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Abstract

Quality function deployment (QFD) is a systematic method used for developing a product or service,
that helps transforming customer requirements (CRs) into appropriate engineering characteristics (ECs).
How to obtain the importance of ECs in QFD is a fundamental and crucial issue for efficiently planning
resource allocation. Owing to the typical imprecision or vagueness in the QFD process, the uncertain
environments and the uncertainty theory are suggested for capturing those linguistic assessments and
subjective judgements. Thus, in this paper, a new method for determining the importance of ECs using
an uncertain expected value operator is presented, in which the two sets of input data are expressed as
uncertain variables, namely, the relative importance of CRs and the relationship matrix between CRs and
ECs. An example of a flexible manufacturing system design illustrates the performance and the potential
applications of the presented approach.
c⃝2014 World Academic Press, UK. All rights reserved.
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1 Introduction

Manufacturing enterprises, which are confronted with a more complicated competition on the global scale,
realize that the efficient products design and manufacture based on customer needs and expectations are
crucial for both of their survival and long-term development. A wide acceptance in the industry to ensure and
promote quality during the product development is the use of quality function deployment (QFD), which is
a well known customer-driven product development approach originated in Japan in the late 1960s [1]. It is
a systematic method that devotes to transforming customer requirements (CRs) to some specific engineering
characteristics (ECs) of the product in order to achieve high customer satisfaction. Nowadays, QFD has gained
extensive support for helping the design team to maintain a correct focus on true customer requirements and
determine how an existing product or service can be improved continuously.

The most typical and significant tool of QFD, the House of Quality (HoQ), is a kind of conceptual map
that provides means for interfunctional planning and communications [13]. It mainly consists of the following
matrices: customer requirements (CRs, namely what to do) and their importance, engineering characteristics
(ECs, namely how to do) and their importance, the relationships between CRs and ECs, and the correlations
among all ECs. The process of establishing a HoQ is a quantitative and qualitative analysis procedure, after
which we can achieve the conversion from customer feedback to engineering information.

It is generally considered that in the design process, planners should focus on engineering characteristics
of a new or existing product or service from the viewpoints of customers’ desires and needs. Therefore,
determining the importance of ECs is such a core issue towards successful QFD realization that enterprise
resources can then be properly assigned to ECs. Meanwhile, the rankings of the importance of ECs are also
key results of QFD as they guide the design team in decision-making, resource allocation, and subsequent QFD
analysis [11]. Typically, in order to derive the importance of ECs, two essential prerequisites receive much
concern in this field, i.e., obtaining the importance of CRs, as well as the determination of the relationships
between CRs and ECs.
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In one aspect, obtaining the importance of CRs is to evaluate the weights of CRs, which is the first step
to transform the customer needs in QFD. A classical method to prioritize CRs is the application of analytic
hierarchy process (AHP) [1, 2]. Afterwards, Karsak et al. [16] suggested the use of analytic network process
(ANP) to prioritise CRs so that the interdependence among CRs could be considered. However, these methods
have strict specifications on the input variables of the QFD process. With reference to the effect that the
imprecise information has on CRs, the fuzzy AHP [18, 19] and the fuzzy ANP [8, 15] were widely employed.
Meanwhile, some scholars advocated to revise the expression of the importance of CRs by utilizing an entroy
method [3, 4, 14]. In the other aspect, the determination of the relationships between CRs and ECs should
be concerned, because they are used to convert CRs into ECs, i.e., to transform the importance of CRs to the
importance of ECs. On the whole, in the previous literature, individual assessments and judgements to the
relationships between CRs and ECs have been expressed as crisp, random or fuzzy variables, and the fuzzy
linear and non-linear regressions as effective methods to investigate the functional relationships are frequently
applied in the QFD process [7, 9, 5, 10, 20, 28].

It can be seen that, all the above studies and researches on deriving the importance of CRs and the
relationships between CRs and ECs have laid a good foundation for the determination of the importance of
ECs and their rankings. On this basis, numerous studies have been conducted on how to obtain the importance
of ECs. Khoo and Ho [17] developed a framework of a fuzzy QFD system to address the ambiguity involved
in the QFD process. Wang [31] used the outranking approach based on possibility and necessity measures
to prioritize ECs. Chen et al. [6] calculated the technical importance of ECs using a fuzzy weighted average
method, and the fuzzy expected value operator proposed by Liu and Liu [26] was utilized to prioritize ECs.
Geng et al. [12] applied the fuzzy ANP and the modified fuzzy logarithmic least squares method to determine
the technical importance ratings of ECs. Besides, to expand the application scope, several studies have
considered the group decision making in QFD. Kwong et al. [21] proposed a fuzzy group decision-making
method which integrated the fuzzy weighted average method with a consensus ordinal ranking technique.
In their approach, a robustness index was introduced to evaluate the rankings of the importance of ECs.
Wang [32] presented a group decision-making approach to prioritize ECs under vagueness, which took group
decision behaviours of both customers and QFD team members into account. Furthermore, Song et al. [29]
recently applied an approach to get the importance of ECs by integrating the grey relationship analysis method
and the rough set theory.

Up to now, most of the variables or parameters applied in the QFD process were treated as either crisp
data or fuzzy variables. However, it is usually not appropriate enough because both the probability theory
and the fuzzy set theory may sometimes lead to counterintuitive results. In order to rationally address human
uncertain phenomena which are ubigatous in the QFD product development process, this paper proposes a
new uncertain expected value operator approach for determining the importance of ECs and their rankings
in QFD by utilizing the idea of the uncertainty theory, which was founded by Liu [22] and refined in Liu [24].
In our approach, uncertain variables are used to describe the phenomena where the uncertainty appears in
QFD process, i.e., the human evaluation involved in the importance of CRs and the relationships between
CRs and ECs.

The rest of the article is organized as follows. In the next section, some important concepts of uncertainty
theory is introduced that are used in QFD with uncertainty. In section 3, an uncertain expected value operator
method for determining the importance of ECs in the uncertain environment is presented. Finally, section
4 illustrates a numerical example about the design of a flexible manufacturing system, which is presented to
demonstrate the performance of the proposed approach.

2 Preliminaries

Uncertainty theory is an efficient tool to deal with the indeterministic information, especially expert data and
subjective estimations. In this section, we will introduce some basic concepts of uncertainty theory, which
will be applied for calculating the expected value in the sense of uncertain measure. More details are referred
to Liu [25].

2.1 Uncertainty Theory

Definition 1 ([22]) Let Γ be a nonempty set, and L a σ-algebra over Γ. The set function M : L → [0, 1] is
called an uncertain measure if it satisfies:
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(i) M{Γ} = 1 for the universal set Γ;

(ii) M{Λ}+M{Λc} = 1 for any event Λ;

(iii) For every countable sequence of events Λ1,Λ2, . . ., we have

M

{ ∞∪
i=1

Λi

}
≤

∞∑
i=1

M{Λi}.

Besides, in order to provide the operational law, Liu (2009) defined the product uncertain measure as follows:

(iv) Let (Γk,Lk,Mk) be uncertainty spaces for k = 1, 2, . . .. Then the product uncertain measure M is an
uncertain measure satisfying

M

{ ∞∏
k=1

Λk

}
=

∞∧
k=1

Mk{Λk}

where Λk are arbitrarily chosen events from Lk for k = 1, 2, . . ., respectively.
Based on the concept of uncertain measure, a formal definition of an uncertain variable is given as follows.

Definition 2 ([22]) An uncertain variable is a measurable function ξ from an uncertainty space (Γ,L,M) to
the set of real numbers, i.e., for any Borel set B of real numbers, the set

{ξ ∈ B} = {γ ∈ Γ
∣∣ ξ(γ) ∈ B}

is an event.

In order to describe uncertain variables, the concept of the uncertainty distribution is adopted, and the
regular uncertainty distribution is defined.

Definition 3 ([22]) The uncertainty distribution Φ of an uncertain variable ξ is defined by

Φ(x) = M{ξ ≤ x} (1)

for any real number x.

Definition 4 ([24]) An uncertainty distribution Φ(x) is said to be regular if it is a continuous and strictly
increasing function with respect to x at which 0 < Φ(x) < 1, and

lim
x → −∞

Φ(x) = 0, lim
x → +∞

Φ(x) = 1. (2)

The inverse function Φ−1(α) is called the inverse uncertainty distribution of an uncertain variable ξ if it
exists and is unique for each α ∈ (0, 1). The inverse uncertainty distribution plays a crucial role in operations
of independent uncertain variables with regular uncertainty distribution.

Definition 5 ([23]) The uncertain variables ξ1, ξ2, . . ., ξn are said to be independent if

M

{
n∩

i=1

{ξi ∈ Bi}

}
=

n∧
i=1

M{ξi ∈ Bi} (3)

for any Borel sets B1, B2, . . . , Bn of real numbers.

Theorem 1 ([24]) Let ξ1, ξ2, . . ., ξn be independent uncertain variables with regular uncertainty distributions
Φ1, Φ2, . . ., Φn, respectively, and f : ℜn → ℜ a continuous and strictly increasing function. Then the uncertain
variable ξ = f(ξ1, ξ2, . . . , ξn) has an inverse uncertainty distribution

Ψ−1(α) = f(Φ−1
1 (α),Φ−1

2 (α), . . . ,Φ−1
n (α)). (4)

The expected value of an uncertain variable is the average value in the sense of uncertain measure, and
can be represented by the inverse uncertainty distribution as follows.
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Definition 6 ([22]) Let ξ be an uncertain variable. Then the expected value of ξ is defined by

E[ξ] =

∫ +∞

0

M{ξ ≥ x}dx−
∫ 0

−∞
M{ξ ≤ x}dx (5)

provided that at least one of the two integrals is finite.

Theorem 2 ([24]) Let ξ be an uncertain variable with uncertainty distribution Φ. Then

E[ξ] =

∫ +∞

0

(1− Φ(x))dx−
∫ 0

−∞
Φ(x)dx (6)

Theorem 3 ([24]) Let ξ and η be independent uncertain variables with finite expected values. Then for any
real numbers a and b, we have

E[aξ + bη] = aE[ξ] + bE[η]. (7)

Theorem 4 ([24]) Let ξ be an uncertain variable with a regular uncertainty distribution. Then

E[ξ] =

∫ 1

0

Φ−1(α)dα (8)

where Φ and Φ−1 are the uncertainty distribution and the inverse uncertainty distribution of ξ, respectively.

To the monotone function of uncertain variables, the expected value can be calculated as follows.

Theorem 5 ([27]) Assume that ξ1, ξ2, . . . , ξn are independent uncertain variables with regular uncertainty dis-
tributions Φ1,Φ2, . . . ,Φn, respectively. If f(x1, x2, · · · , xn) is strictly increasing with respect to x1, x2, . . . , xm

and strictly decreasing with respect to xm+1, xm+2, . . . , xn, then the uncertain variable ξ = f(ξ1, ξ2, · · · , ξn)
has an expected value

E[ξ] =

∫ 1

0

f(Φ−1
1 (α), · · · ,Φ−1

m (α),Φ−1
m+1(1− α), · · · ,Φ−1

n (1− α))dα. (9)

2.2 Linear Uncertainty Distribution

Uncertainty distribution is a carrier of incomplete information of uncertain variable. Linear uncertainty
distribution as one of the most common uncertainty distributions is introduced in this subsection, and will be
used in the numerical example of section 4.

Definition 7 ([22]) An uncertain variable ξ is called linear if it has a linear uncertainty distribution

Φ(x) =


0, if x ≤ a

(x− a)/(b− a), if a ≤ x ≤ b

1, if x ≥ b

(10)

denoted by L(a, b), where a and b are real numbers with a < b.

Definition 8 ([22]) Let ξ be an uncertain variable with uncertainty distribution Φ. Then the inverse function
Φ−1(α) is called the inverse uncertainty distribution of ξ.

The inverse uncertainty distribution of linear uncertain variable L(a, b) is

Φ−1(α) = (1− α)a+ αb. (11)
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3 Determination of the Importance of ECs with Uncertainty

Quality function deployment (QFD) is a planning tool for process and product development, which aims at
achieving maximum customer satisfaction by listening to the voice of customers. It employs the matrix, called
House of Quality (HoQ), to establish the relationships between CRs and ECs, as shown in Figure 1.

EC1 ECj ECn

CR1 W 1

CRi W i U ij

CRm Wm

Y 1 Y j Y n

Customer

Requirements

Engineering   CharacteristicsRelative

Importance

of CRs

Improtance of ECs

Figure 1: QFD relationship matrix

As a key strategic tool, HoQ is used for translate CRs into ECs in product improvement and quality
management. In this conversion process, both the relative importance of CRsWi and the relationship measures
between CRs and ECs Uij are quite significant coefficients, since the importance of ECs Yj can be derived
from Wi via Uij .

In the complex decision process, obtaining the importance of CRs and the relationship measures between
CRs and ECs in HoQ are crucial steps, since they are finally transformed into the importance of ECs. Based
on the importance and rankings of ECs, a company can purposefully make the product more attractive
to customers and thus gains more competitive advantages. However, in the translating process, a large
number of subjective judgments have to be made by both customers and QFD team members. Due to the
inherently ambiguity in subjective judgments, product planning is becoming more complicated, particularly
in an indeterministic environment.

Based on the previous literature, in order to deal with ambiguous information, the fuzzy set theory has
been widely suggested and applied for design imprecision in current QFD. Actually, we think that it seems
more reasonable to use the uncertainty theory for better capturing those linguistic inputs in the QFD process.
On these grounds, a new approach for determining the importance of ECs in QFD by the uncertainty theory
is presented in this section.

3.1 Problem Notations

Assume that a product is designed with m CRs, n ECs, k customers and b experts. Before formulating this
problem in the uncertain environment, some notations that are used in the paper throughout are shown below:

- i = 1, 2, . . . ,m : the index of customer requirements;

- j = 1, 2, . . . , n : the index of engineering characteristics;

- l = 1, 2, . . . , k : the index of customers surveyed in a target market;
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- s = 1, 2, . . . , b : the index of experts involved in the design of a particular product;

- CRi : the ith customer requirement, where i = 1, 2, . . . ,m;

- ECj : the jth engineering characteristic, where j = 1, 2, . . . , n;

- Cl : the lth customer surveyed in a target market, where l = 1, 2, . . . , k;

- Ds : the sth expert involved in the product planning, where s = 1, 2, . . . , b;

- W l
i : the lth customer’s individual preference on CRi, which is an uncertain variable, i = 1, 2, . . . ,m, l =
1, 2, . . . , k;

- {W ∗
1 , · · · ,W ∗

v , · · · ,W ∗
p } : A pre-defined uncertain weight set that is used to express the individual weight

W l
i , v = 1, 2, . . . , p, where p is the number of linguistic terms in the uncertain set of weights;

- W = (W1, · · · ,Wi, · · · ,Wm)T : the uncertain relative importance vector of CRs. EachWi, i = 1, 2, . . . ,m,
is the uncertain relative importance of CRi by synthesizing the individual preferences of k customers on
CRi, which is denoted by W l

i ;

- Us
ij : the relationship measure between CRi and ECj with respect to Ds, which is also an uncertain
variable, i = 1, 2, . . . ,m, j = 1, 2, . . . , n, s = 1, 2, . . . , b;

- {U∗
1 , · · · , U∗

t , · · · , U∗
q } : A pre-defined uncertain strength set that is used to evaluate the relationship

measures between CRs and ECs, t = 1, 2, . . . , q, where q is the number of linguistic terms in the
uncertain set of the relationship strength;

- U = (Uij)m×n : the uncertain relationship matrix between CRs and ECs, in which Uij denotes the
uncertain relationship measure between CRi and ECj by aggregating the individual assessments of b
experts on the relationship between CRi and ECj , namely Us

ij , i = 1, 2, . . . ,m, j = 1, 2, . . . , n;

- Y = (Y1, · · · , Yj , · · · , Yn)
T : the uncertain importance vector of ECs, in which Yj is the uncertain impor-

tance of ECj , j = 1, 2, . . . , n;

- Y ′ = (Y ′
1 , · · · , Y ′

j , · · · , Y ′
n)

T : the uncertain relative importance vector of ECs, in which Y ′
j , j = 1, 2, . . . , n

is the normalized uncertain importance of ECj , i.e., Yj . It is within the range of 0 to 1.

- Φl
i : the uncertainty distribution of the relative importance of CRi evaluated by Cl, i.e., W l

i , i =
1, 2, . . . ,m, l = 1, 2, . . . , k;

- Ψs
ij : the uncertainty distribution of the relationship measure between CRi and ECj judged by Ds, i.e.,
Us
ij , i = 1, 2, . . . ,m, j = 1, 2, . . . , n, s = 1, 2, . . . , b;

- Φi : the uncertainty distribution of the integrated relative importance of CRi, i.e., Wi, i = 1, 2, . . . ,m;

- Ψij : the uncertainty distribution of the integrated relationship measure between CRi and ECj , i.e., Uij ,
i = 1, 2, . . . ,m, j = 1, 2, . . . , n.

3.2 Formulation of the Importance of ECs

Practically speaking, the importance of ECs is closely linked with customer satisfaction. Obtaining the
importance of ECs can help product planners to gain a better understanding of what the customers really
want, and thereby make the right manufacturing decisions. In this paper, the relative importance of CRs and
the relationships between CRs and ECs are aggregated to define the uncertain importance of ECs, which can
be expressed as follows,

Y = (W TU)T . (12)

The relative weight of each CR is one of key inputs to QFD. Generally, the more important a CR is, the
higher weight it should get. CRs are gathered by analyzing questionnaires and surveys with regard to the
product. The preferences of different customers on a specific product differ according to personal tastes and
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individual needs. By synthesizing the uncertain weights of k customers, the relative weight of the CRi, can
be obtained as

Wi =
1

k

k∑
l=1

W l
i , i = 1, 2, . . . ,m, (13)

which is a weighted average of W l
i , l = 1, 2, . . . , k, representing a trade-off among the customers surveyed.

In QFD, it is natural and reasonable to suppose that W l
i , i = 1, 2, . . . ,m, l = 1, 2, . . . , k, are independent

and nonnegative uncertain variables with regular distributions Φl
i, i = 1, 2, . . . ,m, l = 1, 2, . . . , k, respectively.

Thus, the importance of CRs Wi, i = 1, 2, . . . ,m, are also independent and nonnegative uncertain variables,
following regular uncertainty distributions Φi, i = 1, 2, . . . ,m, respectively.

Similar to the relative weights of CRs, by aggregating the evaluation of b experts, the final relationship
measure between the ith CR and the jth EC can be derived from the following equation,

Uij =
1

b

b∑
s=1

Us
ij , i = 1, 2, . . . ,m, j = 1, 2, . . . , n, (14)

which is also a weighted average of Us
ij , s = 1, 2, . . . , b, representing a balance of the relationship measures

between CRs and ECs judged by all the consulted experts. In QFD, we are also allowed to assume that
Us
ij , i = 1, 2, . . . ,m, j = 1, 2, . . . , n, s = 1, 2, . . . , b, are independent and nonnegative uncertain variables with

regular uncertainty distributions Ψs
ij , i = 1, 2, . . . ,m, l = 1, 2, . . . , k, s = 1, 2, . . . , b, respectively. Therefore,

the relationship measures between CRs and ECs, i.e., Uij , i = 1, 2, . . . ,m, j = 1, 2, . . . , n, are independent
and nonnegative uncertain variables too, following regular uncertainty distributions Ψij , i = 1, 2, . . . ,m, j =
1, 2, . . . , n, respectively.

Now, let us consider the importance of ECs. Through survey data collection of both customers and experts
as well as the above Eqs. (13) and (14), we can get the importance of CRs and the relationship measures
between CRs and ECs. Then, according to Eq. (12), the uncertain importance of ECj , denoted by Yj , can be
expressed as follows,

Yj =
m∑
i=1

WiUij , j = 1, 2, . . . , n. (15)

As such, CRs are successfully transformed into ECs. Since Wi and Uij are uncertain variables, Yj is also an
uncertain variable. Then in the next subsection, our discussion will refer to how to measure and calculate the
importance of ECs, i.e., Yj , j = 1, 2, . . . , n, in details.

3.3 An Uncertain Expected Value Operator Method

Notably, although the importance of ECs expressed by uncertain variables seems quite appropriate in the
practical environment, comparing uncertain variables is not as straightforward as comparing crisp variables.
For this reason, an uncertain expected value operator method is proposed to measure the importance of ECs
in order to make it meaningful.

As shown in Eq. (15), the expected value of the uncertain importance of ECj , i.e., Yj , can be given by

E [Yj ] = E

[
m∑
i=1

WiUij

]
, j = 1, 2, . . . , n. (16)

After that, according to Definition 6, the expected value of Yj is defined by

E[Yj ] =

∫ +∞

0

M

{
m∑
i=1

WiUij ≥ x

}
dx−

∫ 0

−∞
M

{
m∑
i=1

WiUij ≤ x

}
dx, (17)

which is described by the uncertain measure.
In addition, as mentioned above, in the QFD process, W1,W2, . . . ,Wm, U1j , U2j , . . . , Umj are indepen-

dent uncertain variables with regular uncertainty distributions Φ1,Φ2, . . . ,Φm,Ψ1j ,Ψ2j , . . . ,Ψmj , respectively.
Moreover,

Yj =
m∑
i=1

WiUij



278 J. Liu. et al.: Expected Value-Based Method to Determine the Importance of Engineering Characteristics

is strictly increasing with respect to W1,W2, . . . ,Wm, U1j , U2j , . . . , Umj . Then based on Theorem 5, the
expected value of the uncertain importance of ECj Eq. (17) can be rewritten as

E[Yj ] =

∫ 1

0

(
m∑
i=1

Φ−1
i (r)Ψ−1

ij (r)

)
dr, (18)

which is represented by the inverse uncertainty distribution of Yj .
Since we know that W1U1j ,W2U2j , . . . ,WmUmj are independent of each other according to the interpre-

tation above, on the basis of Theorem 3, E[Yj ] can be calculated by

E[Yj ] =
m∑
i=1

E[WiUij ] =
m∑
i=1

∫ 1

0

Φ−1
i (r)Ψ−1

ij (r)dr. (19)

Nevertheless in fact, in the construction process of a product, designers often have to take large amounts
to of ECs into account. Hence, rating the importance of ECs is essential, because it has a great help on
preferring some valuable ECs to make emphatic improvements and filtering, deleting, and redefining ECs.
Given this, for convenience of ranking the importance of ECs, it is necessary to normalize E[Yj ]. Then, the
relative importance of ECj , i.e., the normalized expected value of Yj , denoted by Y ′

j , can be expressed as

Y ′
j =

E[Yj ]
n∑

j=1

E[Yj ]

, j = 1, 2, . . . , n, (20)

where 0 < Y ′
j < 1. Through this step, all of the importance of ECs can be scaled from 0 to 1.

Up to now, based on the concepts of the uncertainty theory, the importance of ECs has been determined
by utilizing the presented uncertain expected value operator method.

In many practical planning processes, it is unrealistic to expect customers to provide much elaborate
information timely. Therefore, this requires the design team to extract useful information from a large
amount of subjective evaluations offered by target customers. Our method provides a way to determine the
importance of ECs according to the relative importance of CRs and the relationships between CRs and ECs.
It can help the designers to meet customer demands with lower cost and shorter development time, and finally
achieve higher returns.

4 Numerical Example

In this section, the design of a flexible manufacturing system (FMS) [17, 6, 21] is applied in this paper to
demonstrate the application of the proposed approach for determining the importance of ECs. Questionnaire
surveys are conveyed on design experts and professional customers to elicit the major customer requirements.
Through survey data processing and analysis, eight major CRs are determined to represent the paramount
needs of the customers, namely, “high production volume” (CR1), “short setup time” (CR2), “load carrying
capacity” (CR3), “user friendliness” (CR4), “associated functions” (CR5), “modularity” (CR6), “wide tool
variety” (CR7), and “wide product variety” (CR8).

In light of the design team’s experience and expert knowledge, ten major ECs are identified corresponding
to the eight major CRs, namely, “automatic gauging” (EC1), “the tool change system” (EC2), “tool monitor-
ing system” (EC3), “coordinate measuring machine” (EC4), “automated guided vehicle” (EC5), “conveyor”
(EC6), “programmable logic controller” (EC7), “storage and retrieval system” (EC8), “modular fixturing”
(EC9), and “robots” (EC10).

The relative uncertain importance of CRs is classified into seven levels to describe the difference of impor-
tance, that is, very unimportant, quite unimportant, unimportant, some important, moderately important,
important, and very important. A pre-defined uncertain weight set {W ∗

1 ,W
∗
2 ,W

∗
3 ,W

∗
4 ,W

∗
5 ,W

∗
6 ,W

∗
7 } is used

to quantize these seven linguistic terms. Similarly, the relationships between CRs and ECs are linguistically
judged as none, weak, moderate, strong, or very strong, which can be expressed by a pre-defined uncertain
strength set {U∗

1 , U
∗
2 , U

∗
3 , U

∗
4 , U

∗
5 }.

It is supposed that the uncertain importance of CRs W ∗
v , v = 1, 2, . . . , 7, and the uncertain relationships

between CRs and ECs U∗
t , t = 1, 2, . . . , 5, are linear uncertain variables, given in Table 1.
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Table 1: Uncertain linguistic variables of importance of CRs and relationships between CRs and ECs

Item Uncertain variable Uncertainty distribution

W ∗
1 L(0, 0.1)

W ∗
2 L(0.1, 0.3)

W ∗
3 L(0.3, 0.4)

Importance of CRs W ∗
4 L(0.4, 0.6)

W ∗
5 L(0.6, 0.7)

W ∗
6 L(0.7, 0.9)

W ∗
7 L(0.9, 1)

U∗
1 L(0, 0.15)

U∗
2 L(0.1, 0.4)

Relationships between CRs and ECs U∗
3 L(0.4, 0.6)

U∗
4 L(0.6, 0.9)

U∗
5 L(0.85, 1)

Suppose that ten customers are surveyed in the target market, represented by Cl, l = 1, 2, . . . , 10, utilizing
uncertain variables W ∗

v , v = 1, 2, . . . , 7, to express their personal evaluations on each CR as summarized
in Table 2. After synthesizing individual weights of the ten customers on the eight CRs by Eq. (13), the
final relative importance of eight CRs W can be obtained as W1 ∼ L(0.81, 0.94),W2 ∼ L(0.5, 0.65),W3 ∼
L(0.71, 0.86),W4 ∼ L(0.67, 0.81),W5 ∼ L(0.52, 0.66),W6 ∼ L(0.66, 0.82),W7 ∼ L(0.62, 0.77), and W8 ∼
L(0.73, 0.87), which are shown on the left wall of HoQ in Table 3.

Table 2: The relative uncertain weights of eight CRs assessed by ten customers

CR1 CR2 CR3 CR4 CR5 CR6 CR7 CR8

C1 W ∗
6 W ∗

5 W ∗
7 W ∗

7 W ∗
5 W ∗

5 W ∗
4 W ∗

7

C2 W ∗
7 W ∗

4 W ∗
6 W ∗

6 W ∗
5 W ∗

5 W ∗
6 W ∗

7

C3 W ∗
7 W ∗

5 W ∗
6 W ∗

5 W ∗
5 W ∗

6 W ∗
4 W ∗

7

C4 W ∗
7 W ∗

4 W ∗
7 W ∗

5 W ∗
5 W ∗

6 W ∗
4 W ∗

6

C5 W ∗
7 W ∗

5 W ∗
6 W ∗

6 W ∗
5 W ∗

6 W ∗
4 W ∗

6

C6 W ∗
7 W ∗

4 W ∗
5 W ∗

5 W ∗
5 W ∗

6 W ∗
4 W ∗

6

C7 W ∗
7 W ∗

4 W ∗
6 W ∗

6 W ∗
4 W ∗

5 W ∗
4 W ∗

6

C8 W ∗
6 W ∗

5 W ∗
5 W ∗

5 W ∗
4 W ∗

6 W ∗
6 W ∗

5

C9 W ∗
6 W ∗

5 W ∗
6 W ∗

6 W ∗
4 W ∗

5 W ∗
6 W ∗

5

C10 W ∗
5 W ∗

4 W ∗
5 W ∗

5 W ∗
4 W ∗

6 W ∗
6 W ∗

5

Meanwhile, it is assumed that seven experts, denoted by Ds, s = 1, 2, . . . , 7, are involved in evaluating
the relationships between CRs and ECs by using uncertain variables U∗

t , t = 1, 2, . . . , 5. After aggregating all
the assessments of each expert using Eq. (14), the relationship matrix of eight CRs and ten ECs U can be
obtained, as shown in the room of HoQ in Table 3.

Therefore, the uncertain importance of EC1, denoted by Y1, can be expressed as follows,

Y1 =
8∑

i=1

WiUi1 = W1U11 +W2U21 +W3U31 +W4U41 +W5U51 +W6U61 +W7U71 +W8U81. (21)
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Since the relative weights of CRs and the relationship measures between CRs and ECs are uncertain variables,
the proposed uncertain expected value operator method is employed to calculate the importance of ECs. Then
according to Eq. (17), the expected value of Y1 is defined by

E[Y1] = E

[
8∑

i=1

WiUi1

]

=

∫ +∞

0

M

{
8∑

i=1

WiUi1 ≥ x

}
dx−

∫ 0

−∞
M

{
8∑

i=1

WiUi1 ≤ x

}
dx.

(22)

As W1,W2, . . . ,W8, U11, U21, . . . , U81 are independent and nonnegative linear uncertain variables with linear
uncertainty distributions Φ1,Φ2, . . . ,Φ8,Ψ11,Ψ21, . . . ,Ψ81, respectively, and

Y1 =
8∑

i=1

WiUi1

is a strictly increasing function with respect to W1,W2, . . . ,W8, U11, U21, . . . , U81, in accordance with Eq. (18),
the expected value of the uncertain importance of EC1 can be rewritten as

E[Y1] =

∫ 1

0

[
8∑

i=1

Φ−1
i (r)Ψ−1

i1 (r)

]
dr

=

∫ 1

0

[
Φ−1

1 (r)Ψ−1
11 (r) + Φ−1

2 (r)Ψ−1
21 (r) + · · ·+Φ−1

8 (r)Ψ−1
81 (r)

]
dr.

(23)

Besides, W1U11,W2U21, . . . ,W8U81 are independent of each other, then according to Eq. (19), the expected
value of Y1 can be calculated as follows,

E[Y1] =

8∑
i=1

E [WiUi1]

=

8∑
i=1

∫ 1

0

[
Φ−1

i (r)Ψ−1
i1 (r)

]
dr

=

∫ 1

0

Φ−1
1 (r)Ψ−1

11 (r)dr +

∫ 1

0

Φ−1
2 (r)Ψ−1

21 (r)dr + · · ·+
∫ 1

0

Φ−1
8 (r)Ψ−1

81 (r)dr.

(24)

Afterwards, in line with Eq. (11), the parameters corresponding to the linear uncertainty distributions Φi(r)
and Ψi1(r), i = 1, 2, . . . , 8, as shown in Table 3, can be brought into the above Eq. (24). Then we can obtain

E[Y1] =

∫ 1

0

Φ−1
1 (r)Ψ−1

11 (r)dr +

∫ 1

0

Φ−1
2 (r)Ψ−1

21 (r)dr + · · ·+
∫ 1

0

Φ−1
8 (r)Ψ−1

81 (r)dr

=

∫ 1

0

[(1− r)× 0.81 + r × 0.94][(1− r)× 0.425 + r × 0.65]dr

+

∫ 1

0

[(1− r)× 0.5 + r × 0.65][(1− r)× 0.17 + r × 0.375]dr

+ · · ·

+

∫ 1

0

[(1− r)× 0.73 + r × 0.87][(1− r)× 0.32 + r × 0.535]dr

= 3.043.

(25)

Following the similar calculation of the importance of EC1, the expected values of the uncertain importance
of EC2,EC3, . . . ,EC10 can also be obtained. The results are summarized in the first line of Table 4.
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Table 4: The uncertain expected values and the ordinal ranking results of the importance of ten ECs

EC1 EC2 EC3 EC4 EC5 EC6 EC7 EC8 EC9 EC10

E[Yj ] 3.043 2.858 3.528 2.912 1.962 2.409 3.452 2.686 2.324 2.010

Y ′
j 0.112 0.105 0.130 0.107 0.072 0.089 0.127 0.099 0.086 0.074

Ranking 3 5 1 4 10 7 2 6 8 9

In the meantime, for purpose of ranking ECs, we normalize E[Yj ], j = 1, 2, . . . , 10, according to Eq. (20)
to get the relative importance of ECs. For example, the normalized expected value of Y1, i.e., Y

′
1 , can be

calculated by

Y ′
1 =

E[Y1]∑10
j=1 E[Yj ]

=
E[Y1]

E[Y1] + E[Y2] + E[Y3] + E[Y4] + E[Y5] + E[Y6] + E[Y7] + E[Y8] + E[Y9] + E[Y10]

=
3.043

3.043 + 2.858 + 3.582 + 2.912 + 1.962 + 2.409 + 3.452 + 2.686 + 2.324 + 2.010

= 0.112.

(26)

Likewise, similar calculations for Y ′
2 , Y

′
3 , . . . , Y

′
10 can be done and the results are listed in the second line of

Table 4. Then the relative importance of ECs are sorted in accordance with the values of Y ′
j . The larger the

value of Y ′
j is, the higher ranking ECj can get. Therefore, it can be seen that the rankings of the importance

of ECs based on the proposed approach and the stated criterion can be obtained as follows:

EC3 ≻ EC7 ≻ EC1 ≻ EC4 ≻ EC2 ≻ EC8 ≻ EC6 ≻ EC9 ≻ EC10 ≻ EC5,

where ≻ means “is more preferred than”. The third line of Table 4 shows the above rankings of ten ECs.
For an EC, owning a large value of importance or ranking indicates that the company should put more

energy and efforts on it in order to ensure the corresponding product development and improvement successful,
as well as the customers satisfied. By contrast, if the importance or ranking of an EC is not so high, the
company should prefer to disregard or eliminate it and then try to redefine a new effective EC rather than
keep much concern on it. In our case, we can see that “tool monitoring system” (EC3), “programmable logic
controller” (EC7) and “automatic gauging” (EC1) have greater priorities than the other ECs, which means
that the product designers should pay more attention on achieving and promoting these three engineering
qualities. On the other hand, as “automated guided vehicle” (EC5) and “robots” (EC10) are given the lowest
rankings, the product designers should consider removing them timely, and it is necessary to discover new
ECs to replace them.

In the end, we can draw a conclusion that the proposed uncertain expected value operator method has
a good performance in reflecting the imprecise human language information to the uncertain environments.
This method can not only achieve reasonable and useful results, but also benefit for supporting the continuous
product quality improvement in the QFD process practically. Once the importance of ECs and their rankings
are determined, they would make the technical staffs of the enterprise more clear and convenient to satisfy
and even track the customer requirements in designing or improving a product.

5 Conclusions

In this paper, a novel approach to ascertain the importance of ECs in uncertain environments was proposed.
To sum up, our contributions to the related research area mainly lies in the following two aspects: (i) In the
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proposed QFD problem, the uncertainty theory was applied to account for the imprecision or vagueness of
human languages. The linguistic inputs including the relative improtance of CRs and relationships between
CRs and ECs in the QFD process were represented by uncertain variables, as well as the importance of ECs;
(ii) We introduced an uncertain expected value operator method for determining the importance of ECs and
their rankings, the performance of which was well certified by a practical product development example. This
method could provide effective supports for both of the quality assurance in product development and the
continuous quality progress improvement in product redesign.

In the future research, the correlations among ECs, the benchmarking information compared to competitors
or other types of uncertain variables can be taken into consideration to enrich our study in the area of
determination of the importance of ECs and its applications.
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