
Journal of Uncertain Systems
Vol.8, No.4, pp.301-308, 2014

Online at: www.jus.org.uk

Uncertain Random Approach to Multiobjective Programming

Problem Based on Chance Theory

Mingfa Zheng1, Yuan Yi1,∗, Zutong Wang2, Long Yan3

1School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an, 710049, China
2Materiel Management and Safety Engineering College, Air Force Engineering University

Xi’an, 710051, China
3Science College, Air Force Engineering University, Xi’an, 710051, China

Received 23 February 2014; Revised 15 August 2014

Abstract

The traditional solution method for the uncertain random multiobjecitve programming (URMOP)
problem usually considers the transformation of converting the URMOP problem into a deterministic
multiobjective programming (MOP) problem directly, and then solves the deterministic MOP problem,
which neglects the nature of the uncertainty and randomness. To avoid this defect, this paper mainly
focuses on a novel solution method for the URMOP problem based on chance theory. To present the
solution method, we first define relationship between uncertain random variables under some principles,
and give the concepts of Pareto efficient solutions of the URMOP problem. Then, on the basis of PE

principle, the novel solution method by transforming the URMOP problem into uncertain random single
objective programming (URSOP) problem is put forward to obtain the Pareto efficient solutions, in which
the uncertainty and randomness are taken into account. Finally, the linear weighted method is employed
to obtain the URSOP problem, and some theoretical results are also acquired, which can provide the
theoretical foundation for solving the optimization problem.
c©2014 World Academic Press, UK. All rights reserved.
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1 Introduction

The multiobjective programming (MOP) problems have been widely studied by many researchers such as [5,
16, 18]. Since the absolute optimal solutions of the MOP problem which optimize each objective functions
simultaneously usually don’t exist, the non-inferior solutions are considered, i.e., Pareto optimal solutions.
Furthermore, the study on MOP problem becomes more complex because of the indeterministic factors in a
practical decision-making process. It is well known that randomness is one kind of indeterministic phenomena.
Hence, based on the probability theory, stochastic MOP problem has been presented such as [1, 2, 17, 19].
Unfortunately, when the sample size is too small for us to estimate a probability distribution, the frequently
used probability distribution is not always appropriate, especially when the information is vague; we have to
invite some domain experts to evaluate their belief degree that each event will occur in this case. Such types
of indeterminacy are called uncertainty. A lot of surveys show that human beings usually overweight unlikely
events, and the personal belief degree may have much larger variance than the real frequency [12]. Liu [12]
declared that it is inappropriate to apply either probability theory or fuzzy set theory to uncertainty, because
both theories may lead to counterintuitive results in this case. In order to deal with such kind of uncertain
problem, Liu [10] founded the uncertainty theory, which is a branch of mathematics based on normality,
duality, subadditivity and product axioms, as a tool to handle uncertainty that is due to imprecision rather
than randomness. Based on uncertainty theory, the research works on uncertain MOP problem can be found
in [3, 4, 20, 21].
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In a practical decision-making process, we often face a hybrid indeterministic environment where linguistic
and frequent nature coexist. For the example of the twofold indeterministic phenomena, we can refer to
Zhou [24], Liu [6], Liu [7], Zheng [23], Yazenin [22]. However, under the uncertain random phenomenon,
there are few research works except for the literature [13]. In [24], Zhou transformed the uncertain random
MOP (URMOP) problem into a deterministic MOP problem first by taking expected value, and then solved
the deterministic MOP problem, which can be referred to using the term multiobjective approach. Once
the original URMOP problem is transformed into deterministic problem, the possible existence of uncertain
random dependencies between objectives and the nature of uncertainty and randomness are not taken into
account. To avoid this disadvantage, this paper presents a novel solution method for the URMOP problem
based on chance theory to generate Pareto efficient solutions of uncertain MOP problem by converting the
URMOP problem into uncertain random single objective (URSOP) problem with only one uncertain random
objective function. In the real-life world, based on some principle such as PE proposed in this paper, URSOP
problem can be solved. Compared with the multiobjective approach, this solution method can be referred
to using the term uncertain random approach. Personally speaking, the Pareto efficient solution in URMOP
problem should be defined on the uncertain random objectives directly instead of the converted deterministic
objectives, which will assure the nature of the uncertainty and randomness of URMOP problem. In order
to do this, this paper defines the relationship between uncertain random objectives, in which the symbol
� (or ≺) is used to denote the relationship. For example, f(x̄, ξ) � f(x∗, ξ) means that the valuation of
uncertain random objective f(x̄, ξ) is lower than or equal to that of uncertain random objective f(x∗, ξ), and
f(x̄, ξ) ≺ f(x∗, ξ) means that the valuation of uncertain random objective f(x̄, ξ) is strictly lower than that
of uncertain random objective f(x∗, ξ), where the valuation is a function defined under certain principles that
determine the value of uncertain random objectives. To deal with the different real-life problems, they need
different principles. Hence, according to real-life decision-making process, several principles are proposed in
this paper, such as expected-value principle, expected-value minimum-variance principle, α-optimistic value
principle and α-pessimistic value principle, which are denoted as PE, PEV, Pαsup

and Pαinf
, respectively. Due

to the mean costs (or profits) are widely used in the real world, the PE principle is important. Based on PE,
this paper obtains the URSOP problem by linear weighted method, then proves that the optimal solutions
are PE Pareto efficient solutions to the original problem. This theoretical results acquired in this paper can
provide the theoretical foundation for solving the optimization problem.

This paper is organized as follows. The next section provides a brief review on the related concepts and
results in the uncertainty theory and chance theory. Section 3 first defines the relationship between uncertain
random variables, then presents the novel method, i.e., uncertain random approach. Based on PE principle, the
URMOP problem is presented and the transformation of converting the URMOP problem into the URSOP
problem is also introduced in Section 4. Section 5 discusses the URSOP problem by using linear weighted
method, and many theoretical results are acquired. Finally, a brief conclusion is given in Section 6.

2 Preliminary

Let Γ be a nonempty set, and L a σ-algebra over Γ. Each element Λ in L is called an event. A set function
M from L to [0, 1] is called an uncertain measure if it satisfies the following axioms [8, 9]:
Axiom 1. (Normality Axiom) M{Γ} = 1 for the universal set Γ.
Axiom 2. (Duality Axiom) M{Λ}+ M{Λc} = 1 for any event Λ.
Axiom 3. (Subadditivity Axiom) For every countable sequence of events Λ1,Λ2, . . ., we have

M{
∞⋃
i=1

Λi} ≤
∞∑
i=1

M{Λi}.

Axiom 4. (Product Axiom) Let (Γk,Lk,Mk) be uncertainty spaces for k = 1, 2, . . .. The product uncertain
measure M is an uncertain measure satisfying

M{
∞∏
k=1

Λk} =

∞∧
k=1

Mk{Λk}

where Λk are arbitrarily chosen events from Lk for k = 1, 2, ..., respectively. The triplet (Γ,L,M) is referred
to as a uncertainty space, in which an uncertain variable is defined as follows:
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Definition 2.1 ([8]) An uncertain variable is a measurable function ξ from an uncertainty space (Γ,L,M)
to the set of real numbers, i.e., for any Borel set B of real numbers, the set

{ξ ∈ B} = {γ ∈ Γ | ξ(γ) ∈ B}

is an event.

Definition 2.2 ([9]) The uncertain variables ξ1, ξ2, . . . , ξn are said to be independent if

M{
n⋂
i=1

(ξi ∈ Bi)} =

n∧
i=1

M{ξi ∈ Bi}

for any Borel sets B1, B2, . . . , Bn of real numbers.

Definition 2.3 ([8]) The uncertainty distribution Φ of an uncertain variable ξ is defined by

Φ(x) = M{ξ ≤ x}

for any real number x.

Definition 2.4 ([11]) Let ξ be an uncertain variable with regular uncertainty distribution Φ. Then the inverse
function Φ−1 is called the inverse uncertainty distribution of ξ.

Definition 2.5 ([8]) Let ξ be an uncertain variable. Then the expected value of ξ is defined by

E[ξ] =

∫ ∞
0

M{ξ ≥ x}dr −
∫ 0

−∞
M{ξ ≤ x}dr

provided that at least one of the two integrals is finite.

Definition 2.6 ([8]) Let ξ be an uncertain variable with finite expected value e. Then the variance of ξ is
V [ξ] = E[(ξ − e)2].

Theorem 2.1 ([10]) Let ξ1, ξ2, . . . , ξn be uncertain variables, and f a real-valued measurable function. Then
f(ξ1, ξ2, · · · , ξn) is an uncertain variable.

Theorem 2.2 ([11]) Let ξ be an uncertain variable with regular uncertainty distribution Φ. If the expected
value exists, then

E[ξ] =

∫ 1

0

Φ−1(α)dα.

Theorem 2.3 ([11]) Let ξ1, ξ2, . . . , ξn be independent uncertain variables with regular uncertainty distribu-
tions Φ1,Φ2, . . . ,Φn, respectively. If the function f(x1, x2, · · · , xn) is strictly increasing with respect to
x1, x2, . . . , xm and strictly decreasing with respect to xm+1, xm+2, . . . , xn, then ξ = f(ξ1, ξ2, · · · , ξn) is an
uncertain variable with inverse uncertainty distribution

Ψ−1(α) = f
(
Φ−11 (α),Φ−12 (α),· · ·,Φ−1m (α),Φ−1m+1(1− α),Φ−1m+2(1− α),· · ·,Φ−1n (1− α)

)
.

Definition 2.7 ([14]) An uncertain random variable is a measurable function ξ from a chance space (Γ,L,M)×
(Ω,A,Pr) to the set of real numbers such that {ξ ∈ B} is an event in L ×A for any Borel set B.

Definition 2.8 ([14]) Let (Γ,L,M)× (Ω,A,Pr) be a chance space, and let Θ ∈ L×A be an event. Then the
chance measure of Θ is defined as

Ch{Θ} =

∫ 1

0

Pr{ω ∈ Ω|M{γ ∈ Γ|(γ, ω) ∈ Θ} ≥ x}dx.

Definition 2.9 ([14]) Let ξ be an uncertain random variable. Then its chance distribution is defined by

Φ(x) = Ch{ξ ≤ x}

for any real number x.
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Definition 2.10 ([14]) Let ξ be an uncertain random variable. Then its expected value is defined by

E[ξ] =

∫ ∞
0

Ch{ξ ≥ x}dr −
∫ 0

−∞
Ch{ξ ≤ x}dr

provided that at least one of the two integrals is finite.

Theorem 2.4 ([14]) Let ξ be an uncertain random variable with regular chance distribution Φ. Then

E[ξ] =

∫ 1

0

Φ−1αdα.

Theorem 2.5 ([14]) Let ξ1, ξ2, . . . , ξn be uncertain random variables on the chance space (Γ,L,M)×(Ω,A,Pr),
and let f : Rn → R be a measurable function. Then ξ = f(ξ1, ξ2, · · · , ξn) is an uncertain random variable
determined by

ξ(γ, ω) = f(ξ1(γ, ω), ξ2(γ, ω), · · · , ξn(γ, ω))

for all (γ, ω) ∈ Γ× Ω.

Theorem 2.6 ([15]) Let η1, η2, . . . , ηm be independent random variables with probability distributions Ψ1,
Ψ2, . . . ,Ψm, respectively, and let τ1, τ2, . . . , τn be uncertain variables (not necessarily independent), then the
uncertain random variable

ξ = f(η1, η2, · · · , ηm, τ1, τ2, · · · , τn)

has an expected value

E[ξ] =

∫
Rm

E[f(y1, y2, · · · , ym, τ1, τ2, · · · , τn)]dΨ1(y1) · · ·Ψm(ym)

where E[f(y1, y2, · · · , ym, τ1, τ2, · · · , τn)] is the expected value of the uncertain variable f(y1, y2, · · · , ym, τ1,
τ2, · · · , τn) for any real numbers y1, y2, . . . , ym.

Theorem 2.7 ([15]) Assume η1 and η2 are random variables, τ1 and τ2 are independent uncertain variables,
and f1 and f2 are measurable functions. Then

E[f1(η1, τ1) + f2(η2, τ2)] = E[f1(η1, τ1)] + E[f2(η2, τ2)].

3 The Relationship Between Uncertain Random Variables

Definition 3.1 Let ξ and η be two uncertain random variables. We say ξ � (or ≺) η if and only if P[ξ] ≤
(or <)P[η].

The symbol ξ � η (or ξ ≺ η ) means that the valuation of ξ is lower than or equal to (or strictly lower
than) that of η, and P denotes the principle employed to define the valuation of uncertain random variables.
In addition, different real-life problems call for different meanings of valuation to satisfy its need in practical
application. Thus, corresponding principle P should be proposed to define this valuation according to the real
context of problem.

Definition 3.2 (Expected-value principle PE) Let ξ and η be two uncertain random variables. We say
ξ � (or ≺) η if and only if E[ξ] ≤ (or <) E[η], where E[·] denotes the expected value of uncertain random
variable.

Definition 3.3 (Expected-value minimum-variance principle PEV) Let ξ and η be two uncertain ran-
dom variables. We say ξ � (or ≺) η if and only if E[ξ] ≤ (or <) E[η] and V [ξ] ≤ (or <) V [η].

Definition 3.4 (α-optimistic value principle Pαsup
) Let ξ and η be two uncertain random variables. We

say ξ � (or ≺) η if and only if ξsup(α) ≤ (or <) ηsup(α) for a given confidence level α ∈ (0, 1], where ξsup(α)
and ηsup(α) denote the α-optimistic value of uncertain random variables ξ and η, respectively.
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Definition 3.5 (α-pessimistic value principle Pαinf
) Let ξ and η be two uncertain random variables. We

say ξ � (or ≺) η if and only if ξinf(α) ≤ (or <) ηinf(α) for a given confidence level α ∈ (0, 1], where ξinf(α)
and ηinf(α) denote the α-pessimistic value of uncertain random variables ξ and η, respectively.

Due to that the expected value is widely used in the real world, the following contents will especially
discuss the solution to the multiobjective problem based on PE principle, and the other P principles can be
also studied according to different real-life problems.

Theorem 3.1 Let ξ and η be two uncertain random variables with regular chance distributions Φ and Ψ,
respectively. If ξ � (or ≺) η, then for any real number λ > 0, we have

λξ � (or ≺) λη.

Proof: Since ξ � (or ≺) η, it follows from the definition of PE principle that

E[ξ] ≤ (or <) E[η].
By Theorem 2.4, we have ∫ 1

0

Φ−1(α)dα ≤ (or <)

∫ 1

0

Ψ−1(α)dα

For any real number λ > 0, we can obtain that

λ

∫ 1

0

Φ−1(α)dα ≤ (or <)λ

∫ 1

0

Ψ−1(α)dα,

namely, ∫ 1

0

λΦ−1(α)dα ≤ (or <)

∫ 1

0

λΨ−1(α)dα.

It follows from the definition of expected value of uncertain random variable that

E[λξ] =

∫ 1

0

λΦ−1(α)dα,

and

E[λη] =

∫ 1

0

λΨ−1(α)dα.

Evidently,
E[λξ] ≤ (or <) E[λη],

which implies that λξ � (or ≺) λη. The theorem is proved.

Theorem 3.2 Assume that ζi, ςi, i = 1, 2, are random variables, τi, ιi, i = 1, 2, are independent un-
certain variables, and f1, f2, g1 and g2 are measurable functions. If the uncertain random variable ξi =
fi(ζi, τi) and ηi = gi(ςi, ιi) satisfy the following condition

ξ1 � (or ≺) η1, ξ2 � (or ≺) η2,

then we have
ξ1 + ξ2 � (or ≺) η1 + η2.

Proof: Since ξ1 ≺ η1, ξ2 � η2, according to PE principle, we have

E[ξ1] ≤ (or <) E[η1], E[ξ2] ≤ (or <) E[η2].
Evidently,

E[ξ1] + E[ξ2] ≤ (or <) E[η1] + E[η2].

It follows from Theorem 2.7 that

E[ξ1 + ξ2] = E[ξ1] + E[ξ2], E[η1 + η2] = E[η1] + E[η2],

which implies that
E[ξ1 + ξ2] ≤ E[η1 + η2].

By the definition of PE principle, we can obtain

ξ1 + ξ2 � (or ≺) η1 + η2.

The theorem is proved.
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4 The URMOP Problem under PE Principle

4.1 Pareto Efficient Solution

We present the URMOP problem as follows,
min
x∈Rn

F(x, ξ) = (f1(x, ξ), f2(x, ξ), · · · , fp(x, ξ))

subject to :

gi(x, η) ≤ 0, i = 1, 2, . . . ,m

(1)

where x ∈ Rn is a vector of decision variables of the problem; ξ = h(ζ, τ) and η = l(ς, ι) are uncertain random
variables, h and l are Borel measurable functions, the components ζ, ς are random variables, and τ, ι, are
independent uncertain variables, respectively.

In real decision-making process, the objectives in URMOP problem are usually in conflict, and we can’t
simultaneously minimize all the objective functions. In order to deal with this difficulty, the concepts of PE

Pareto efficient solution (or weakly efficient solution) are introduced.

Definition 4.1 A feasible solution x∗ is said to be PE Pareto efficient to the URMOP problem if there is no
feasible solution x such that

F(x, ξ) � F(x∗, ξ),

that is to say,
fk(x, ξ) � fk(x∗, ξ), k = 1, 2, . . . , p

and fk0(x, ξ) ≺ fk0(x∗, ξ) for at least one index k0.

Definition 4.2 A feasible solution x∗ is said to be PE Pareto weakly efficient solution to the uncertain UR-
MOP problem if there is no feasible solution x such that

F(x, ξ) ≺ F(x∗, ξ),

that is to say,
fk(x, ξ) ≺ fk(x∗, ξ), k = 1, 2, . . . , p.

4.2 Uncertain Random Method

In order to solve the URMOP problem, the method of transforming the original URMOP problem into URSOP
problem is employed by using a real-valued measurable function U defined on p-ary space. In some cases, we
can prove that the optimal solution to the URSOP problem is Pareto efficient solution (or weakly efficient
solution) to the URMOP problem. The specific transformation is as follows,

min
x∈Rn

s(x, ξ) = U(F(x, ξ)) = U(f1(x, ξ), f2(x, ξ), · · · , fp(x, ξ))

subject to :

Ch{gi(x, η) ≤ 0} ≥ αi, i = 1, 2, . . . ,m.

(2)

Note that since the uncertain random constraints gi(x, η) ≤ 0, i = 1, 2, . . . ,m do not define a crisp feasible
set, they have been converted into chance constraints with confidence levels α1, α2, . . . , αm in problem (2),
which is a crisp feasible set.

Theorem 4.1 Let U be a real-valued measurable function, then s(x, ξ) is an uncertain random variable in
problem 4.2.

Proof: By Theorem 2.5, the theorem is easy to proved.
This theorem guarantees the uncertain random nature of URMOP problem. In order to solve the URSOP

problem, its optimal solution should be defined firstly.

Definition 4.3 A feasible solution x∗ is called an optimal solution to the URSOP problem (2) if

s(x∗, ξ) � s(x, ξ)

for any feasible solution x.
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Obviously, the optimal solution to problem (2) is also defined under the relationship between uncertain
random variables.

Based on the PE principle, the equivalent URSOP problem can be obtained as follows,
min
x∈Rn

s(x, ξ) = U
(
f1(x, ξ), f2(x, ξ), · · · , fp(x, ξ)

)
subject to :

Ch{gi(x, ηi) ≤ 0} ≥ αi, i = 1, 2, . . . ,m.

(3)

From the decision-making process, it is evident that uncertain random approach is different from that
in multiobjective approach, and the results obtained using these two approaches are usually different. There
are many transformation methods, and the well-known method is the linear weighted method which is a
compromise method by weighting the objective functions. Thus the compromise model is set up in the
following part.

5 Linear Weighted Method

Based on linear weighted method, the URSOP problem can be rewritten as follows,
min
x∈Rn

s(x, ξ) =

p∑
j=1

λjfj(x, ξ)

subject to :

Ch{gi(x, η) ≤ 0} ≥ αi, i = 1, 2, . . . ,m

(4)

where λ ∈ Λ++ = {λ = (λ1, · · · , λp)T |λj > 0,
∑p
j=1 λj = 1}.

Theorem 5.1 The optimal solution x∗ to URSOP problem (4) under PE principle is PE Pareto efficient
solution to the original URMOP problem (1).

Proof: Assume that x∗ is the optimal solution to URSOP problem (4), which isn’t the PE Pareto efficient
solution to the original URMOP problem (1). By Definition 4.1, there exists x̄ such that fk(x̄, ξ) � fk(x∗, ξ),
and fk0(x̄, ξ) ≺ fk0(x∗, ξ) for at least one index k0, 1 ≤ k0 ≤ k.

Since λ ∈ Λ++ = {λ = (λ1, · · · , λp)T |λk > 0,
∑p
k=1 λk = 1}, and fk0(x̄, ξ) ≺ fk0(x∗, ξ), it follows from the

definition PE principle and Theorem 3.1, Theorem 3.2 that

p∑
k=1

λkfj(x̄, ξk) ≺
p∑
j=k

λkfk(x∗, ξk),

that is to say, s(x̄, ξ) ≺ s(x∗, ξ). It follows from Definition 4.3 that x∗ is not the optimal solution to URSOP
problem (4), which contradicts with the previous hypothesis that x∗ is the optimal solution. Hence, x∗ is PE

Pareto efficient solution to the original URMOP problem (1). The theorem is proved.

6 Conclusion

In this paper, we focused on the uncertain random approach based on chance theory. We first presented the
order relationship between uncertain random variables, and gave several definitions of the relationship under
different principle. Then, based on PE principles, the transformation of converting the URMOP problem into
URSOP problem was introduced, and the Pareto efficient solution was also defined. Finally, the linear weighted
method was employed to obtain the URSOP problem, and some theoretical results were also acquired, which
can provide the theoretical foundation for designing the optimization algorithm.
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