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Abstract

Fuzzy logic is an extension of the standard 2-valued logic — with two possible truth values 0 (“false”)
and (“true”) — to values (degrees of certainty) represented by arbitrary numbers from the interval [0, 1].
One of the main challenges in fuzzy logic is that we need to extend the usual logical operations from the
set {0,1} to the entire interval, and there are many possible extensions. One promising technique for
selecting a reasonable extension is to take into account that the fuzzy degrees of certainty are themselves
only known with uncertainty; so, it makes sense to select an operation which is, on average, the least
sensitive to the corresponding uncertainty. This technique has successfully worked in selecting unary and
binary operations and in selecting membership functions. In this paper, we show, however, that this
minimization technique does not work well for selecting ternary operations, and that in the discrete case,
the results of applying this technique are somewhat counterintuitive.
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1 Minimization of Average Sensitivity: Description of a Method

Need for fuzzy logic. In the traditional 2-valued fuzzy logic, every statement is either true or false. The
corresponding truth value is represented in the computer as, correspondingly, 1 or 0. The need to go beyond
the 2-valued logic comes from the fact that experts are often uncertain (“fuzzy”) about the truth values of
different statements describing their knowledge: they may be confident to some extent but not fully that a
given statement is true. For example, a medical expert can use rules using the word “small”, but this expert
is not 100% sure whether a given size tumor is small or not. To describe such imprecise (“fuzzy”) statements,
Zadeh proposed, in [6], to go beyond the usual “degrees of confidence” (truth values) 0 and 1 and to use
numbers from the interval [0, 1] to describe degrees of confidence intermediate between 0 (absolutely false)
and 1 (absolutely true).

Fuzzy logic has been very successful. The resulting formalism of fuzzy logic has many successful appli-
cations; see, e.g., [2 [4].

Fuzzy logic: challenges. Once we extended the set of truth values from the 2-element set {0,1} to the
entire interval [0, 1], we need to extend operations with these truth values — e.g., logical operations such as
“or” and “and” — to the entire interval. There are many different ways to extend a function to a larger set,
and it is not immediately clear which of these extensions we should select.

Minimizing average sensitivity: main idea. We want to extend 2-valued operations to intermediate
degrees of confidence. These intermediate degrees describe the expert’s evaluation of their own uncertainty.
We consider situations in which the experts are not 100% certain about their knowledge; they are similarly
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not 100% certain about their own degrees of certainty. The same expert can represent the same degree of
certainty by slightly different values: instead of the original degree a, the same expert may produce a slightly
different value a + Aa, with some unpredictable (“random”) different Aa.

Since the values a and a + Aa represent the same degree of certainty, it is reasonable to require that the
results of applying the corresponding operations be the same — or at least close to each other. Since the
deviations are unpredictable (random), we cannot guarantee that we always get the same results, but we
should at least require that, on average, we get similar results.

The larger the average effect of the difference(s) Aa on the result of the operation, the less adequate is
this operation is capturing expert reasoning. It is therefore reasonable to select an operation which is the
most reasonable in this sense — i.e., for which the average sensitivity to changing the inputs degrees is the
smallest possible. This is the main idea behind the method of minimizing average sensitivity proposed in [3]
(see also []).

Minimization of average sensitivity: technical details. To formally describe the method, let us explain
how we can gauge the average sensitivity of an operation f : [0,1] x ... x [0,1] — [0,1]. For this operation, if
we replace the original inputs a, . .., b with modified inputs a4+ Aa, ..., b+ Ab, then the result of the operation
changes from the original value y = f(a,...,b) to the modified value ymoa = f(a+ Aa,...,b+ Ab). Since the

differences Aa, ..., Ab are small, we can expand the difference Ay def Ymod — ¥ into Taylor series in Aa, ..., Ab
and keep only linear terms in this expansion. As a result, we get the expression
af of
Ay~ —-Aa+...+ = - Ab. 1
Y™ a ab )
Since the differences Aa, ..., Ab are caused by many different independent factors, it makes sense to use

the Central Limit Theorem, according to which, under reasonable conditions, the distribution of the sum of
many independent random variables is close to Gaussian; see, e.g., [5]. In general, a Gaussian distribution
is uniquely determined by its mean E and it standard deviation o. Since there is no reason to assume that
positive deviations Aa are more frequent or more rare than negative ones, it is reasonable to assume that
the mean value E[Aa] of each deviation is 0. There is also no reason to think that different degrees have

different uncertainty, so it is reasonable to assume that all the differences Aa, ..., Ab have the same standard
deviation o. Under these assumptions, the linear combination (1) of several normally distributed random
variables Aa, ..., Ab is also normally distributed, with 0 mean and variance V = C - 2, where
2 2
def 8f 8f
Cc=|= e - . 2
(8(1) o ( ob @

The average value of this variance can be thus described as Vi, = C,y - 02, where

Oavdéf/()l.../ol[(g‘;>2+...+<g€)21 da ... db. 3)

Thus, minimizing this measure of average sensitivity V,, is equivalent to minimizing the integral expression (3).

2 Minimization of Average Sensitivity: Successes

Selection of negation operations. In the 2-valued logic, negation f(a) is described by setting f(0) = 1
and f(1) = 0. We would like to extend this operation to all possible values from the interval [0, 1], i.e., to
consider functions f : [0,1] — [0, 1] for which f(0) =1 and f(1) = 0. Out of all such functions, we want to
find the one which minimizes the expression
1 2
e
o \da

It turns out that this minimum is attained when f(a) = 1 — a (see, e.g., [3]), which is exactly the negation
operation most frequently used in fuzzy logic.

Note that we do not have to explicitly require that f(f(z)) = «: this property automatically follows from
the requirement that the operation provide the minimum of average sensitivity.
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Selection of membership functions. Similar arguments can be used to select a membership function
u(x) corresponding to a certain notion (e.g., “small”), i.e., a function which describes, for each value z, to
what extend we believe that this value x satisfies the given property (e.g., to what extent x is small). Here, the
input x is usually estimated subjectively, so we have a similar subjective difference between two consequent
estimates « and x + Az by the same expert. Minimizing the effect of this subjectivity leads to a similar

problem of minimizing the integral
1 2
d
/ <f> dz,
0 d:L’

which results in membership functions which are linear on each of the analyzed z-segments [3]. The corre-
sponding piece-wise linear membership functions (triangular, trapezoidal, etc.) are indeed among the most
frequently used in applications of fuzzy logic.

Selection of “and” operations. Intuitively, “false and A” means false, “true and A” means simply A, and
“A and B” means the same as “B and A”. Thus, as “and”-operations, it is reasonable to consider functions
f:]0,1] x [0,1] — [0, 1] for which, for all a, we have f(0,a) = f(a,0) =0 and f(1,a) = f(a,1) = a. It turns
out [3] that among all such operations, the minimum of average sensitivity is attained when f(a,b) = a - b.
This “algebraic product” operation is indeed among the most widely used in fuzzy logic.

Note that we do not have to explicitly require associativity or monotonicity: these properties automatically
follows from the requirement that the operation provide the minimum of average sensitivity.

Selection of “or” operations. Intuitively, “false or A” means A, “true or A” means simply true, and
“A or B” means the same as “B or A”. Thus, as “or”-operations, it is reasonable to consider functions
f:0,1] x [0,1] — [0, 1] for which, for all a, we have f(0,a) = f(a,0) = a and f(1,a) = f(a,1) = 1. It turns
out [3] that among all such operations, the minimum of average sensitivity is attained when f(a,b) = a+b—a-b.
This “algebraic sum” operation is indeed among the most widely used in fuzzy logic.

Note that here too, we do not have to explicitly require associativity or monotonicity: these properties
automatically follows from the requirement that the operation provide the minimum of average sensitivity.

Selection of “exclusive or” (“xor”) operations. Intuitively, “false xxor A” means A, “true or A”
means “not A”, and “A xor B” means the same as “B xor A”. Thus, as “xor”-operations, it is reasonable
to consider functions f : [0,1] x [0,1] — [0,1] for which, for all a, we have f(0,a) = f(a,0) = a and
f(1,a) = f(a,1) =1 —a. It turns out [I] that among all such operations, the minimum of average sensitivity
is attained when f(a,b) =a+b—2-a-b. This operation can be understood if we describe “xor” in terms of
“not”, “and”, and “or” operations, as (a V b) & (—a V —b), and use 1 — a for negation, a + b — a - b for “or”,
and max(a + b — 1,0) for “and”.

3 Minimization of Average Sensitivity: Challenges

Selecting ternary operations: general description. So far, we have been applying the minimization
of average sensitivity technique to unary and binary operations. What happens if we apply this technique to
ternary operations, e.g., to an operation f(a, b, ¢) corresponding to the triple conjunction A & B & C? Similarly
to the binary case, we can set up reasonable values on the border of the corresponding unit cube [0, 1] x [0, 1] X
[0,1], i.e., for the triples (a,b,c) which contain 0 or 1 as one of their values. Will the above minimization
technique help us to find the values f(a, b, ¢) for the triples (a, b, ¢) inside the unit cube? Somewhat surprisingly,
in this case, minimization does not help.

Selecting ternary “and” operations. Let us show that among all ternary “and” operations f(a,b,c),
i.e., among all the functions with f(a,b,0) = f(a,0,b) = f(0,a,b) =0 and f(1,1,1) = 1, the smallest possible
value (= 0) of the expression (3) is attained for the “crisp” function which is equal to 0 for all (a, b, c) # (1,1,1)
and to 1 for (a,b,c¢) = (1,1,1). This can be explained if we consider functions which are equal to 0 except for a
small cube [1—¢,1] x [1 —¢,1] X [1 —¢, 1] and which, on this cube, rapidly increase to 0. On the corresponding
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interval [1 — e, 1] of width &, the function f increases from 0 to 1, thus, its slope on this integral is equal to

1/e:

of 1

da " &
Hence, the integrated expression in the formula (3) is proportional to 1/¢2, and its integral over the small
cube of size € x £ x € and of volume &? is proportional to 1/ - ¢ = ¢. Thus, when ¢ tends to 0, the value of
the expression (3) also tends to 0.
Selecting ternary “or” operations. Let us show that among all ternary “or” operations f(a,b,c), i.e.,
among all the functions with f(a,b,1) = f(a,1,b) = f(1,a,b) = 1 and f(0,0,0) = 0, the smallest possible
value (= 0) of the expression (3) is attained for the “crisp” function which is equal to 1 for all (a, b, ¢) # (0,0, 0)
and to 0 for (a,b,c) = (0,0,0). This can be explained if we consider functions which are equal to 1 except
for a small cube [0,¢] x [0,¢] x [0, ] and which, on this cube, rapidly decrease to 0. On the corresponding
interval [0, €] of width e, the function f increases from 0 to 1, thus, its slope on this integral is equal to 1/e:

of 1
da " &
Hence, the integrated expression in the formula (3) is proportional to 1/e2, and its integral over the small

cube of size € x £ x € and of volume &? is proportional to 1/ - % = ¢. Thus, when ¢ tends to 0, the value of
the expression (3) also tends to 0.

Discrete case: general description. Instead of considering all possible values from the interval [0, 1],
we can consider only finitely many values. For example, we can pick some value n, and consider only values
a; = i/n with ¢ = 0,1,...,n, ie., only values 0,1/n,2/n,...,(n—1)/n,1. In this case, we need to find the
values f; ; def f(ai,a;). In the discrete case, instead of partial derivatives, we have differences, and instead of
the integral, we get the sum. Thus, a natural analogue of the formula (3) is to minimize the expression

n n—1 n—1 n
SN i = i)+ DD (fivrg — fig)™ (4)
i=0 j=0 i=0 j=0

Selecting discrete “and” operations: success. Everything works OK if we require that fy; = fo; =0
and f,; = fin = i/n for all i. In this case, we get the same formula

3| .

fi,j =

as in the continuous case.

Selecting discrete “and” operations: challenge. In the case of negation, we simply fixed the values
for the 2-valued logic, and used the minimization of average sensitivity to find all the other values. Why not
try the same approach here? Let us fix only the values f(0,0) = f(0,1) = f(1,0) = 0 and f(1,1) = 1, i.e,,
only the values foo = fo.n = fno =0 and f,, = 1, and among all such matrices f;; ;, let us select the one
which minimizes the average sensitivity (4).

Selecting discrete “and” operation: resulting equations. Differentiating the expression (4) wit re-
spect to f; ; and equating the derivatives to 0, we get the following equations:

e When 0 < i <nand0 < j <mn,ie., for the points (a;,a;) inside the square for which there are four
immediate neighbors, we conclude that the value f; ; is equal to the arithmetic average of the values of

these three neighbors:
1

fig =3 figmr + figer + firg + fivrg): (5)
e For pairs (i, j) on the border, there are only three neighbors, and the corresponding equation states that

the value f; ; is equal to the arithmetic average of the three neighboring values.
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The simplest case of n = 2: computations. 2-valued logic corresponds to n = 1, the simplest non-trivial
case is the case n = 2. In this case, we fix the values fo.0 = fo2 = f2,0 = 0 and fo2 = 1, and we need to
determine values fy 1, f1,0, f1,1, fi,2, and fo 1. Since the above system of linear equations does not change if
we swap ¢ and j, the solution also should not change under such a swap. So, we must have fo1 = f1,0 and
fi2 = f21, and, in effect, we only have three unknowns: fy1, fi,1, and fi1 2. After we take into account this
symmetry, for these three unknowns, the above equal-to-the-average equations take the following form:

fii= i “(2fo1 +2f1,2); (6)
foqr = % “(fo,o+ foo+ f11) = f§1; (7)
fio= % (fii+ fo2 + fo2) = ! +3f1’1- (8)

Substituting fo1 = f1,1/3 and fo1 = (1 + f1,1)/3 into the formula (6), we conclude that

: (fO,l + f1,2) = 1 . <‘f§1 + 1+3f1,1) _ fl,l n 1 (9)

fra= 2 3 ' 6

NN

Thus, 2/3 - f11 = 1/6, and hence, fi11 = 1/4. Substituting this value f; 1 into the formulas (6) and (7), we
get fo1 =1/12 and f12 = 5/12. So here, the matrix f; ; has the form

fii=|foa=% fai=1 fa=3]. (10)

foo=0 fipo= ﬁ fa0=0

ie.,
(& o J o5 | 1 ]
1 0 0.4167 1
0.5 || 0.0833 | 0.2500 | 0.4167
0 0 0.0833 0

The simplest case of n = 2: discussion. Somewhat surprisingly, we do not get the expected values
f(0,a) =0 and f(1,a) = a. Moreover, we lose monotonicity, since here:

£(0,0) =0 < £(0,0.5) = % > f(0,1) = 0.

For “or” operations, the results are similar. For “or” operation f; ;, if we require that fo; = fi o =i/n
and f; , = fn,; =1 for all 4, then we get a good result
fij=—F=——-=.

n n n on

However, if we only require that foo = 0 and that fy, = fno = fon = 1, then, for n = 2, a similar
minimization leads to

foe=1 fia=38 foo=1
fii=|foa=% fai=32 foa=%1]. (11)
foo=0 fio=1% foo=1

i.e.,
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(v [ o Jos | 1 ]
T [ 1 J09167] 1
0.5 || 0.5833 | 0.7500 | 0.9167
0 | 0 0533 1

Here also, we do not get the expected values f(0,a) = a and f(1,a) =1, and we also lose monotonicity:

f(1,0) =1> f(1,0.5) =

Similar results for n = 3, n = 4, and n = 5.

non-monotonic.
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A Appendix: Discrete “And” and “Or” Operations with the Small-
est Average Sensitivity: Casesof n=3,n =4, and n=5

Case of n = 3.

(&[] o0 [ 13 123 ] 1 |
1 0 (0258805490 [ 1
2/3 ][ 0.1049 | 0.2273 | 0.3882 | 0.5490
1/3 1 0.0874 | 0.1574 | 0.2273 | 0.2588
0 0 ]00874]01049| 0
(v [ o [ 1/3 ] 23 7] 1
1 1 [0.8951 09126 1
2/3 || 0.7413 | 0.7727 | 0.8427 | 0.9126
1/3 11 0.4510 | 0.6119 | 0.7727 | 0.8951
0 0 0451007413 1
Case of n = 4.

[ & ] o0 025 [ 050 [ 0.75 1
1 0 [0.1926[0.3777 [ 0.6160 | 1
0.75 || 0.1074 [ 0.2000 | 0.3245 | 0.4702 | 0.6160
0.50 | 0.1223 [ 0.1755 [ 0.2500 | 0.3245 | 0.3777
0.25 || 0.0840 [ 0.1298 [ 0.1755 | 0.2000 | 0.1926
0 0 ]0.0840 01223 [0.1074 | 0
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Case of n = 5.

[ v [ o Jo02 Jo05 [075 ] 1 |
1 1 ]0.8926 [ 0.8777 [ 0.9160 [ 1
0.75 || 0.8074 [ 0.8000 | 0.8245 | 0.8702 | 0.9160
0.50 | 0.6223 [ 0.6755 [ 0.7500 | 0.8245 | 0.8777
0.25 | 0.3840 [ 0.5298 [ 0.6755 | 0.8000 | 0.8926
0 0 ]0.3840[0.6223 [ 08074 | 1
(& ] 0o 0.2 0.4 0.6 0.8 1
1 0 [0.1578[0.2941 [ 0.4476 [ 0.6573 [ 1
0.8 ][ 0.1048 [ 0.1793 [ 0.2768 [ 0.3941 [ 0.5244 [ 0.6573
0.6 | 0.1352 [ 0.1777 [ 0.2424 [ 0.3169 | 0.3914 [ 0.4476
0.4 ][ 0.1231 [ 0.1540 [ 0.1982 [ 0.2424 [ 0.2768 [ 0.2941
0.2 ][ 0.0800 [ 0.1170 [ 0.1540 [ 0.1777 [ 0.1793 [ 0.1578
0 0 [0.0800 [ 0.1231 | 0.1352 | 0.1048 | 0
(v ] o 0.2 0.4 0.6 0.8 1
1 1 ]0.8952 [ 0.8648 [ 0.8769 [ 0.9200 [ 1
0.8 ][ 0.8422 [ 0.8207 [ 0.8223 [ 0.8460 [ 0.8830 [ 0.9200
0.6 | 0.7059 [ 0.7232 [ 0.7576 [ 0.8018 | 0.8460 [ 0.8769
0.4 ][ 0.5524 [ 0.6086 [ 0.6831 [ 0.7576 [ 0.8223 [ 0.8648
0.2 ][ 0.3427 [ 0.4756 [ 0.6086 | 0.7232 | 0.8207 | 0.8952
0 0 [0.3427 [ 0.5524 [ 0.7059 [ 0.8422 [ 1
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