (X, f).
(ii) If (X, f) is an (∈,∈ ∨ q)-N -ideal of X, then (X, g) is a (∈,∈ ∨ q)-N -ideal of X.

Theorem 3.24. Let (X, f) be an (∈,∈ ∨ q)-N -ideal of X. For every α ∈ [⊥, 0] the α-translation (X, fα) of
(X, f) is an N -retrenchment (∈,∈ ∨ q)-N -ideal of (X, fN , gN ).

Proof. Obviously, (X, fα) is an N -retrenchment of (X, f) . Using Theorem 3.20, we conclude that (X, fα) is
an N -retrenchment (∈,∈ ∨ q)-N -ideal of (X, f).

The converse of Theorem 3.24 is not true as seen in the following example.

Example 3.25. Let X = {0, a, b, c, d} be a subtraction algebra with the Cayley table which is given in Table
2. Let (X, f) be an N -structure defined by:

f(0) = −0.9, f(a) = −0.8, f(b) = −0.9, f(c) = −0.8 and f(d) = −0.6.
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It is easy to check that (X, f) is a (∈,∈ ∨ q)-N -ideal of X.

Also, define N -structure (X, g) as follows:

g(0) = −0.92, g(a) = −0.83, g(b) = −0.92, g(c) = −0.83 and g(d) = −0.62.

Then (X, g) is a created (∈,∈ ∨ q)-N -ideal of (X, f) , which is not an α-translation of (X, f), for α ∈ [⊥, 0].

Remarks 6:

• The created (∈,∈ ∨ q)-N -ideal (X, f) of X will be denoted by (X, [f ]).

• The created (∈,∈ ∨ q)-N -ideal of (X, f) is the greatest (∈,∈ ∨ q)-N -ideal in X which is an N -
retrenchment of (X, f) .

Now, we discuss how to make a created (∈,∈ ∨ q)-N -ideal of an N -structure.

Theorem 3.26. For any N -structure the created (∈,∈ ∨ q)-N -ideal (X, [f ]) of (X, f) is described as follows:

[f ](x) = inf {max{{f(ai)|i = 1, 2, ..., n},−0.5}|(· · ·((x− a1)− a2)− · · ·)− an = 0)} .

Proof. Let (X, g), be an N -structure in which g is defined by

g(x) = inf {max{{f(ai)|i = 1, 2, ..., n},−0.5}|(· · ·((x− a1)− a2)− · · ·)− an = 0)} .

Let x, a, b ∈ X be such that
(x− a)− b = 0. (4)

For any ε > 0, there exist a1, a2, ..., an, b1, b2, ..., bm ∈ X such that

(· · ·((a− a1)− a2)− · · ·)− an = 0, (· · ·((b− b1)− b2)− · · ·)− bm = 0. (5)

Also, we have

g(x) > max{{f(ai)|i = 1, 2, ..., n},−0.5} − ε and g(x) > max{{f(bi)|i = 1, 2, ...,m},−0.5} − ε.

g(x) > max{{f(ai)|i = 1, 2, ..., n}−ε,−0.5} and g(x) > max{{f(bi)|i = 1, 2, ...,m}−ε,−0.5}.
(6)

Using (4) in (5), we have

(· · ·((((· · ·((x− a1)− a2)− · · ·)− an)− b1)− b2)− · · ·)− bm = 0.

Using (6) in the definition of g, we have

g(x) ≤ max{f(a1), f(a2), · · · , f(an), f(b1), f(b2), · · · , f(bm),−0.5}
< max{g(a) + ε, g(b) + ε,−0.5}
= max{g(a), g(b),−0.5}+ ε.

Since ε is arbitrary, it follows that
g(x) ≤ max{g(a), g(b),−0.5},

by Theorem 3.16, we have (X, g) is an (∈,∈ ∨ q)-N -ideal of X. Now since x − x = 0 for all x ∈ X, we
obtain f(x) ≥ max{g(x),−0.5} for all x ∈ X, and so (X, g) is an N -retrenchment of (X, f). Let (X, r) be
an (∈,∈ ∨ q)-N -ideal in X which is an N -retrenchment of (X, f) . For any x ∈ X, we have

g(x) = inf{max{{f(ai)|i = 1, 2, ..., n},−0.5}|(· · ·((x− a1)− a2)− · · ·)− an = 0)}
≥ inf{max{{r(ai)|i = 1, 2, ..., n},−0.5}|(· · ·((x− a1)− a2)− · · ·)− an = 0)}
= inf{max{r(x),−0.5}}
= max{inf{r(x)},−0.5}
= max{r(x),−0.5}.

Thus (X, r) is an N -retrenchment of (X, g) . Therefore (X, g) is a created (∈,∈ ∨ q)-N -ideal of (X, f) .
Since (X, [f ]) is greatest, we have g = [f ] . This completes the proof.
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– 0 a b c

0 0 0 0 0

a a 0 a 0

b b b 0 0

c c b a 0

Table 3: Binary operation 3

Theorem 3.27. An N -structure (X, f) is an (∈,∈ ∨ q)-N -ideal of X if and only if the set C(f ; t)( 6= ∅) is
an ideal of X, for all t ∈ [−0.5, 0).

Proof. Let C(f ; t)( 6= ∅) be an (∈,∈ ∨ q)-N -ideal of X, for all t ∈ [−0.5, 0). Let x, y ∈ C(f ; t). Then f(x) ≤ t
and f(y) ≤ t. Now, we have

f(x− y) ≤ max {f(x),−0.5} = max {t,−0.5} = t,

which implies x − y ∈ C(f ; t). Let x, y ∈ C(f ; t). Then there exists x ∨ y ∈ X, we have f(x ∨ y) ≤
max {f(x), f(y),−0.5} = max {t, t,−0.5} = t, which implies x− y ∈ C(f ; t). Hence (X, f) is an ideal of X.
Conversely, let (X, f) be an ideal of X. We need to show that C(f ; t) is an (∈,∈ ∨ q)-N -ideal of X. Let
t0 ∈ [−0.5, 0) and x, y ∈ X, Then, we can write

f(x) ≤ max {f(x),−0.5} = t0 and f(y) ≤ max {f(y),−0.5} = t0.

Thus xt0 , yt0 ∈ C(f ; t0). Since C(f ; t0) is an ideal of X. Thus x − y ∈ C(f ; t0) and there exists x ∨ y ∈
X such that x ∨ y ∈ C(f ; t0), which implies f(x − y) = t0 ≤ max {f(x),−0.5} and f(x ∨ y) = t0 ≤
max {f(x), f(y),−0.5}. Hence C(f ; t) is an (∈,∈ ∨ q)-N -ideal of X by Theorem 3.4.

4 (γ, δ)-N -Ideals of Subtraction Algebras

In what follows let γ and δ denote any one of ∈ , q, ∈ ∨q , or ∈ ∧q otherwise specified. To say that xtγf
means that xtγf does not hold.

Definition 4.1. An N -structure (X, f) is called an (γ, δ)-N -ideal of X if for all t, r ∈ [−1, 0) and x, y ∈ X,
(GNI16) (xtγf) ((x− y)tδf),
(GNI17) (xt, yrγf) ( ∃x ∨ y ∈ X ⇒ (x ∨ y)min{t, r}δf).

Example 4.2. Let X = {0, a, b, c} be a subtraction algebra with the Cayley table which is given in Table 3.
Let (X, f) be an N -structure defined by:

f(0) = f(a) = −0.3 and f(b) = f(c) = −0.9.

It is easy to check that (X, f) is an (∈,∈ ∨ q)-N -ideal of X. But

(1) (X, f) is not an (∈,∈)-N -ideal of X, since a−0.62 ∈ f and a−0.66 ∈ f , but (a − a)min(−0.62,−0.66) =
0−0.62 ∈ f .

(2) (X, f) is not an (∈,∈ ∨q)-N -ideal of X, since b−0.34 qf and c−0.86 qf , but (c − b)min(−0.34,−0.86) =
a−0.86 ∈ ∨q f .

(3) (X, f) is not an (∈ ∨q,∈ ∨q)-N -ideal of X, since a−0.56 ∈ ∨qf and c−0.86 ∈ ∨qf , but (c −
a)min(−0.56,−0.86) = b−0.86 ∈ ∨q f .
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Theorem 4.3. Every (∈ ∨q,∈ ∨q)-N -ideal of X is an (∈,∈ ∨q)-N -ideal.

Proof. Let (X, f) be an (∈ ∨q,∈ ∨q)-N -ideal of X. Let x, y ∈ X and t ∈ [−1, 0) be such that xt ∈ f . Then
xt ∈ ∨qf , which imply that (x− y)t ∈ ∨qf . Let x, y ∈ X and there exists x∨ y ∈ X be such that xt ∈ f and
yr ∈ f , where t, r ∈ [−1, 0). Then xt ∈ ∨qf and yr ∈ ∨qf , which imply that (x ∨ y)min {t,r} ∈ ∨qf . Hence
(X, f) is an (∈,∈ ∨q)-N -ideal of X.

Theorem 4.4. Every (∈,∈)-N -ideal of (X, f) is an (∈,∈ ∨q)-N -ideal .

Example 4.5. Example 4.2 shows that the converse of Theorems 4.3 and 4.4 need not be true.

Theorem 4.6. Let (X, f) be an N -structure over X. Then the left diagram shows the relationship between
(γ, δ)-N -ideals of (X, f) , where γ, δ are one of ∈ and q. Also we have the right diagram.

(γ, γ ∨ δ)-N -ideal

(γ, δ)-N -ideal (γ, γ)-N -ideal

(γ, γ ∧ δ)-N -ideal

�
��

@
@I

@
@I

�
��

(∈ ∨q,∈ ∨q)-N -ideal

(∈ ∨q, q)-N -ideal (∈ ∨q,∈)-N -ideal

(∈ ∨q,∈ ∧q)-N -ideal

�
��

@
@I

@
@I

�
��

Theorem 4.7. If (X, f) is a non-zero (γ, δ)-N -ideal over X, then f(0) < 0.

Proof. Assume that f(0) = 0. Since (X, f) is non-zero, there exists x ∈ X such that f(x) = t < 0. If γ=∈
or γ =∈ ∨ q then xtγf , but (x − x)min{t,t} = 0tδf , which is a contradiction. If γ= q, then xtγf because

f(x)− 1 = t− 1 < −1. But (x− x)min{−1,−1} = 0−1δf, which is a contradiction. Hence f(0) < 0.

For an N -structure over X, we denote (X0, f) = {x ∈ X | f(x) < 0}.

Theorem 4.8. If (X, f) is a nonzero (∈,∈)-N -ideal over X, then the set (X0, f) is an ideal over X.

Proof. Let x, y ∈ (X0, f). Then f(x) < 0 and f(y) < 0. Suppose that f(x − y) = 0. Note that xf(x) ∈ f
and yf(y) ∈ f , but (x− y)min{f(x),f(y)}∈f , because f(x− y) = 0 > min{f(x), f(y)}, which is a contradiction
thus f(x − y) < 0, which shows that x − y ∈ (X0, f). Also, suppose that f(x ∨ y) = 0. Then there exists
x∨ y ∈ X such that (x∨ y)min{f(x),f(y)}∈f , because f(x∨ y) = 0 > min{f(x), f(y)}. This is a contradiction,
which implies f(x ∨ y) < 0. Thus x ∨ y ∈ (X0, f). Hence (X0, f) is an ideal over X.

Theorem 4.9. If (X, f) is a nonzero (∈, q)-N -ideal over X, then the set (X0, f) is an ideal over X.

Proof. Let x, y ∈ (X0, f). Then f(x) < 0 and f(y) < 0. Suppose that f(x− y) = 0, then

f(x− y) + min{f(x), f(y)} = min{f(x), f(y)} ≥ −1.

Hence (x− y)min{f(x),f(y)}qf, which is a contradiction, since xf(x) ∈ f and yf(y) ∈ f. Thus f(x− y) < 0, and
so x− y ∈ (X0, f). Also, if there exists x ∨ y ∈ X such that f(x ∨ y) = 0. Then

f(x ∨ y) + min{f(x), f(y)} = min{f(x), f(y)} ≥ −1.

Hence (x ∨ y)min{f(x),f(y)}qf, which is a contradiction, since xf(x) ∈ f and yf(y) ∈ f. Thus f(x ∨ y) < 0, and
so x ∨ y ∈ (X0, f). Hence (X0, f) is an ideal over X.

Theorem 4.10. If (X, f) is a nonzero (q,∈)-N -ideal over X, then the set (X0, f) is an ideal of X.
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Proof. Let x, y ∈ (X0, f). Then f(x) < 0 and f(y) < 0. Thus f(x)− 1 < −1 and f(y)− 1 < −1, which imply
that x1qf and y1qf. Suppose that f(x−y) = 0, then f(x−y) > −1 = min{−1,−1}. Hence (x−y)min{−1,−1}qf,
which is a contradiction. Thus f(x− y) < 0, and so x− y ∈ (X0, f). Also, if there exists x∨ y ∈ X such that
f(x∨ y) = 0. Then f(x∨ y) > −1 = min{−1,−1}. Hence (x∨ y)min{−1,−1}qf, which is a contradiction. Thus
f(x− y) < 0, and so x ∨ y ∈ (X0, f). Hence (X0, f) is an ideal over X.

Theorem 4.11. If (X, f) is a nonzero (q, q)-N -ideal over X, then the set (X0, f) is an ideal of X.

Proof. Let x, y ∈ (X0, f). Then f(x) < 0 and f(y) < 0. Thus f(x)− 1 < −1 and f(y)− 1 < −1, which imply
that x1qf and y1qf. Suppose that f(x−y) = 0, then f(x−y) +min{−1,−1} = −1 and so (x−y)min{−1,−1}qf,
which is a contradiction. Thus x− y ∈ (X0, f). Also, if there exists x ∨ y ∈ X such that f(x ∨ y) = 0. Then
f(x ∨ y) + min{−1,−1} = −1. Hence (x ∨ y)min{−1,−1}qf, which is a contradiction. Thus f(x− y) < 0, and
so x ∨ y ∈ (X0, f). Hence (X0, f) is an ideal of X.

Theorem 4.12. If (X, f) is one of the following:

• a nonzero (∈,∈ ∨q)-N -ideal over X,

• a nonzero (∈,∈ ∧q)-N -ideal over X,

• a nonzero (∈ ∧q,∈)-N -ideal over X,

• a nonzero (∈ ∧q, q)-N -ideal over X,

• a nonzero (∈ ∧q, q)-N -ideal over X,

• a nonzero (∈ ∧q,∈ ∨q)-N -ideal over X,

• a nonzero (q,∈ ∨q)-N -ideal over X,

• a nonzero (q,∈ ∧q)-N -ideal over X,

then the set (X0, f) is an ideal over X.

Theorem 4.13. Every nonzero (q, q)-N -ideal over X is constant on (X0, f).

Proof. Let (X, f) be an (q, q)-N -ideal over X. Assume that (X, f) is not constant. Then there exists y ∈ X0

such that ty = f(y) 6= f(0) = t0. Then either ty > t0 or ty < t0. Suppose ty < t0 and choose t1, t2 ∈ [−1, 0)
such that −(1 + t0) < t1 < −(1 + ty) < t2. Then f(0) + t1 = t0 + t1 < −1 and f(y) + t2 = ty + t2 < −1, and
so 0t1qf and yt2qf. Since

f(y − 0) + min{t1, t2} = f(y) + t1 = ty + t1 > −1,

we have (y − 0)min{t1,t2}qf, which is a contradiction. Next, assume that ty > t0. Then f(y) − (1 + t0) =
ty − 1− t0 < −1, and so y−(1+t0)

qf. Since

f(y − y)− (1 + t0) = f(0)− (1 + t0) = t0 − 1− t0 < −1,

this implies that (y − y)min{−1−t0,−1−t0}qf, which is a contradiction. Hence (X, f) is a constant of (X0, f).

Theorem 4.14. Let (X, f) be a non-zero an (γ, δ)-N -ideal over X, where (γ, δ) is one of the following:

(1) (∈, q), (2) (∈,∈ ∧q), (3) (q,∈), (4)(q,∈ ∧q), (5) (∈ ∨q, q), (6) (∈ ∨q,∈ ∧q), (7)(∈ ∨q,∈).

Then (X, f) = χ
(X0,f)

, the N -characteristic function over (X0, f).

Proof. Assume that there exists x ∈ (X0, f) such that f(x) > −1. For γ =∈, choose t ∈ [−1, 0) such that
min{−1 − f(x), f(x), f(0)} < t. Then xtδf and 0tδf , but (x − 0)min{t,t} = xtδf where δ = q or δ =∈ ∧q,
which is a contradiction. For γ = q. Then x−1δf and 0−1δf , but (x− 0)min{−1,−1} = x−1δf where δ =∈ or

δ =∈ ∧q. This is a contradiction. Finally, for γ =∈ ∨q. Then xtδf and 0−1δf , but (x − 0)min{t,−1} = xtδf

where δ = q or δ =∈ ∧q. This is a contradiction. Note that x−1δf and 0−1δf , but (x−0)min{−1,−1} = x−1δf.
This is a contradiction. Hence (X, f) = χ

(X0,f)
.
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5 (∈,∈ ∨ q)-N -Ideals of Subtraction Algebras

Definition 5.1. An N -structure (X, f) is called an (∈,∈ ∨ q)-N -ideal of X if for all t, r ∈ [−1, 0) and
x, y ∈ X,
(GNI18) ((x− y)t∈f) ⇒ (xt∈ ∨ qf),
(GNI19) ( ∃x ∨ y ∈ X, (x ∨ y)min{t, r}∈f) ⇒ (xt∈ ∨ qf or yr∈ ∨ qf).

Theorem 5.2. An N -structure (X, f) is an (∈,∈ ∨ q)-N -ideal of X if and only if it satisfies the following
assertions:
(GNI20) (x, y ∈ X) (min {(f(x− y),−0.5} ≤ f(x)),
(GNI21) (x, y ∈ X) (∃(x ∨ y) ⇒ min {f(x ∨ y),−0.5} ≤ max {f(x), f(y)}).

Proof. If there exist x, y ∈ X such that min {(f(x− y),−0.5} > f(x) = t , then t ∈ (−0.5, 0], (x − y)t∈f
and xt ∈ f . It follows that xt∈ ∨ qf . Then (t = f(x) and t + f(x) = −1). It follows that t = −0.5.
This is a contradiction with t > −0.5. Hence (GNI18) holds. If there exist x, y ∈ X and x ∨ y such that
min {f(x ∨ y),−0.5} > max {f(x), f(y)} = 0.5, then t ∈ (−0.5, 0] , (x ∨ y)t∈f and xt ∈ f , yt ∈ f . It follows
that xt∈ ∨ qf or yt∈ ∨ qf . Then (t = f(x) and t + f(x) = −1) or (t = f(y) and t + f(y) = −1). It follows
that t = −0.5. This is a contradiction with t > −0.5. Hence (GNI21) holds.

Conversely, let x, y ∈ X such that (x− y)t∈f , then f(x− y) > t. Then we have the following:
(1) If f(x− y) ≤ f(x), then f(x) > t. It follows that xt∈f which implies that xt∈ ∨ qf .
(2) If f(x − y) > f(x), then −0.5 ≤ f(x). Hence min {f(x− y),−0.5} ≤ f(x). Setting xt ∈ f , then

t ≥ f(x) ≥ −0.5. It follows that xt∈f which implies that xt∈ ∨ qf .
Similarly,

(3) If f(x∨y) ≤ max {f(x), f(y)}, then max {f(x), f(y)} > max {t, r} and f(x) > t or f(y) > s. It follows
that xt∈f or ys∈f which implies that xt∈ ∨ qf or yr∈ ∨ qf .

(4) If f(x ∨ y) > max {f(x), f(y)}, then −0.5 ≤ max {f(x), f(y)}. Hence

min {(f(x ∨ y),−0.5} ≤ max {f(x), f(y)} .

Setting xt ∈ f , yr ∈ f then t ≥ f(x) ≥ −0.5 or r ≥ f(y) ≥ −0.5. It follows that xt∈f or yr∈f which implies
that xt∈ ∨ qf or yr∈ ∨ qf .

Thus, (X, f) is an (∈,∈ ∨ q)-N -ideal of X.

Example 5.3. Let X = {0, a, b} be a subtraction algebra with the Cayley table which is given in Table 1.
Let (X, f) be an N -structure defined by:

f(0) = −0.3, f(a) = −0.4 and f(b) = −0.2.

It is easy to check that (X, f) is an (∈,∈ ∨ q)-N -ideal of X. However, (X, f) is not an -̧N -ideal of X. Since

f(b ∨ b) = f(0− ((0− b)− b)))
= f(0) = −0.3 � −0.4 = max{−0.4,−0.4,−0.5}
= max{f(b), f(b),−0.5}.

Theorem 5.4. An N -structure (X, f)is an (∈,∈ ∨ q)-N -ideal of X if and only if the set C(f ; t)( 6= ∅) is an
ideal of X for all t ∈ [−1,−0.5).

Proof. Assume that C(f ; t)( 6= ∅) is an ideal of X for all t ∈ [−1,−0.5). If there exist x, y ∈ X such that
min {(f(x− y),−0.5} > f(x) = s, then s ∈ [−1,−0.5), f(x − y) > s, x, y ∈ C(f ; s). Since C(f ; s) is a
bi-ideal of X, we have x − y ∈ C(f ; s) or f(x − y) ≤ s, which contradicts with f(x − y) > s. Assume
that there exist x, y ∈ X and x ∨ y ∈ X such that min {f(x ∨ y),−0.5} > max {f(x), f(y)} = s, then
s ∈ [−1,−0.5), f(x ∨ y) > s, x, y ∈ C(f ; s). Since C(f ; t) is a bi-ideal of X, we have x ∨ y ∈ C(f ; s) or
f(x ∨ y) ≤ s, which contradicts with f(x ∨ y) > s. Hence (X, f) is an (∈,∈ ∨ q)-N -ideal of X.

Conversely, Assume that (X, f) is an (∈,∈∨ q)-N -ideal of X. We show that C(f ; t) is an ideal of X. Let
t ∈ [−1,−0.5) and x, y ∈ X, Then

−0.5 > t > f(x) > min {f(x− y),−0.5} > f(x− y),
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and there exist x ∨ y ∈ X such that

−0.5 > t > max {f(x), f(y)} > min {f(x ∨ y),−0.5} > f(x ∨ y).

This implies x− y ∈ C(f ; t) and x ∨ y ∈ C(f ; t). Hence C(f ; t) is an ideal of X.

From the above discussion, we know that an N -structure (X, f) over X may satisfies the condition that
for some t ∈ [−1, 0), C(f ; t) is an ideal of X, but for other t ∈ [−1, 0), C(f ; t) is not a ideal of X.

Remarks 7: Let K(f ; t) = {t |t ∈ [−1, 0), andC(f ; t) is an empty– set or an ideal of X }.

• When K(f ; t) = [−1, 0), then (X, f) is an N -ideal of X (Theorem 2.8).

• When K(f ; t) = (−0.5, 0], (X, f) is an (∈,∈ ∨ q)-N -ideal of X (Theorem 3.27).

• When K(f ; t) = [−1,−0.5), (X, f)is an (∈,∈ ∨ q)-N -ideal of X (Theorem 5.4).

An obvious question is: whether (X, f) is a kind of N -ideal or not when K(f ; t) 6= ∅ (e.g.,Kt =
(−0.5, 0], α, β ∈ [−1, 0] andα < β)?

To answer the above question, we introduce the concept of an N -ideal of X with thresholds in the following
way:

Definition 5.5. Let α, β ∈ [−1, 0] and α < β . Let (X, f) be an N -structure over X. Then (X, f) is called
an N -ideal with thresholds of X if it satisfies the following conditions:
(GNI22) (x, y ∈ X) (min {f(x− y), β} ≤ max {f(x), α}),
(GNI23) (x, y ∈ X) (∃(x ∨ y ∈ X) ⇒ min {f(x ∨ y), β} ≤ max {f(x), f(y), α}).

Now, we characterize N -ideals with thresholds by their closed (f, t)− cut ideals over X.

Theorem 5.6. An N -structure (X, f) over X is an N -ideal with thresholds (α, β) of X if and only if
C(f ; t)(6= ∅) is an ideal of X, for all t ∈ (α, β].

Proof. Let (X, f) be an N -ideal with thresholds of X and t ∈ (α, β]. Let x, y ∈ C(f ; t). Then f(x) ≤ t. Now

f(x− y) = min {(f(x− y), β} ≤ max {f(x), α} = max {t, α} = t,

which implies that f(x− y) ≤ t and so x− y ∈ C(f ; t). Now, let x, y ∈ C(f ; t). Then f(x) ≤ t and f(y) ≤ t.
There exists x ∨ y ∈ X, we have

f(x ∨ y) = min {(f(x ∨ y), β} ≤ max {f(x), f(y), α} = max {t, t, α} = t,

which implies that f(x ∨ y) ≤ t and so x ∨ y ∈ C(f ; t).

Conversely, let (X, f) be an N -structure over X such that C(f ; t)( 6= ∅) be an ideal of X and t ∈ (α, β].
If there exist x, y,∈ X such that

min {(f(x− y), β} > max {f(x), α} = t,

which implies f(x− y) > t. But C(f ; t) is a an ideal of X, we get x− y ∈ C(f ; t). Hence f(x− y) ≤ t, which
is a contradiction with f(x − y) > t. Hence (X, f) satisfies (GNI22). Now, let x, y,∈ X, assume that there
exists x ∨ y ∈ X such that

min {f(x ∨ y), β} > max {f(x), f(y), α} = t,

then t ∈ (α, β], f(x ∨ y) > t, x ∈ C(f ; t), y ∈ C(f ; t). Since C(f ; t) is an ideal of X, we get x ∨ y ∈ C(f ; t).
Hence f(x ∨ y) ≤ t, which is a contradiction with f(x ∨ y) > t. Hence (X, f) satisfies (GNI23).
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Example 5.7. Let X = {0, a, b} be a subtraction algebra with the Cayley table which is given in Table 1.
Let (X, f) be a N -structure defined by:

f(0) = −0.3, f(a) = −0.2 and f(b) = −0.8.

It is clear that (X, f) is not both an (∈,∈ ∨ q)-N -ideal and an (∈,∈ ∨ q)-N -ideal of X. Since

min{f(b ∨ b),−0.5} = min{f(a− ((a− b)− b))),−0.5}
= min{f(0),−0.5}
= min{−0.3,−0.5}
= −0.5

� −0.8 = max{−0.8,−0.8}
= max{f(b), f(b)}.

Thus (X, f) is not an (∈,∈ ∨ q)-N -ideal on X. Also

f(b ∨ b) = f(0− ((0− b)− b)))
= f(0)

= −0.3

� −0.5 = max{−0.8,−0.8,−0.5}
= max{f(b), f(b),−0.5}.

Thus (X, f) is not an (∈,∈ ∨ q)-N -ideal of X. That is, if Kt = (−0.9,−0.2], (X, f) is an N -ideal with
thresholds α = −0.8 and β = −0.2 of X. But (X, f) neither are N -ideal and (∈,∈ ∨ q)-N -ideal of X nor is
(∈,∈ ∨ q)-N -ideal of X.

Remarks 8: From the Definition 5.5, we have observed following results:

1. Every N -ideal (X, f) of X, with thresholds α = −1 and β = 0 is an N -ideal of X.

2. Every N -ideal (X, f) of X with thresholds α = −0.5 and β = 0 is an (∈,∈ ∨ q)-N -ideal of X.

3. Every N -ideal (X, f) of X with thresholds α = −1 and β = −0.5 is an (∈,∈ ∨ q)-N -ideal of X.

4. Every N -ideal (X, f) of X with thresholds β < f(x) ≤ α or β ≤ f(x) < α, for all x ∈ X, is an N -ideal
of X.

Remarks 9: Hence, in a subtraction algebra, we have the following relations among fallingN -ideal, (∈,∈ ∨ q)-
N -ideal, (∈,∈ ∨ q)-N -ideal and N -ideal with thresholds:

N -ideal with thresholds

(∈,∈ ∨ q)-N -ideal (∈,∈ ∨ q)-N -ideal

N -ideal

��� @@I

@@I ���

6 Conclusion

To obtain a general type of an N -ideal of a subtraction algebra, we have introduced the notion of an (∈,∈ ∨ q)-
N - ideal. Moreover, we have provided (γ, δ)-N -ideal, which is a generalization of (∈,∈ ∨ q)-N - ideal and
have studied their related properties. We have provided example which is an (∈,∈ ∨ q)-N -ideal but not
an (∈,∈ ∨ q)-N -ideal. Further, we have dealt with characterizations of an (∈,∈ ∨ q)-N - ideal and an(γ,
δ)-N -ideal. Finally, the notion of an N -ideal with thresholds are discussed with examples. Some important
issues for future work are: (1) To develop strategies for obtaining more valuable results (2) To apply these
definitions and results for studying related notions in other N -structures such as N -structure over semigroup,
N -structure over BCK/BCI-algebras, etc. (3) To study (N -structure) soft set theoretical aspects based on
these notions herein.
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