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Abstract

This note addresses additive interval set functions constructed by joint credibility distributions. When
joint credibility distributions can be represented as the product or minimum of their marginal credibility
distributions, the constructed additive interval set functions are positive metrics so that Lebesgue-Stieltjes
(L–S) measures can be generated by joint credibility distributions. In general case, the constructed additive
interval set function has bounded variation, and can be represented as the difference of two positive additive
interval set functions. Finally, we discuss the measurable sets with respect to positive metrics.
c©2014 World Academic Press, UK. All rights reserved.
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1 Main Results

We first recall some basic concepts about interval set functions [1]. Let <n be the Euclidean space, and S its
nonempty open subset. In this section, we take S as a basic region (basic set), and just consider the closed
subintervals I = [a, b] of basic region S, where a ≤ b. If for any interval I, we assign a real number α(I),
then we define an interval set function α(I) on S. If I is the union of two separable intervals I1 and I2, one
has α(I) = α(I1) + α(I2), then α(I) is called an additive interval set function. If J is a degenerated closed
interval or empty set ∅, then one has α(J) = 0.

We now consider the joint credibility distribution of a fuzzy vector. The interested reader may refer to
[2] and the references therein for the required knowledge about credibility measure theory. For an n-ary
fuzzy vector ξ = (ξ1, ξ1, . . . , ξn), its joint credibility distribution is denoted as αξ(x) = Cr{ξ1 ≤ x1, ξ2 ≤
x2, . . . , ξn ≤ xn}, for any x ∈ S. For each 1 ≤ i ≤ n, the marginal credibility distribution of ξi is denoted as
αξi(xi) = Cr{ξi ≤ xi}. According to [1], we can construct an additive interval set function by using the joint
credibility distribution αξ(x).

If I = [a, b] is a closed subinterval of S, where a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn), then an
additive interval set function can be constructed as follows

αξ(I) =
∑
c

(−1)v(c)Cr{ξ1 ≤ c1, ξ2 ≤ c2, . . . , ξn ≤ cn}, (1)

where c = (c1, c2, . . . , cn) runs over the entire endpoints of the interval [a, b] (i.e., for all points c such that
ck = ak or ck = bk for 1 ≤ k ≤ n), and v(c) is the number of components ak in the vector c. In what
follows, we call αξ(I) as the additive interval set function constructed by the joint credibility distribution
Cr{ξ1 ≤ x1, ξ2 ≤ x2, . . . , ξn ≤ xn}.

A joint credibility distribution αξ(x) is called monotone metric function if the constructed additive interval
set function αξ(I) is positive in the sense that αξ(I) ≥ 0 for any subinterval I ⊆ S. In the following, we give
two cases under which the joint credibility distributions are monotone metric functions. We state them in the
following two theorems.

∗This work was supported by the NSFC (No. 61374184)
†Corresponding author.
Email: yliu@hbu.edu.cn (Y.K. Liu). Tel. +86-312-5066629.



240 Y.K. Liu and Y. Liu: Measure Generated by Joint Credibility Distribution Function

Theorem 1. If a joint credibility distribution αξ(x) is the product of its marginal credibility distributions
αξi(xi) for any x ∈ S, then the following additive interval set function

αpξ(I) =
∑
c

(−1)v(c)
n∏
i=1

Cr{ξi ≤ ci} (2)

is a positive metric. As a result, the joint credibility distribution αξ(x) is a monotone metric function.

Theorem 2. If a joint credibility distribution αξ(x) is the minimum of its marginal credibility distributions
αξi(xi) for any x ∈ S, then the following additive interval set function

αmξ (I) =
∑
c

(−1)v(c)
n

min
i=1

Cr{ξi ≤ ci} (3)

is a positive metric. As a result, the joint credibility distribution αξ(x) is a monotone metric function.

In general situation, the additive interval set function αξ(I) constructed by Eq.(1) is not necessary a
positive metric. To deal with the general case, we write

α+
ξ (I) = sup

J⊆I
αξ(J), α−

ξ (I) = sup
J⊆I
{−αξ(J)}, (4)

where J = ∪Iv is the union of a finite number of separable closed intervals Iv such that αξ(J) =
∑
αξ(Iv).

Since αξ(∅) = 0, we know α+
ξ (I) ≥ 0 and α−

ξ (I) ≥ 0. The positive interval set functions α+
ξ (I) and α−

ξ (I)

are called upper variation and lower variation of αξ(I), respectively. In addition, the following interval set
function

|αξ|(I) = α+
ξ (I) + α−

ξ (I) (5)

is called the total variation or absolute variation of αξ(I). Note that |αξ|(I) <∞ for any closed subinterval
of S. Therefore, the interval set function αξ(I) has bounded variation over S. In this case, we have

αξ(I) = α+
ξ (I)− α−

ξ (I). (6)

Theorem 3. For any fuzzy vector ξ with joint credibility distribution αξ(x) on S, the additive interval set

function αξ(I) constructed by Eq.(1) has bounded variation over S. Moreover, the upper variation α+
ξ (I),

lower variation α−
ξ (I) and total variation |αξ|(I) of αξ(I) are all positive metrics.

Finally, we deal with the L-S measure generated by a positive metric αξ(I). Recall that a nonempty open
set G ⊆ S has a regular representation in the sense that G is the union of countably separable closed intervals,
and each closed subset of G can be covered by a finite number of such closed intervals. If {Iv} is a regular
representation of a nonempty open set G, then the L–S measure of G with respect to αξ(I) is calculated by

µα(G) =
∑
v

αξ(I). (7)

Furthermore, for any subset M of S, its outer L–S measure with respect to αξ(I) is computed by

µ∗
α(M) = inf

G⊇M
µα(G), (8)

where inf is taken for all open sets G such that M ⊆ G ⊆ S. As a consequence, a set M ⊆ S is called
measurable with respect to αξ(I) iff

inf
G⊇M

µ∗
α(G−M) = 0. (9)

If M is measurable, then its L–S measure is usually denoted by µα(M) or α(M) for convenience.
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