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Abstract

In many practical situations, we need to minimize an expression of the type
∑
|ci|. The problem is

that most efficient optimization techniques use the derivative of the objective function, but the function
|x| is not differentiable at 0. To make optimization efficient, it is therefore reasonable to approximate |x|
by a smooth function. We show that in some reasonable sense, the most computationally efficient smooth
approximation to |x| is the function

√
x2 + µ, a function which has indeed been successfully used in such

optimization.
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1 Need to Approximate |x| by Smooth Functions

Finding parameters of a model: general problem. In many practical situations, we need to determine
the parameters of the model from the experimental data. In more precise terms:

• we know that the quantities x = (x1, . . . , xn) and y = (y1, . . . , ym) are related by a dependence y =
f(x, c) with some parameters c = (c1, . . . , cp);

• we measure the values x(k) and y(k) (k = 1, . . . ,K) in several situations; and

• we want to find the values x for which e(k)
def
= y(k) − f(x(k), c) ≈ 0.

An important particular case of this class of problems is formed by inverse problems, when we need to find,
e.g., the spatial density distribution c which leads to the observed values y(k) of the gravity field at different
spatial locations x(k).

Finding parameters of the model: traditional approach. Usually, the main reason why the observed
value y(k) is somewhat different from f(x(k), c) is that measurements are never absolutely accurate. As a
result, even if the model is exact, i.e., if y = f(x, c) for the actual (unknown) values x and y, the measurement
results y(k) and x(k) are slightly different from y and x, and thus, y(k) − f(x(k), c) 6= 0.

Often, there are many different independent factors leading to measurement errors. It is known that,
under certain reasonable conditions, the distribution of the joint effect of many independent factors is close
to normal; this result is known as the Central Limit Theorem (see, e.g., [14]). Under these conditions, it is
reasonable to conclude that the measurement errors y(k)−y are normally distributed, and thus, the differences
e(k) = y(k) − f(x(k), c) are normally distributed.

If the mean of the measurement error is different from 0, i.e., if the measuring instrument has a bias,
then we can recalibrate this instrument and make this difference equal to 0. Thus, the differences e(k) are
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independent and normally distributed with mean 0. Usually, the mean square magnitude of the measurement
error does not change much within a reasonable range; so, we can safely assume that all the variables e(k)

have the same standard deviation σ. Under this assumption, the probability density corresponding to each
residual e(k) has the form

1√
2π · σ

exp

(
−
(
e(k)
)2

2σ2

)
.

Since measurement errors corresponding to different measurements are independent, the probability density
corresponding to all the residual values e(1), . . . , e(K) is equal to

L =

K∏
k=1

1√
2π · σ

exp

(
−
(
e(k)
)2

2σ2

)
.

It is reasonable to find the values of the parameters c for which this probability is the largest possible; this
idea is known as the Maximum Likelihood approach. Maximizing L is equivalent to minimizing

− ln(L) = const +
1

2σ2
·

K∑
k=1

(
e(k)
)2
,

i.e., equivalently, to minimizing the sum
K∑

k=1

(
e(k)
)2

.

Need to go beyond normal distributions. Empirically, in about half of the cases, the distribution of
measurement error is different from normal; see, e.g., [9, 10].

In many such situations, the results produced by the Least Squares method can be misleading; see,
e.g., [7]. For example, in the simplest case when there is no input and y = c, we have a system of approximate
equations e(k) = y(k) − c ≈ 0. For this system, the Least Squares method leads to the arithmetic average
c = (y(1) + . . .+ y(K))/K. For non-normal distributions, we can have outliers (i.e., values for which y(k) � c
or y(k) � c) with a reasonable probability. In this case, if c = 0 and almost all out of 100 observed values are
within the interval [−0.1, 0.1], but one value y(k) = 106 is an outlier, the arithmetic average is equal to ≈ 104.

In situations when we know the probability density functions, we can use the Maximum Likelihood method;
however, in many practical situations, we do not know the probability distribution. To decrease the dependence
on outliers in such situations, special robust statistical methods have been designed; see, e.g., [7]. Among the
most empirically successful methods of this type are `p-methods, when we minimize

∑∣∣e(k)∣∣p for some p ≤ 2.
The parameter p has to be determined empirically; in many situations, p ≈ 1 is the best estimate (see,
e.g., [5]), so we arrive at the need to minimize the sum of absolute values

∑∣∣e(k)∣∣.
Another important class of situations: sparse problems. In many practical situations, we know that
only a few parameters ci are different from 0, i.e., that the corresponding tuple c is sparse; see, e.g., [4, 6, 8].
In this case, it is reasonable to select, among all tuples c for which e(k) ≈ 0 for all k, a tuple with the smallest
number of non-zero components.

It turns out that in general, finding such c is computationally intractable (NP-hard) [8], but under some
reasonable assumptions, the corresponding optimization problem is equivalent to an easier-to-solve problem

of minimizing the sum
p∑

i=1

|ci|; see, e.g., [2, 3, 12, 11].

Summarizing: it is important to be able to minimize
∑
|ci|. We have considered two practical

situations, in both of which there is a need to minimize an objective function of the type
∑
|ci|.

Need for a smooth approximation of |x|. It is known that the most efficient optimization techniques use
derivatives of the objective function; see, e.g., [15]. Unfortunately, we cannot directly apply these techniques
to an objective function of the type

∑
|ci|, since |x| is not differentiable at x = 0. To apply the corresponding

efficient optimization techniques, it is therefore necessary to approximate |x| by a smooth function.
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A currently used approximation. In [1, 13, 11], a smooth approximation |x| ≈
√
x2 + µ was efficiently

used.

A natural question and what we do in this paper. The empirical efficiency of the approximation√
x2 + µ naturally prompts the following question: is this approximation the most efficient one, or there are

other approximations which lead to even more efficient algorithms?

In this paper, we prove that, in some reasonable sense, the function
√
x2 + µ is the most computationally

efficient smooth approximation to |x|.

2 Analysis of the Problem and the Main Result

Requirements for the desired smooth approximation. We want to select a smooth approximation
f(x) ≈ |x|. The main problem with the function |x| is that it is not differentiable for x = 0; for large x, the
function |x| is perfectly differentiable, its derivative is equal to the sign sign(x). It is therefore reasonable to
require that the approximation be perfect for large x, i.e., that

lim
x→±∞

f(x)

|x|
= 1

and that for the derivative f ′(x), we similarly have

lim
x→±∞

f ′(x)

sign(x)
= 1.

Definition 1. We say that a function f from real numbers to real numbers is a smooth approximation to
|x| if this function is differentiable and satisfies the following two limit properties:

lim
x→±∞

f(x)

|x|
= 1 and lim

x→±∞

f ′(x)

sign(x)
= 1.

Comment. This is a rather weak definition of an approximation: e.g., according to this definition, for large
N , a function

√
x2 + µ+N is a smooth approximation to |x|. A more realistic definition of an approximation

should include other requirements as well. However, since our main result is applicable to all the functions
satisfying Definition 1, it is thus applicable to all functions satisfying a stronger definition as well.

Which computations are efficient: a brief reminder. In a computer, arithmetic operations (addition,
substraction, multiplication, and division) are hardware supported and therefore, very efficient. In contrast,
computation of any other function, be it

√
x, sin(x), ln(x), exp(x), etc., consists of many consecutive arithmetic

operations and is, therefore, order of magnitude slower than a single arithmetic operation.

So, if we want to make our computations most efficient, we must minimize the number of non-arithmetic
functions used in computing f(x) and f ′(x).

Observation: when computing f(x), non-arithmetic operations are unavoidable. Let us first
explain that a smooth approximation f(x) to |x| cannot be computed by only using arithmetic operations. By
induction, we can prove that any function composed of arithmetic operations is a rational function P (x)/Q(x),
where P (x) = p0 + p1 · x+ . . .+ p` · x` and Q(x) = q0 + q1 · x+ . . .+ qj · xj are polynomials. One can check
that for a rational function, when x→ ±∞, the ratio P (x)/Q(x) is asymptotically equivalent to const · x`−j .
This expression cannot be asymptotically equivalent to |x| both for x → +∞ and for x → −∞; thus, a
smooth approximation to |x| cannot be computed by using only arithmetic operations – it requires at least
one non-arithmetic operation for its computation.
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Our idea. We have just shown that we cannot avoid using a (time-consuming) non-arithmetic operation
when computing f(x). At first glance, it may feel that a similar result holds for f ′(x): a rational function
cannot be asymptotically equal to sign(x) either. However, such a conclusion about f ′(x) would be somewhat
misleading.

Indeed, in the optimization algorithms, we usually compute the derivative f ′(x) after we have computed
f(x). Because of this, when we compute the derivative f ′(x), we can use not only the input x, we can also
use the already computed value f(x).

Using time-consuming non-arithmetic operations is unavoidable when we compute f(x). However, when
we use the computed value f(x) to compute the value of the derivative f ′(x), it would be nice not to use
non-arithmetic operations at all, and to use as few arithmetic operations as possible. Let us describe this idea
in precise terms.

Definition 2.

• We say that a function F (x1, . . . , xn) is computable in zero arithmetic steps if it coincides either with
one of the inputs xi or with a constant c.

• If a function F1(x1, . . . , xn) is computable in s1 arithmetic steps, a function F2(x1, . . . , xn) is computable
in s2 arithmetic steps, and ⊕ is one of the four arithmetic operations, then we say that a function
F (x1, . . . , xn) = F1(x1, . . . , xn)⊕ F2(x1, . . . , xn) is computable in s1 + s2 + 1 arithmetic steps.

Example. A function f(x) = (x− 1) · (x+ 1) is computable in three arithmetic steps:

• first, we compute x− 1;

• then, we compute x+ 1;

• finally, we compute the product.

Let us describe this idea in terms of the above formal definition.

• On the first step, since x and 1 are computable in s1 = s2 = 0 arithmetic steps, we conclude that the
difference x− 1 is computable in s1 + s2 + 1 = 0 + 0 + 1 = 1 arithmetic step.

• On the second step, since x and 1 are computable in s1 = s2 = 0 arithmetic steps, we conclude that the
sum x+ 1 is computable in s1 + s2 + 1 = 0 + 0 + 1 = 1 arithmetic step.

• Finally, since each of the two functions F1 = x − 1 and F2 = x + 1 can computed in s1 = s2 = 1
arithmetic step, we conclude that the product (x−1) ·(x+1) is computable in s1 +s2 +1 = 1+1+1 = 3
arithmetic steps.

(It is worth mentioning that if we rewrite the above expression in the equivalent form x ·x−1, we can conclude
that the function (x− 1) · (x+ 1) can be also computed in two arithmetic steps.)

Proposition. Among all smooth approximations to |x|, the function for which it takes the smallest number

of arithmetic steps to compute f ′(x) from x and f(x) in the function f(x) =
√
x2 + µ.

Discussion.

• In this sense, the function
√
x2 + µ is indeed the most computationally efficient smooth approximation

to |x|.

• This result uses a weak definition of a smooth approximation (Definition 1). It is therefore applicable
to any stronger definition of a smooth approximation – as long as:

• every smooth approximation in the sense of this new definition satisfies Definition 1, and

• f(x) =
√
x2 + µ is a smooth definition in the new sense as well.
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Proof.

1◦. Let us first show that it is not possible to have a smooth approximation to |x| for which f ′(x) can be
computed from x and f(x) in zero arithmetic steps.

Indeed, in this case, we would have f ′(x) = x, f ′(x) = f(x), or f ′(x) = c. In all these three cases, we do
not get the correct asymptotic for f ′(x) when x→ ±∞:

• in the first case, f ′(x) = x→∞, while, according to Definition 1, we should have f ′(x)→ ±1;

• in the second case f ′(x) = f(x), while, according to Definition 1, we should have f ′(x) ∼ sign(x) 6=
|x| ∼ f(x);

• in the third case, f ′(x) = c has the same limit c when x → +∞ and when x → −∞, while, according
to Definition 1, we should have two different limits +1 and −1.

2◦. Because of Part 1 of this proof, we need at least one arithmetic step to compute f ′(x) from x and f(x),
i.e., we need to apply at least one arithmetic operation ⊕ to the values x, f(x), and c.

Let us consider all possible situations when exactly one arithmetic operation ⊕ is applied.

2.1◦. When the operation ⊕ is addition, we get three possible cases: f ′(x) = f(x) + x, f ′(x) = f(x) + c, and
f ′(x) = x+ c. In all these cases, the corresponding equality is inconsistent with the asymptotics described in
Definition 1.

2.2◦. When the operation ⊕ is subtraction, we get six possible cases: f ′(x) = f(x) − x, f ′(x) = x − f(x),
f ′(x) = f(x)− c, f ′(x) = c− f(x), f ′(x) = x− c, and f ′(x) = c−x. One can check that in all these six cases,
the corresponding equality is inconsistent with the asymptotics described in Definition 1.

2.3◦. When the operation ⊕ is multiplication, we get three possible cases: f ′(x) = f(x) · x, f ′(x) = f(x) · c,
and f ′(x) = x · c. In all these cases, the corresponding equality is inconsistent with the asymptotics described
in Definition 1.

2.4◦. Finally, when the operation ⊕ is division, we get six possible cases: f ′(x) = f(x)/x, f ′(x) = x/f(x),
f ′(x) = f(x)/c, f ′(x) = c/f(x), f ′(x) = x/c, and f ′(x) = c/x. One can check that in the last four cases,
the corresponding equality is inconsistent with the asymptotics described in Definition 1. Thus, the only
remaining cases are f ′(x) = f(x)/x and f ′(x) = x/f . Let us consider these two cases one by one.

2.4.1◦. When

f ′(x) =
df

dx
=
f

x
,

we can move all the terms related to f to one side and all the terms related to x to another side and get
df/f = dx/x. Integrating this equality, we conclude that ln(f) = ln(x) + const. Applying exp(z) to both sides
of this equality, we conclude that f(x) = const · x. One can easily check that this linear function does not
satisfy asymptotics required by Definition 1.

2.4.2◦. The only remaining case is when

f ′(x) =
df

dx
=
x

f
.

In this case, we can also move all the terms related to f to one side and all the terms related to x to another
side and get f · df = x · dx. Integrating this equality, we conclude that f2/2 = x2/2 +C, for some integration

constant C. Thus, f2 = x2 + µ, where we denoted µ
def
= 2 · C. Hence, we get f(x) =

√
x2 + µ.

3◦. Summarizing:

• there is no smooth approximation f(x) to |x| for which f ′(x) can be computed in zero arithmetic steps,
and

• the only smooth approximation for which f ′(x) can be computed in one arithmetic step is f(x) =√
x2 + µ.

Thus, among all smooth approximations to |x|, the function f(x) =
√
x2 + µ indeed has the property that

the value f ′(x) can be computed from the known values x and f(x) in the smallest number of arithmetic
steps. The proposition is proven.
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