
Journal of Uncertain Systems
Vol.8, No.3, pp.193-204, 2014

Online at: www.jus.org.uk

Why a Model Produced by Training a Neural Network is Often

More Computationally Efficient than a Nonlinear Regression

Model: A Theoretical Explanation

Jaime Nava, Vladik Kreinovich∗

Department of Computer Science, University of Texas at El Paso, El Paso, TX 79968, USA

Received 27 July 2012; Revised 23 August 2013

Abstract

Many real-life dependencies can be reasonably accurately described by linear functions. If we want a
more accurate description, we need to take non-linear terms into account. To take nonlinear terms into
account, we can either explicitly add quadratic terms to the regression equation, or, alternatively, we
can train a neural network with a non-linear activation function. At first glance, regression algorithms
lead to simpler expressions, but in practice, often, a trained neural network turns out to be a more
computationally efficient way of predicting the corresponding dependence. In this paper, we provide a
reasonable explanation for this empirical fact.
c©2014 World Academic Press, UK. All rights reserved.

Keywords: neural networks, linear regression, nonlinear regression

1 Formulation of the Problem

Need for indirect measurements. Some quantities describing the physical world are easy to measure
directly: e.g., we can directly measure the temperature at different Earth locations, we can directly measure
the road width, etc. However, many other quantities y are difficult (or even impossible) to measure directly.
For example, it is difficult to directly measure the distance to a faraway star, or the amount of oil in an oil
well.

Such quantities are measured indirectly; see, e.g., [13]. Specifically, to estimate the values of such a
difficult-to-measure quantity y, we measure easier-to-measure quantities x1, . . . , xn which are related to y
by a dependence y = f(x1, . . . , xn), and then we use this dependence to estimate the value of the desired
quantity y. For example, to estimate the distance to a star, we measure the angular direction to this star
at two different seasons, when the Earth is at the opposite sides of the Sun, and then use trigonometry to
transform the known distance from the Earth to the Sun and the measured angles into the distance to the
star; see, e.g. [6]. Similarly, to estimate the amount of oil in an oil well, we perform seismic, gravity, and
other measurements, and then use all these measurement results to determine first the distribution of density
at different depths and locations and, finally, the estimated amount of oil; see, e.g., [16].

Need for prediction. An important example of quantities which cannot be directly measured are future
values of the quantities. The only way to predict the future value of the quantities is to measure the current
values of these and other quantities, and to use the known dynamical laws to predict the future values.

For example, we know the exact equations that describe the planets’ motion, and we know how to (nu-
merically) solve these equations. Thus, once we know the current values x1, . . . , xn of the planets’ coordinates
and velocities, we can determine the position y of each planet at a desired future moment of time.

∗Corresponding author.
Emails: nava.jaime@gmail.com (J. Nava), vladik@utep.edu (V. Kreinovich).

194 J. Nava and V. Kreinovich: Why a Model Produced by Training a Neural Network

Need to determine dependencies from the experimental data. In the above examples, the de-
pendence is known. In many other practical situations, however, we know (or conjecture) that there is a
dependence, but we do not know the equations that describe the corresponding dependence. In such situa-
tions, this dependence must be determined experimentally. Specifically, in several (S) situations s = 1, . . . , S,
we measure the values of both the dependent variable y and of the independent variables xi. Then, we use the

results
(
x
(s)
1 , . . . , x

(s)
n , y(s)

)
of these measurements to find a function f(x1, . . . , xn) which is consistent with

all these measurement results, i.e., for which

y(s) ≈ f
(
x
(s)
1 , . . . , x(s)n

)
for all s from 1 to S. (The equality is usually approximate since the measurements are approximate, and
moreover, often the value y is often only approximately determined by the values of the variables x1, . . . , xn.)

Once the dependence f(x1, . . . , xn) is determined from the experimental results, we can use this function
to estimate the value y of the desired quantity (in particular, to predict the future value of the quantity of
interest).

Need to make sure that the resulting prediction models are computationally efficient. In com-
parison with super-fast computations on modern computers, measurements take a lot of time. So, it is usually
tolerable to spend a significant amount of computation time processing the results of these measurements –
as long as these computations lead to an efficient model for estimating (in particular, for predicting) the value
of the desired quantity.

Once the dependence is determined, we can use it for the actual estimation and prediction. In many
practical situations, these estimates and predictions need to be made fast. For example, a tornado can reach
its destructive power in a period ranging from minutes to an hour. Thus, to make a useful prediction of the
direction in which the tornado will move, we need to finish the corresponding computations faster than in a
few minutes (or at least faster than in an hour). In control systems, we need even faster computations: e.g.,
in a fly-by-wire airplane, a system needs to predict the future trajectory and make needed adjustments in
sub-second time.

In other words, in most dependency-determination problems, it is not that critical how long it take to
come up with a dependency model y = f(x1, . . . , xn), but it is very important that the resulting model is
computationally efficient.

How to determine the dependence from the experimental data. There are many different ways of
determining the dependence from the experimental data. In the past, most researchers and practitioners used
more traditional regression methods, in which we select a model, and use numerical techniques to find the
parameters of the model from the observed data. At present, in many cases, this determination is done by
using machine learning algorithms, algorithms that try to implement the ideas borrowed on how we humans
learn different dependencies. Historically the first successful machine learning algorithms were algorithms
based on neural networks. These algorithms still constitute the bulk of practical applications of machine
learning techniques to the problem of determining the dependence from the experimental data; see, e.g., [3].

Let us briefly describe the main ideas behind both classes of algorithms, and then the challenging empirical
fact that we are explaining in this paper. Let us start with the more traditional regression techniques.

Linear regression. In many practical situations, the dependence f(x1, . . . , xn) is smooth: informally, this
means that small changes in xi lead to equally small changes in y. In the first approximation, a smooth
function can be approximated by a linear expression

f(x1, . . . , xn) = c+

n∑
i=1

ci · xi

for appropriate coefficients c and ci.

It is reasonable to describe the corresponding dependence by explicitly listing the coefficients c and ci.
Thus, to determine the corresponding model from the experimental data, we need to estimate the values of

Journal of Uncertain Systems, Vol.8, No.3, pp.193-204, 2014 195

these coefficients based on the measurement results
(
x
(s)
1 , . . . , x

(s)
n , y(s)

)
, i.e., based on the system of equations

y(s) = c+

n∑
i=1

ci · x(s)i + ∆y(s),

where ∆y(s) is the approximation error (a.k.a. noise). This task is known as linear regression; see, e.g., [15].
The linear regression task can be described as the need to find the coefficients c and ci for

which the S-dimensional vector f =
(
f (1), . . . , f (s), . . . , f (S)

)
formed by the predicted values f (s) =

f
(
x
(s)
1 , . . . , x

(s)
n , y(s)

)
= c +

n∑
i=1

ci · x(s)i is as close as possible to the vector formed by the actually ob-

served values y =
(
y(1), . . . , y(s), . . . , y(S)

)
. A natural way to describe the distance between two vec-

tors a =
(
a(1), . . . , a(s), . . . , a(S)

)
and b =

(
b(1), . . . , b(s), . . . , b(S)

)
is to use the usual Euclidean distance

d(a,b) =

√
S∑
s=1

(
a(s) − b(s)

)2
. Thus, a natural idea is to find the values c and ci for which this distance is the

smallest possible. From the mathematical viewpoint, minimizing the distance is equivalent to minimizing the

square of the distance, i.e., the sum d2(a,b) =
S∑
s=1

(
a(s) − b(s)

)2
. Thus, we arrive at the problem of finding

the values c and ci for which the corresponding sum

S∑
s=1

(
∆y(s)

)2
=

S∑
s=1

(
y(s) −

(
c+

n∑
i=1

ci · x(s)i

))2

is the smallest possible. This approach to finding the coefficients c and ci is usually called the Least Squares
approach.

A usual way to find the corresponding values c and ci is to differentiate the objective function with respect
to each of the variables c and ci and equate all the derivatives to 0. Since the objective function is quadratic,
the derivatives are linear functions of the unknowns c and ci. Thus, we arrive at the system of linear equations
– and many efficient algorithms are known that solve such systems.

The Least Squares approach is optimal when the measurement errors are independent and normally dis-
tributed. In other cases, more sophisticated methods are needed but the result is the same – a linear model
described by the coefficients c and ci.

Some coefficients can be safely ignored. It is worth mentioning that some of these coefficients can
be safely ignored. Indeed, we started with the situation in which we do not know the actual dependence.
To find this dependence, we measured all the quantities xi which could potentially influence the value of
the desired quantity y. In practice, it sometimes happens that not all of these quantities are important. In
case of an exact measurement, this would mean that in the resulting dependence y = f(x1, . . . , xn), there
is no dependence on some of the variables xi. In the case of linear regression, this means that some of the
corresponding coefficients ci are equal to 0. Because of the measurement errors, even when the actual value of
ci is 0, the estimated values of ci will be, in general, different from 0 – but still close to 0, i.e., small. Thus, a
reasonable idea is to ignore all the coefficients which are sufficiently close to 0, and only keep the ones whose
absolute value is above a certain threshold.

A similar possibility of ignoring some coefficients (and saving some computation time) comes from the fact
that in practice, we rarely need to know the exact values of yi. For example, when we predict the amount of
oil in an oil well, it is usually sufficient to have a crude estimate to see if exploiting this well is economically
viable; in predicting the path of a tornado, it is desirable to get at least a general direction in which it will
move, if we cannot predict an exact direction in reasonable time. In all these cases, it is sufficient to get a
good approximation to the actual value y; so, variables xi for which the coefficients ci are small can be safely
ignored.

Need to go beyond linear dependencies. Many real-life dependencies are non-linear. for such depen-
dencies, linear regression – an approximation by a linear function – is imprecise. To get a more accurate
description of the desired dependence, we need to go beyond the linear approximation.

196 J. Nava and V. Kreinovich: Why a Model Produced by Training a Neural Network

Quadratic regression: a natural mathematical approach. How can we go beyond a linear approxi-
mation? In many cases, the dependence y = f(x1, . . . , xn) is smooth. A sufficiently smooth function can be
expanded in Taylor series, i.e., represented as a sum of linear, quadratic, cubic, etc. terms. For small values
xi, the linear terms are the main ones, the quadratic terms are much smaller, the cubic terms are even more
smaller, etc. For example, for xi ≈ 0., linear terms are of order 0.1, quadratic terms are of order 0.12 = 0.01,
cubic terms are of order 0.13 = 0.001, etc. So, in the first approximation, we can simply keep the linear terms
and ignore all the higher-order terms. When the linear approximation is not sufficient, the natural next idea
is to keep both linear and quadratic terms and ignore cubic and higher-order terms.

In the resulting approximation, we approximate the desired dependence by the following dependence:

f(x1, . . . , xn) = c+

n∑
i=1

ci · xi +

n∑
i=1

n∑
j=1

cij · xi · xj

for appropriate coefficients c, ci, and cij .
It is reasonable to describe the corresponding dependence by explicitly listing the coefficients c, ci, and cij .

Thus, to determine the corresponding model from the experimental data, we need to estimate the values of

these coefficients based on the measurement results
(
x
(s)
1 , . . . , x

(s)
n , y(s)

)
, i.e., based on the system of equations

y(s) = c+

n∑
i=1

ci · x(s)i + ∆y(s),

where ∆y(s) is the approximation error (a.k.a. noise). To find the values of these coefficients, we can use the
same Least Squares techniques as for the linear regression, i.e., find the values c, ci, and cij for which the
corresponding sum

S∑
s=1

(
∆y(s)

)2
=

S∑
s=1

y(s) −
c+

n∑
i=1

ci · x(s)i +

n∑
i=1

n∑
j=1

cij · x(s)i · x
(s)
j

2

is the smallest possible. Differentiating the objective function with respect to each of the variables c, ci, and
cij , and equating all the derivatives to 0, we arrive at the system of linear equations in terms of the unknowns
c, ci, and cij . Similarly to the case of linear regression, we can then safely ignore the coefficients which are
close to 0.

Neural networks as an alternative to quadratic regression: main idea. To describe non-linear
dependencies, instead of using quadratic functions – inspired by mathematical analysis – another possibility
is to use an approach inspired by biological data processing, i.e., the approach of neural networks; see, e.g., [3].

Let us briefly describe the main ideas behind neural networks. In a living being, optical, acoustic etc. sensor
cells generate sequences of pulses whose frequency xi is proportional to the intensity of the corresponding
inputs. These signals are then processed by special cells called neurons. A neuron collects signals from other
cells; some of these signals come unchanged, some are attenuated by the connections, i.e., get reduced from the
original value xi to a new value wi·xi, where wi is the coefficient of this attenuation. By adding up all the pulses
that come to this neuron from different other neurons, we get the total input signal

∑
wi ·xi. The neuron has

an activation threshold w0, so that the neuron is activated when the input signal exceeds this threshold. The
level of activation depends on how much it exceeds, i.e., it depends on the difference

∑
wi · xi −w0. In other

words, the output signal y of a neuron depends on this difference y = s0 (
∑
wi · xi − w0), for an appropriate

function s0(z). This function s0(z) is called an activation function. Usually, the “sigmoid” activation function
is used:

s0(x) =
1

1 + exp(−x)
.

Not every function can be represented in the form y = s0 (
∑
wi · xi − w0) corresponding to processing by

a single neuron. To perform more general data processing, it is necessary to form a neural network, where
output signals from neurons become inputs to other neurons. It turns out (see, e.g., [3]) that to be able to
approximate an arbitrary continuous function on a bounded set with an arbitrary accuracy, it is sufficient to
have two layers of processing neurons, and moreover, it is sufficient to have, in the second processing layer,
simplified linear neurons, with a trivial activation function s0(z) = z. As a result, we arrive at the following
traditional 3-layer neural networks.

Journal of Uncertain Systems, Vol.8, No.3, pp.193-204, 2014 197

Traditional 3-layer neural networks: description. In the traditional 3-layer neural networks, we start
with n input signals x1, . . . , xn. These signals are then fed into several (m) non-linear neurons each of which
produces a signal

yi = s0

 n∑
j=1

wij · xj − wi0

 , 1 ≤ i ≤ m.

The outputs y1, . . . , ym of the non-linear neurons are then fed into the final linear neuron, resulting in the
final output

y =

m∑
i=1

Wi · yi −W0.

The activation function s0(z) is usually fixed, while the values Wi and wij (called weights) are selected so

as to fit the data, i.e., that for all for all s = 1, . . . , S, we have y(s) = f
(
x
(s)
1 , . . . , x

(s)
n

)
+ ∆y(s) with small

approximation errors ∆y(s).

Comment. The outputs y1, . . . , ym of m intermediate neurons are not returned to the user as the final output.
Because of this, the corresponding neurons are called hidden.

To describe a function represented by a neural network, we need to describe, for each of m hidden neurons,

• n weights wi1, . . . , win (corresponding to n different inputs x1, . . . , xn) and

• a weight wi0 (corresponding to the threshold),

to the total of n + 1 weights. We also need to describe m + 1 values W1, . . . ,Wm,W0 describing the output
neuron: m values W1, . . . ,Wm corresponding to m hidden neurons and a value W0 describing this neuron’s
threshold. Thus, to describe a function represented by a neural network with m hidden neurons, we need to
describe the values of m · (n+ 1) + (m+ 1) parameters wij and Wj .

To exactly describe all possible continuous functions, we need infinitely many parameters: we need two
parameters c0 and c1 to describe a general linear function c0 + c1 · x, we need three parameters ci to describe
a general quadratic function c0 + c1 · x+ c2 · x2, etc.

The more hidden neurons we use, the more parameters we can change, and thus, the more accurate
approximation we can get.

Orthogonal neurons: a brief description. Sometimes, in the process of learning, i.e., in the process of
adjusting the values of the weights to fit the data, some of the hidden neurons are duplicated, in the sense
that for some hidden neurons i′ 6= i′′, we get the exact same weights wi′j = wi′′j for all j = 1, . . . , n and for
j = 0. Since the weights wi′j and wi′′j of these hidden neurons are the same, their outputs

yi′ = s0

 n∑
j=1

wi′j · xj − wi′0

 and yi′′ = s0

 n∑
j=1

wi′′j · xj − wi′′0


are the same as well: yi′ = yi′′ .

In this duplication case, we can combine these two neurons into one. Namely, the output y of the neural
network takes the form

y =

m∑
i=1

Wi · yi −W0 =
∑

i 6=i′,i6=i′′
Wi · yi +Wi′ · yi′ +Wi′′ · yi′′ −W0.

Since yi′ = yi′′ , we can combine the corresponding two terms into one:

Wi′ · yi′ +Wi′′ · yi′′ = Wi′ · yi′ +Wi′′ · yi′ = (Wi′ +Wi′′) · yi′ .

Thus, we can simplify the above expression for the final output y into a simpler expression (thus merging the
two neurons into one):

y =
∑

i 6=i′,i6=i′′
Wi · yi +W ′i′ · yi′ −W0,

198 J. Nava and V. Kreinovich: Why a Model Produced by Training a Neural Network

where we denoted W ′i′ = Wi′ + Wi′′ . This expression is the output of a neural network with m − 1 hidden
neurons (i = 1, . . . , i′′ − 1, i′′ + 1, . . . ,m) in which:

• all m− 1 hidden neurons are the same as in the original neural network,

• the weight Wi′ which is now replaced by a new value W ′i′ = Wi′ + Wi′′ that combines the weights
corresponding to both original neurons i′ and i′′, and

• all the other weights Wi and W0 of the linear output neuron are the same as before.

This shows that the output of the original neural network, with m hidden neurons i = 1, . . . , i′′ − 1, i′′,
i′′ + 1, . . . , m, can be also described as the output of a neural network with only m− 1 hidden neurons.

We have already mentioned that the more hidden neurons we have, the more accurate approximations
we can, in principle, achieve. To make sure that we do get a better approximation, when we add an extra
hidden neuron, we must avoid duplication situations like above, when we get the exact same approximation
as without this new hidden neuron.

To avoid this duplication problem, B. Apolloni and others suggested [1, 2, 12, 14, 17] that we orthogonalize
the neurons during training, e.g., that we make sure that the weight vectors wi = (wi1, . . . , win) corresponding
to different hidden neurons are orthogonal to each other.

It is known that two vectors a = (a1, . . . , an) and b = (b1, . . . , bn) are orthogonal if their dot (scalar)

product 〈a, b〉 def
=

n∑
j=1

aj · bj is equal to 0. Indeed, the dot product is equal to 〈a, b〉 = |a| · |b| · cos(A), where

|a| def=
√
a21 + . . .+ a2n is the length of the vector a, |b| is the length of the vector b, and A is the angle between

these two vectors. Thus, the dot product is equal to 0 if and only if the cosine is equal to 0, i.e., if the angle
A is equal to 90◦.

So, for neural networks, orthogonalization means that we have

〈wi, wi′〉
def
=

n∑
j=1

wij · wi′j = 0

for all i 6= i′; see also [9, 10].
Orthogonalization prevents duplication: indeed, if we had wi′j = wi′′j for all j, then we would have

〈wi′ , wi′′〉
def
=

n∑
j=1

wi′j · wi′′j =

n∑
j=1

(wi′j)
2
> 0,

and orthogonalization makes sure that 〈wi′ , wi′′〉 = 0.

Which is better: quadratic regression or neural networks? To describe a non-linear dependence, we
can use either a quadratic regression or a neural network. Which of the techniques should we use?

Our main objective is to use the resulting approximate model to predict the value of y based on the values
of the inputs x1, . . . , xn. In many practical situations, it is important to be able to perform the resulting
computation of y as soon as possible.

Expected answer and a somewhat surprising empirical fact. At first glance, the formulas describing
neural networks are more complex than the formulas describing quadratic regression: quadratic regression
only uses addition and multiplication, the basic computer operations, while neural network formulas – in their
computation of the activation function – also involve the more difficult-to-compute exponential function. So,
one would expect that computations using quadratic regression should be faster than computations using a
pre-trained neural network.

Surprisingly, in many case, pre-trained neural networks work faster than regression; see, e.g., [3].

What we do in this chapter. In this chapter, we provide a possible theoretical explanation of this
somewhat surprising empirical fact.

Journal of Uncertain Systems, Vol.8, No.3, pp.193-204, 2014 199

Comment. It is worth emphasizing that in comparing the computation times, we assume that both a regres-
sion model and the neural network have already been trained, i.e., that we have already found the values of
the corresponding parameters that fit all the observations. At this stage, once both the regression model and
the neural network are pre-trained and used, the neural network is often faster.

The situation is radically different if we consider the time needed to train the corresponding models. In
the regression model, the dependence on the parameters is linear. As a result, training is easy and relatively
fast, e.g., by using the least squares techniques. In contrast, for the neural network, the dependence on the
parameters is, in general, non-linear. In this case, instead of explicit methods for producing the exact solution,
we need to perform iterative methods. As a result, training a neural network often requires several thousand
iterations – and is, thus, much slower than training a regression model.

2 Towards an Explanation

How to compare the computation time of two algorithms. Our objective is to come up with an
expression that, given the inputs x1, . . . , xn, would generate the value y = f(x1, . . . , xn), for the corresponding
pre-trained model f(x1, . . . , xn).

Which operations are the most efficient on modern computers? In numerical computations that form the
bulk of modern high performance computer usage, the most time-consuming operation is the dot product, i.e.,
computing the 〈a, b〉 for given vectors a and b.

The prevalence of dot product makes sense from the mathematical viewpoint, since most numerical meth-
ods are based on linearization, and in the linear approximation, any function of n variables is approximated as

c+
n∑
i=1

ci ·xi, i.e., as a constant plus a dot product between the vector of inputs and the vector of coefficients.

Not surprisingly, most computer speed-up innovations are aimed at computing the dot product faster
– e.g., the multiply-accumulate operation which is an important part of digital signal processing or fused
multiple-add operation which is now hardware supported on many modern computers; see, e.g., [7].

From this viewpoint, the way to speed up any computation is to reduce it to as few dot products as
possible.

In this chapter, we show that neural networks require, in general, fewer dot product computations than
quadratic regression. This explains the empirical fact that pre-trained neural networks are often faster than
pre-trained regression models.

Comment. Of course, comparing the number of values to fetch is also an approximate description of the
computation time. The actual computation time also depends on the order in which we fetch these values,
how easy it is to pre-fetch the corresponding values beforehand, etc. Because of the approximate character
of this description, when one find out that one class of algorithms requires fewer values to fetch than another
class, it does not necessarily mean that the first class of algorithms always works faster – but it usually means
that algorithms from this class often work faster. This will be exactly the case with regression and neural
networks:

• while in general, pre-trained neural networks are often faster than pre-trained regression models,

• sometimes the opposite is true: pre-trained regression models work faster than pre-trained neural net-
works.

How to efficiently compute f(x1, . . . , xn) using pre-trained quadratic regression model. Comput-

ing the value of the linear part c0 +
m∑
i=1

ci · xi of the quadratic regression requires computing exactly one dot

product: the sum
m∑
i=1

ci · xi.

Computing the value of the quadratic form
n∑
i=1

n∑
j=1

cij · xi · xj requires n+ 1 dot products:

• first, we compute n dot products c′i
def
=

n∑
j=1

cij · xj for i = 1, . . . , n;

200 J. Nava and V. Kreinovich: Why a Model Produced by Training a Neural Network

• then, to find the desired value of the quadratic form, we compute the dot product
n∑
i=1

c′i · xi.

Thus, totally, we need to compute 1 + (n+ 1) = n+ 2 dot products.

How to efficiently compute f(x1, . . . , xn) using a pre-trained neural network: analysis of the
problem. In our analysis, we have restricted regression models to quadratic terms. In other words, we
consider the second approximation, in which each function is approximated by a quadratic expression – e.g.,
by the sum of the constant, linear, and quadratic terms of its Taylor expansion, so that cubic and higher orders
can be safely ignored. It is reasonable to use the same approximation when considering neural networks as
well.

In this second approximation, we can approximate the non-linear activation function s0(x) by the sum of
its constant, linear, and quadratic terms:

s0(x) ≈ s+ s1 · x+ s2 · x2.

In this case, the above formula for the output of an intermediate neuron takes the following form:

yi = s0 + s1 ·

 n∑
j=1

wij · xj − wi0

+ s2 ·

 n∑
j=1

wij · xj − wi0

2

.

The quadratic term in this expression can be described as n∑
j=1

wij · xj − wi0

2

=

 n∑
j=1

wij · xj

2

− 2wi0 ·

 n∑
j=1

wij · xj

+ w2
i0.

Here, the term  n∑
j=1

wij · xj

2

= (〈wi, x〉)2

(in which we denote x = (x1, . . . , xn)) is the only quadratic term, the other terms are linear. Thus, the output

y =
m∑
i=1

Wi · yi −W0 of the neural networks consists of a linear part plus a quadratic part of the type

Qn =

n∑
i=1

Wi · 〈wi, x〉2.

This part corresponds to the quadratic part
n∑
i=1

n∑
j=1

cij · xi · xj of the original Taylor-series representation:

Qn =

n∑
i=1

Wi · 〈wi, x〉2 =

n∑
i=1

n∑
j=1

cij · xi · xj .

As we have mentioned, it is reasonable to select the vectors wi to be orthogonal. By dividing each vector
wi by its length (and appropriately multiplying Wi by this length), we can assume that the vectors are also
orthonormal, i.e., that 〈wi, wi〉 = 1 for all i. In the orthonomal basis formed by these vectors wi,

• the corresponding matrix cij becomes a diagonal matrix,

• with values Wi on the diagonal.

Thus:

• the vectors wi are eigenvectors of the matrix cij , while

• the values Wi are the eigenvalues of this matrix.

Journal of Uncertain Systems, Vol.8, No.3, pp.193-204, 2014 201

In the neural network representation, to compute the value with a certain accuracy, we can dismiss the
terms corresponding to small eigenvalues Wi. As a result, instead of the original formula with n eigenvalues,
we get a simplified formula with n′ < n eigenvalues:

Qn ≈
n′∑
i=1

Wi〈wi, x〉2.

How to efficiently compute f(x1, . . . , xn) for a pre-trained neural network. As we have just men-
tioned, in the neural network representation, to compute the value with a certain accuracy, we can dismiss the
terms corresponding to small eigenvalues Wi. As a result, instead of the original formula with n eigenvalues,
we get a simplified formula with n′ < n eigenvalues:

Qn ≈
n′∑
i=1

Wi〈wi, x〉2.

From this representation, we can see that fewer than n+ 1 dot products are needed:
• first, we compute n′ < n dot products zi = 〈wi, x〉 corresponding to n′ non-dismissed eigenvectors wi;

• then, we perform a component-wise vector operation to compute the values ti = zi · zi; such vector
operations are highly parallelizable and can be performed really fast on most modern computers; see,
e.g., [7];

• finally, to find the desired result, we compute the dot product
n′∑
i=1

Wi · ti.

So, totally, we need to compute n′ + 1 dot products.

Resulting comparison. In the Appendix, we show that on average, the number n′ of non-dismissed eigen-
values is smaller than the number n of all eigenvalues. Thus, when we use a pre-trained neural network,
we need to compute fewer dot products and thus, our computations are, on average, faster. This explains
the empirical fact that in data processing, pre-trained neural networks are often more efficient than more
traditional statistical methods such as pre-trained regression models.

Comment. In terms of the matrix cij , the two representations correspond to the following:

• in the traditional regression representation, we store all the components cij of the original matrix;

• in the neural network representation, we store instead the eigenvectors and eigenvalues of this matrix.

This conclusion prompts a natural analogy with quantum physics; see, e.g., [4]. In quantum physics, from the
mathematical viewpoint, an observable quantity can be described by a corresponding matrix cij . However,
a more physically natural description is to describe possible values of this quantity – which are exactly
eigenvalues of this matrix – and states in which this quantity has these exactly values, which are eigenvectors of
the matrix. In this example, a representation via eigenvalues and eigenvectors is clearly intuitively preferable.

Acknowledgments

This work was supported in part by the National Science Foundation grants HRD-0734825 and DUE-0926721,
by Grant 1 T36 GM078000-01 from the National Institutes of Health, by Grant MSM 6198898701 from MŠMT
of Czech Republic, and by Grant 5015 “Application of fuzzy logic with operators in the knowledge based
systems” from the Science and Technology Centre in Ukraine (STCU), funded by European Union. The
authors are very thankful to the anonymous referees for valuable suggestions.

References

[1] Apolloni, B., Bassis, S., and L. Valerio, A moving agent metaphor to model some motions of the brain actors,
Abstracts of the Conference “Evolution in Communication and Neural Processing from First Organisms and Plants
to Man . . . and Beyond”, 2010.

202 J. Nava and V. Kreinovich: Why a Model Produced by Training a Neural Network

[2] Apolloni, B., Bassis, S., and L. Valerio, Training a network of mobile neurons, Proceedings of the 2011 International
Joint Conference on Neural Networks, 2011.

[3] Bishop, C.M., Pattern Recognition and Machine Learning, Springer, New York, 2007.

[4] Feynman, R., Leighton, R., and M. Sands, The Feynman Lectures on Physics, Addison Wesley, Boston, Mas-
sachusetts, 2005.

[5] Götze, F., and A. Tikhomirov, Rate of convergence in probability to the Marchenko-Pastur law, Bernoulli, vol.10,
no.3, pp.503–548, 2004.

[6] Gregory, S.A., and M.A. Zeilik, Introductory Astronomy & Astrophysics, Brooks Cole Publisher, Florence, Ken-
tucky, 1997.

[7] Hennessy, J.L., and D.A. Patterson, Computer Architecture: A Quantitative Approach, Morgan Kaufmann, San
Francisco, California, 2007.

[8] Marchenko, V.A., and L.A. Pastur, Distribution of eigenvalues for some sets of random matrices, Matematicheski
Sbornik, vol.72, no.4, pp.507–536, 1967.

[9] Nava, J., and V. Kreinovich, Orthogonal bases are the best: a theorem justifying Bruno Apolloni’s heuristic
neural network idea, Abstracts of the 9th Joint NMSU/UTEP Workshop on Mathematics, Computer Science, and
Computational Sciences, 2011.

[10] Nava, J., and V. Kreinovich, Orthogonal bases are the best: a theorem justifying Bruno Apolloni’s heuristic neural
network idea, Journal of Uncertain Systems, vol.6, no.2, pp.122–127, 2012.

[11] Nica, A., and R. Speicher, Lectures on the Combinatorics of Free Probability Theory, Cambridge University Press,
Cambridge, UK, 2006.

[12] Nicolau, V., Palade, V., Aiordachioaie, D., and C. Miholca, Neural network prediction of the roll motion of a
ship for intelligent course control, Knowledge-Based Intelligent Information and Engineering Systems, vol.4694,
pp.284–291, 2007.

[13] Rabinovich, S., Measurement Errors and Uncertainties: Theory and Practice, Springer-Verlag, New York, 2005.

[14] Sher, C.F., Tseng, C.-S., and C.-S. Chen, Properties and performance of orthogonal neural network in function
approximation, International Journal of Intelligent Systems, vol.16, pp.1377–1392, 2001.

[15] Sheskin, D.J., Handbook of Parametric and Nonparametric Statistical Procedures, Chapman & Hall/CRC, Boca
Raton, Florida, 2007.

[16] Snieder, R., and J. Trampert, Inverse Problems in Geophysics, Samizdat Press, Colorado School of Mines, Golden,
Colorado, 2000.

[17] Yang, S.-S., and C.-S. Tseng, An orthogonal neural network for function approximation, IEEE Transactions on
Systems, Man, and Cybernetics, vol.26 (Part B), pp.779–783, 1996.

A Appendix: Number of Dismissed Eigenvalues: Semi-Heuristic
Statistical Analysis

Idea. The idea is to dismiss some eigenvalues because their contribution is small. Of course, the number of
small eigenvalues depends on the matrix cij . We would like to know how many such eigenvalues are there on
average. To formulate this question in precise terms, we need to describe a reasonable probability distribution
on the set of all possible matrices.

Random matrices: motivation. In general, for each element cij of the matrix, we can have both positive
and negative values. There are no reasons to expect positive values to be more probable than the negative
ones or vice versa. In other words, the situation seems to be symmetric with respect to changing the sign.
Thus, the expected value of the element cij should also be invariant with respect to this transformation. The
only number that remains invariant when we change the sign is zero, so we conclude that the mean value of
each component cij should be zero.

Similarly, there is no reason to assume that some of the elements have a different probability distribution;
thus, we assume that they are identically distributed. Finally, there is no reason to assume that there is
correlation between different elements. Thus, we assume that all the elements are independent. Thus, we
arrive at the model in which all the elements are independent identically distributed random variables with
mean 0 and a variance σ2.

Journal of Uncertain Systems, Vol.8, No.3, pp.193-204, 2014 203

Eigenvalues of random matrices. For such random matrices, the distribution of their eigenvalues follows
the Marchenko-Pastur law; see, e.g., [5, 8, 11]. To be more precise, this law describes the limit case of
the following situation. We have an m × n random matrix X whose elements are independent identically
distributed random variables with mean 0 and variance σ2. Assume that m and n increase in such a way that
the ratio m/n tends to a limit α > 0. Then, for large n and m, the probability distribution of the eigenvalues
of the matrix Y = XXT is asymptotically equivalent to

ρ(x) =

(
1− 1

α

)
· δ(x) + ρc(x),

where δ(x) is Dirac’s delta-function (i.e., the probability distribution which is located at the point 0 with
probability 1), and ρc(x) is different from 0 for x ∈ [α−, α+], where α± = σ2 · (1±

√
α)2, and

ρc(x) =
1

2 · π · σ2
·
√

(α+ − x) · (x− α−)

α · x
.

In our case, matrices are square, so m = n, α = 1 and thus, we have α− = 0, α+ = 4σ2 and thus, the limit
probability distribution takes the simplified form

ρ(x) =
1

2 · π · σ2
·
√

(4σ2 − x) · x
x

.

Eigenvalues x of the matrix Y = XXT are squares of eigenvalues λ of the original matrix X: x = λ2.
We are interested in small eigenvalues. For small eigenvalues, we have x � σ, so the above formula can

be further simplified, into

ρ(x) ∼ 1

2 · π · σ2
·
√

4σ2 · x
x

=
1

2 · π · σ2
· 2 · σ ·

√
x

x
=

1

π · σ
· 1√

x
.

The probability density ρλ for λ =
√
x can thus be found as

ρλ =
dp

dλ
=
dp

dx
· dx
dλ
.

For x = λ2, we get
dx

dλ
=
d(λ2)

dλ
= 2λ,

thus,

ρλ(λ) =
1

π · σ
· 1√

x
· 2λ =

1

π · σ
· 1

λ
· 2λ =

2

π · σ
.

This expression for the probability density does not depend on λ at all. Thus, small eigenvalues have an
approximately uniform distribution.

Heuristic derivation of the number of eigenvalues that can be safely ignored. We would like to
dismiss all the eigenvalues λi = Wi whose absolute values are smaller than (or equal to) some small number
δ > 0. The overall contribution c of these eigenvalues is equal to

c =
∑

i:|λi|≤δ

Wi · 〈wi, x〉2.

Since eigenvectors are orthonormal, the n values 〈wi, x〉2 add up to 〈x, x〉2. In particular, for unit vectors x,
these n values add up to 1. It is reasonable to assume that values corresponding to different eigenvalues are
similarly distributed. Under this assumption, all these values have the same mean. The sum of n such means
is equal to 1, so each mean is equal to 1/n.

Each value Wi can be positive or negative. It is reasonable to assume that both negative and positive
values are equally possible, so the mean value of each product Wi · 〈wi, x〉2 is 0. Thus, the mean value of the
sum is also 0.

204 J. Nava and V. Kreinovich: Why a Model Produced by Training a Neural Network

Since 〈wi, x〉2 ≈ 1/n, the variance should be approximately equal to W 2
i · 1/n2. It is also reasonable to

assume that the products Wi · 〈wi, x〉2 corresponding to different eigenvalues are independent. Thus, the
variance Vc of their sum c is equal to sum of their variances, i.e., to

Vc =
1

n2
·
∑

i:|λi|≤δ

W 2
i .

Since the mean is 0, and c is the sum of the large number of small independent components, it is reasonable to
conclude, due to the Central Limit theorem, that it is approximately normally distributed; see, e.g., [15]. So,
with probability 99.9%, all the values of this sum are located within the three sigma interval [−3

√
Vc, 3
√
Vc].

Thus, the square root
√
Vc is a good indication of the size of the dismissed terms. The size of the function

itself can be similarly estimates as
√
V , where

V =
1

n2
·
∑
i

W 2
i ,

and the sum is taken over all eigenvalues. We want to make sure that the dismissed part does not exceed a
given portion ε of the overall sum, i.e., that

√
Vc · ε ·

√
V , or, equivalently, Vc ≤ ε2 · V 2.

Within this constraint, we want to dismiss as many eigenvalues as possible; thus, we should not have
Vc � ε2 · V 2, because then, we would be able to dismiss more terms. We should thus have Vc ≈ ε2 · V 2.
Because of the above expressions for Vc and for V , we therefore get an equivalent formula

1

n2
·
∑

i:|λi|≤δ

W 2
i ≈ ε2 ·

1

n2
·
∑
i

W 2
i .

Multiplying both sides by n2, we can simplify this requirement into∑
i:|λi|≤δ

W 2
i ≈ ε2 ·

∑
i

W 2
i .

Since the probability distribution of eigenvalues is described by the density function ρλ, and the total
number of these eigenvalues is n, we have∑

i

W 2
i ≈ n ·

∫ ∞
−∞

λ2 · ρλ(λ) dλ

and similarly, ∑
i:|λi|≤δ

W 2
i ≈ n ·

∫ δ

−δ
λ2 · ρλ(λ) dλ.

Thus, the above requirement takes the form

n ·
∫ δ

−δ
λ2 · ρλ(λ) dλ ≈ ε2 · n ·

∫ ∞
−∞

λ2 · ρλ(λ) dλ.

Dividing both sides by n, we can simplify this into∫ δ

−δ
λ2 · ρλ(λ) dλ ≈ ε2 ·

∫ ∞
−∞

λ2 · ρλ(λ) dλ.

For small λ, as we have derived, ρλ ≈ const, so∫ δ

−δ
λ2 · ρλ(λ) dλ ≈

∫ δ

−δ
λ2 · const dλ = const · δ3

(for a slightly different constant, of course).
Thus, the above requirement takes the form δ3 ≈ const · ε2, i.e., δ ≈ ε2/3.

Numerical example. So, for example, for ε ≈ 10% = 0.1, we get δ ≈ 0.12/3 ≈ 0.2, so ≈ 20% of all the
eigenvalues can be safely ignored. As a result, we get a 20% decrease in computation time.

	JUS-8-3-1.pdf
	Formulation of the Problem
	Analysis of the Problem
	Definition and the Main Result

	JUS-8-3-2.pdf
	Conservation of Momentum: A ``Stepchild'' of Physics Education
	Conservation of Momentum can be Derived from the Conservation of Energy

	JUS-8-3-3.pdf
	Minimization of Average Sensitivity: Description of a Method
	Minimization of Average Sensitivity: Successes
	Minimization of Average Sensitivity: Challenges
	Appendix: Discrete ``And'' and ``Or'' Operations with the Smallest Average Sensitivity: Cases of n=3, n=4, and n=5

	JUS-8-3-4.pdf
	Formulation of the Problem: Empirical Power-Law Growth Seems to be Inconsistent with Simple Intuitive Models of Idea Propagation
	Our Explanation

	JUS-8-3-5.pdf
	Decision Making Under Interval Uncertainty: An Important Practical Problem
	The General Problem of Decision Making Under Uncertainty can be Reduced to the Problem of Fair Price Under Interval Uncertainty
	Selecting a Fair Price Under Interval Uncertainty: Towards a Formalization of the Problem
	Main Result
	An Argument in Favor of =0.5

	JUS-8-3-6.pdf
	Need to Describe Expert Knowledge
	Hedges in Describing Expert Knowledge
	What are Idempotent Hedges and Why are They Important?
	Main Result: Complete Description of All Idempotent Hedges

	JUS-8-3-7.pdf
	Formulation of the Problem
	Towards an Explanation
	Appendix: Number of Dismissed Eigenvalues: Semi-Heuristic Statistical Analysis

	JUS-8-3-8.pdf
	Need to Approximate |x| by Smooth Functions
	Analysis of the Problem and the Main Result

	JUS-8-3-9.pdf
	Formulation of the Problem: A Surprising Empirical Phenomenon
	Main Idea Behind Our Theoretical Explanation of the Observed Phenomenon
	Our Theoretical Explanation: Technical Details

	JUS-8-3-10.pdf
	What are ``Fuzzy'' Multiple-Choice Quizzes
	Problem with How ``Fuzzy'' Multiple-Choice Quizzes are Graded Now
	Towards a Grading Scheme that Encourages Students to Reveal Their Degrees of Certainty

	JUS-8-3-11.pdf
	Formulation of the Problem
	Adding Free Will to Non-Quantum Physics: Analysis of the Problem and the Main Conclusion

	JUS-8-3-12.pdf
	Formulation of the Problem
	How to Describe, in Precise Terms, that No Physical Theory is Perfect
	How to Describe When Access to Physical Observations Enhances Computations
	Main Result: Enhancement is Possible
	Appendix: A Formal Definition of Definable Sets

	JUS-8-3-13.pdf
	Formulation of the Problem
	New Testing Design: Main Idea and Step-by-Step Description

