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Abstract

Production and financial investment planning is the arrangements for the quantity of products and the
investment in financial products of a firm. This paper develops a new two-stage fuzzy optimization method
for production and financial investment planning problem, in which the exchange rate is uncertain and
characterized by possibility distribution. The objective of the problem is to maximize the firm’s profit. We
use Lebesgue-Stieltjes (L–S) integral to measure the firm’s profit in the second stage. When demands are
deterministic, we decompose the original feasible region to several subregions, and derive the equivalent
linear programming model of the proposed programming problem in each subregion. Furthermore, we em-
ploy decomposition method to solve the proposed production and financial investment planning problem.
Finally, one numerical example is presented to demonstrate the validity of the proposed model and the
effectiveness of the solution method.
c©2014 World Academic Press, UK. All rights reserved.
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1 Introduction

Production and financial investment planning can be viewed as the firm’s decision about how much to produce
and how much funds to invest in each financial markets. With the expansion of the economic, firms locate
activities of their supply chain all over the world. In global markets, production and financial investment
planning is a complex process, in which the managers may face various uncertainty like exchange rates,
market demands, consumption levels and option prices that may affect the production and financial investment
planning. For example, Mello and Parsons [15] constructed a model of a multinational firm with flexibility
in sourcing its production and with the ability to use financial markets to reduce exchange rate risk. Since
current options were frequently used for reducing the risk of uncertain exchange rate [17], Huchzermeier and
Cohen [6] developed a stochastic dynamic programming formulation for the valuation of global manufacturing
strategy options under exchange rate uncertainty. The production planning problem in [3] was about delaying
allocation of the products to the specific markets. Kazaz et al. [7] analyzed the impact of exchange rate
uncertainty on the choice of optimal production policies of excess capacity and postponed allocation. Ding
et al. [4] considered the production and financial investment planning under uncertain exchange rate and
analyzed the impact of delayed allocation and the financial options on the firm’s performance.

On the basis of fuzzy theory [10, 25, 26], the production and financial planning problem has also been
studied in the literature. Wang and Fang [22] presented a novel fuzzy linear programming method that
allowed a decision maker to model a problem according to the current information. According to Black and
Scholes [1] and Merton [16], Lee et al. [8] presented a new application of fuzzy theory to the option pricing
and combined fuzzy decision theory and Bayes’ rule to measure fuzziness in the practice of option analysis.
Sun et al. [20, 21] presented two classes of two-stage fuzzy material procurement planning models based
on different optimization criteria. Feng and Yuan [5] and Yuan [24] developed two-stage fuzzy optimization
methods for multi-product multi-period production planning problem. Sun [19] studied global production
planning problem with fuzzy exchange rates. Yang and Liu [23] developed a mean-risk fuzzy optimization
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method for supply chain network design problem. For recent development of two-stage fuzzy optimization
theory and its applications, the interested reader may refer to [9, 11, 12, 13, 14, 18] and the references therein.

Motivated by the work mentioned above, the purpose of this paper is to study the production and financial
investment planning problems by two-stage fuzzy optimization method. We assume the exchange rates are
uncertain and described by possibility distribution, and construct objective function by using L–S integral [2].
When demands are deterministic, we decompose the feasible region to five subregions, and derive the equiv-
alent linear programming problem of the proposed programming model in each subregion. Then, we employ
decomposition method to solve the obtained programming model.

The structure of this paper is organized as follows. Section 2 builds a novel model for the production
and financial investment planning problem. Section 3 discusses the equivalent linear programming model and
design a feasible region decomposition method. Section 4 provides some numerical experiments to illustrate
the proposed method. Section 5 gives the conclusions of this paper.

2 Formulation of Problem

The problem we addressed in this section is about the production and financial investment planning of a
global firm with a single production facility located in the domestic market. The firm sells product to both
home and foreign markets and faces the uncertain exchange rate. The manager decides to buy financial option
contracts as the financial investment. To optimize the problem, we employ two-stage optimization method
to model a firm’s decisions. In the first stage, a capacity plan for the production facility is developed, and
appropriate financial hedging contracts on the foreign currency should be decided before the exchange rate is
known. In the second stage, after observing the exchange rate, the firm makes production allocation decisions
and the financial decisions to optimize its profits. To describe our problem, we adopt the following notations:

Decision variables

X: capacity reserved in the first stage.

QC : the row vectors of the call options’ contract size in the first stage, QC = (QCi)
2
i=1.

y=(yj)
2
j=1: represents the products shipped to two markets in the second stage.

Uncertain parameter

ξ̃ : fuzzy variable that represents the foreign market currency exchange rate.

Fixed parameters

d=(di)
2
i=1: represents the demands in two markets.

c: unit capacity reservation cost in home currency.

pi: product price in market i (in market i currency), i = 1, 2.

τi: relevant unit localization costs for market i shipped (in market 1 currency), i = 1, 2.

C(SC): the price of unit call option with exercise price SC in stage 1, determined by the

option pricing theory.

P : represents the total contract size that the firm plans to invest (determined by the firm’s

economic strength).

SC : the row vectors of exercise prices of call options, SC = (SCi
)2i=0.

The firm’s profit in market 2 is related to the exchange rate, so the exchange rate can influence the decisions
of the firm. The firm has two markets to supply product. The profits of unit product in market 1 and market
2 are p1− τ1, ξp2− τ2, respectively, and only the profit in market 2 will be affected by the exchange currency.
Comparing two markets returns, we consider the profit in market 2 in the following three special cases.

Case I: the profit in market 2 is larger than market 1, ξp2− τ2 > p1− τ1, which implies ξ > (p1− τ1)/p2 +
τ2/p2.

Case II: the profit in market 2 is negative, ξp2 − τ2 < 0, that is, ξ < τ2/p2.

Case III: the profit in market 2 is smaller than market 1 but positive, 0 < ξp2 − τ2 < p1 − τ1, which
implies τ2/p2 < ξ < (p1 − τ1)/p2 + τ2/p2.

In any case mentioned above, the manager will face some loss from market 2 if he makes a wrong decision
in the first stage. To reduce the risk from the exchange rate, we choose τ2/p2 and τ2/p2 + (p1 − τ1)/p2 as
exercise prices of call options, and denote SC = (SC1

, SC2
) = (τ2/p2, τ2/p2 + (p1 − τ1)/p2).

Based on the notations above, we formulate the optimal production and financial planning problem as the
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following two-stage optimization model:

max U = −(cX + C(SC1)QC1 + C(SC2)QC2)eγT +

∫
<

Q(X,QC1 , QC2 , ξ)dα(ξ)

s. t. X ≥ 0,

0 ≤ C(SC1
)QC1

+ C(SC2
)QC2

≤ P,
QCi

≥ 0, i = 1, 2,

(1)

where γ is the risk-free interest rate in home currency, T is the time-to-maturity of the option, Q(X,QC1
,QC2

,ξ)
is the optimal value of the following programming problem

Q(X,QC1
, QC2

, ξ) = max (p1 − τ1)y1 + (ξp2 − τ2)y2 + (ξ − SC1
)+QC1

+ (ξ − SC2
)+QC2

s. t. yj ≥ 0, j = 1, 2,

yj ≤ dj , j = 1, 2,

y1 + y2 ≤ X,

(2)

and α(ξ) is the credibility distribution of ξ̃, α(ξ) = Cr{ξ̃ ≤ ξ}.

3 Model Analysis and Solution Method

In this section, we first discuss the equivalent model of problem (1). Our method is based on the assumption
that demands are deterministic and decompose the feasible region to several disjoint subregions.

3.1 Equivalent Programming Models

Comparing the demands d1, d2 and the capacity X, we divide the capacity into five subregions and discuss
the equivalent programming model in each subregion.

Proposition 1. If 0 ≤ X < min(d1, d2), then problem (1) is equivalent to the following linear programming

max U = a1X + b1QC1 + c1QC2

s. t. 0 ≤ X ≤ min(d1, d2),

0 ≤ C(SC1)QC1 + C(SC2)QC2 ≤ P,
QCi ≥ 0, i = 1, 2,

(3)

where

a1 = −ceγT + (p1 − τ1)
∫
[0,SC2

]
1dα(ξ) + p2

∫
[SC2

,+∞)
ξdα(ξ)− τ2(1− α(S−1C2

)),

b1 = −C(SC1)eγT +
∫
[SC1

,+∞)
ξdα(ξ)− SC1(1− α(S−1C1

)),

c1 = −C(SC2
)eγT +

∫
[SC2

,+∞)
ξdα(ξ)− SC2

(1− α(S−1C2
)).

Proof. According to the earning in two markets, we divide the exchange rate into three parts. The first
part is [−∞, SC1

), the second part is [SC1
, SC2

), and the third part is [SC2
,+∞). When the capacity X ∈

(0,min(d1, d2)), we can find the optimal solutions in the second stage.

If ξ ≥ τ2/p2 + (p1 − τ1)/p2, then the optimal solutions y1 = min((X − d2)+, d1), y2 = min(X, d2). If
τ2/p2 ≤ ξ < τ2/p2 + (p1 − τ1)/p2, then the optimal solutions y1 = min(X, d1), y2 = min((X − d1)+, d2). If
ξ < τ2/p2, then the optimal solutions y1 = min(X, d1), y2 = 0. As a consequence, we obtain the optimal value
function Q of the second stage,

Q =


(ξp2 − τ2)X + (ξ − SC1

)QC1
+ (ξ − SC2

)QC2
, ξ ∈ [−∞, SC1

),

(p1 − τ1)X + (ξ − SC1
)QC1

, ξ ∈ [SC1
, SC2

),

(p1 − τ1)X, ξ ∈ [SC2
,+∞).

(4)
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The objective function U of problem (1) can be written as

U = −(cX + C(SC1
)QC1

+ C(SC2
)QC2

)eγT +

∫
[0,+∞)

Qdα(ξ).

According to the representation of Q, we have

U =(−ceγT +

∫
[0,SC2

)

(p1 − τ1)dα(ξ))X

+ (

∫
[SC1

,+∞)

(ξ − SC1
)− C(SC1

)eγT dα(ξ))QC1

+ (

∫
[SC2

,+∞)

(ξ − SC2
)− C(SC2

)eγT dα(ξ))QC2
,

which completes the proof of proposition.

Proposition 2. If d1 ≤ d2, and d1 < X ≤ d2, then problem (1) is equivalent to the following linear
programming

max U = a2X + b2QC1
+ c2QC2

+ d2

s. t. d1 < X ≤ d2,
0 ≤ C(SC1

)QC1
+ C(SC2

)QC2
≤ P,

QCi
≥ 0, i = 1, 2,

(5)

where
a2 = −ceγT + p2

∫
[SC1

,+∞)
ξdα(ξ)− τ2(1− α(S−1C1

)),

b2 = −C(SC1
)eγT +

∫
[SC1

,+∞)
ξdα(ξ)− SC1

(1− α(S−1C1
)),

c2 = −C(SC2
)eγT +

∫
[SC2

,+∞)
ξdα(ξ)− SC2

(1− α(S−1C2
)),

d2 = [(p1 − τ1)
∫
[0,SC2

)
1dα(ξ)− p2

∫
[SC1

,SC2
)
ξdα(ξ) + τ2d1(α(S−1C2

)− α(S−1C1
)).

Proof. The proof is similar to that of Proposition 1.

Proposition 3. If d2 ≤ d1, and d2 < X ≤ d1, then problem (1) is equivalent to the following linear
programming

max U = a3X + b2QC1 + c3QC2 + d3

s. t. d2 < X ≤ d1,
0 ≤ C(SC1)QC1 + C(SC2)QC2 ≤ P,
QCi ≥ 0, i = 1, 2,

(6)

where
a3 = −ceγT + (p1 − τ1)(1− α(0−1)),
b3 = −C(SC1

)eγT +
∫
[SC1

,+∞)
ξdα(ξ)− SC1

(1− α(S−1C1
)),

c3 = −C(SC2)eγT +
∫
[SC2

,+∞)
ξdα(ξ)− SC2(1− α(S−1C2

)),

d3 = [p2
∫
[SC2

,+∞)
ξdα(ξ)− (τ2 + p1 − τ1)d2(1− α(S−1C1

)).

Proof. The proof is similar to that of Proposition 1.

Proposition 4. If max(d1, d2) < X ≤ d1 +d2, then problem (1) is equivalent to the following linear program-
ming

max U = a4X + b4QC1 + c4QC2 + d4

s. t. max(d1, d2) < X ≤ d1 + d2,

0 ≤ C(SC1)QC1 + C(SC2)QC2 ≤ P,
QCi ≥ 0, i = 1, 2,

(7)
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where
a4 = −ceγT + (p1 − τ1)

∫
[SC2

,+∞)
1dα(ξ) + p2

∫
[SC1

,SC2
)
ξdα(ξ)− τ2(α(S−1C2

)− α(S−1C1
)),

b4 = −C(SC1
)eγT +

∫
[SC1

,+∞)
ξdα(ξ)− SC1

(1− α(S−1C1
)),

c4 = −C(SC2
)eγT +

∫
[SC2

,+∞)
ξdα(ξ)− SC2

(1− α(S−1C2
)),

d4 = [(p1 − τ1)
∫
[0,SC2

)
1dα(ξ)− p2

∫
[SC1

,SC2
)
ξdα(ξ) + τ2d1(α(S−1C2

)− α(S−1C1
)),

+[p2
∫
[SC2

,+∞)
ξdα(ξ)− (τ2 + p1 − τ1)(1− α(S−1C2

)).

Proof. The proof is similar to that of Proposition 1.

Proposition 5. If d1 + d2 < X, then problem (1) is equivalent to the following linear programming

max U = a5X + b5QC1
+ c5QC2

+ d5

s. t. d1 + d2 < X,

0 ≤ C(SC1
)QC1

+ C(SC2
)QC2

≤ P,
QCi

≥ 0, i = 1, 2,

(8)

where
a5 = −ceγT ,
b5 = −C(SC1

)eγT +
∫
[SC1

,+∞)
ξdα(ξ)− SC1

(1− α(S−1C1
)),

c5 = −C(SC2
)eγT +

∫
[SC2

,+∞)
ξdα(ξ)− SC2

(1− α(S−1C2
)),

d5 = [(p1 − τ1)
∫
[0,+∞)

1α(ξ)]d1 + [p2
∫
[SC1

,+∞)
ξdα(ξ)− τ2(1− α(S−1C1

))]d2.

Proof. The proof is similar to that of Proposition 1.

Based on the obtained results, we conclude that problem (1) is a piecewise linear programming model
provided that the demands are deterministic. Using this structural characteristic, we will discuss the decom-
position method for the solution of problem (1) in the next section.

3.2 Decomposition Method

So far, we have derived the equivalent linear programming model of the proposed programming problem in
each subregion. Using the obtained results, we next suggest a method to find the global optimal solution
and the optimal value. We first divide the original feasible region into four subregions. Then, we derive the
equivalent linear programming model in each subregion. After that, we find the local optimal solutions by
solving the linear programming in its subregion. Finally, the global optimal solutions can be found from the
obtained local optimal solutions. The feasible region decomposition method is summarized as follows.

Step 1. Divide the capacity X into four parts:

I: X ∈ [0,min(d1, d2)], II: X ∈ [d1, d2](orX ∈ [d2, d1]),

III: X ∈ [max(d1, d2), d1 + d2], IV: X ∈ [d1 + d2,+∞).

Step 2. Solve linear programming (3), (5)(or (6)), (7), (8), respectively.

Step 3. Compare the objective values of local optimal solutions obtained in Step 2.

Step 4. Select the best local optimal solution as the global optimal solution.

Sice the capacity and the investment of contract are always integers, it is required to solve the integral
linear programming in Step 2. In the next section, we will give a numerical example to illustrate the developed
mathod and use LINDO to solve the integer linear programming.

4 A Numerical Example

In this section, we present an example to illustrate the proposed method in the above section.
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4.1 Problem Description

Based on previous experience, a clothing factory decides to invest in the domestic market and New Zealand
market. Before the production, two markets provide the demands to the factory. To obtain a satisfactory
profit, the factory signs a currency option contract with Bank. The related parameters are shown in Table 1.

Table 1: The values of parameters in numerical experiments

c p1 p2 τ1 τ2 eγT

30 RMB 60 RMB 25 NZD 5R MB 30 RMB e0.05

SC1
SC2

C(SC1
) C(SC2

) d1 d2
1.2 3.4 3.86RMB 1.97RMB 10000 8000

The total money that the firm plans to invest to the currency options is less than the total cost of capacity,
i.e. P ≤ 30X. The New Zealand market currency exchange rate ξ is assumed to follow a logarithmic normal
distribution with the following credibility distribution

α(ξ) = Cr{ξ ≤ t} =

{
1
2e
−2(ln t−1.6)2 , ln t ≤ 1.6,

1− 1
2e
−2(ln t−1.6)2 , ln t > 1.6.

Thus, the factory’s production and financial planning problem is built as the following mathematical model

max U =− (30X + 3.86QC1 + 1.97QC2)e0.05

+

∫
(0,+∞)

55y1 + (25ξ − 30)y2 + (ξ − 1.2)+QC1 + (ξ − 3.4)+QC2dα(ξ)

s. t. 3.86QC1
+ 1.97QC2

− 30X ≤ 0,

y1 + y2 ≤ X,
y1 ≤ 10000, y2 ≤ 8000,

X ≥ 0, QCi
≥ 0 i = 1, 2.

(9)

4.2 Computational Results

In this section, we solve problem (9) by the feasible region decomposition method. First, we divide the feasible
region into four subregions:

I: X ∈ [0, 8000], II: X ∈ (8000, 10000],
III: X ∈ (10000, 18000], IV: X ∈ (18000,+∞),

and solve linear programming (3), (5), (7) and (8), respectively. The obtained optimal solutions and their
objective values are collected in Tables (2)–(5).

Table 2: The solution in region I

Optimal Value U 987725.6 RMB
Optimal Solution X 8000

QC1
0

QC2
121827

Table 3: The solution in region II

Optimal Value U 1070422.3 RMB
Optimal Solution X 10000

QC1
0

QC2
152284

Table 4: The solution in region III

Optimal Value U 1331159.9 RMB
Optimal Solution X 18000

QC1 0
QC2

274111

Table 5: The solution in region IV

Optimal Value U 1331159 RMB
Optimal Solution X 18000

QC1 0
QC2

274111
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By comparing the optimal values in four subregions, we find that the global optimal solution X = 18000,
(QC1

, QC2
) = (0, 274111) in the third subregion, whose objective value is U = 1331159.9 RMB. That is, the

factory should produce 18000 pieces of products to meet the demands of both markets, and choose the call
option 274111 to minimize the risk.

5 Conclusions

In fuzzy decision systems, this paper addressed the production and financial investment planning problem,
and obtained the following new results.

(i) Based on the credibility distribution, we employed L–S integral to measure the firm’s profit and derive
the representation of the optimal value function by using the properties of L–S integral.

(ii) By decomposing the feasible region, we established five equivalent linear programming models of the
original production and financial investment planning problem.

(iii) We designed a feasible region decomposition method to solve the original piecewise linear programming
model.

The problem of uncertain production and financial investment plan in global market is an important issue
for study. This paper has considered the influence of fuzzy exchange rate fluctuations to a global firm and
suggested the corresponding strategies. In our future research, we will consider more complex global market
situations, and adapt our model to the practical environments.

Acknowledgments

The author would like to thank the anonymous reviewers whose constructive and insightful comments have
led to the improvements of the paper. This work was supported by the National Natural Science Foundation
of China (No.61374184).

References

[1] Black, F., and M. Scholes, The pricing of options and corporate liabilities, Journanl of Political Economy, vol.81,
no.3, pp.637–654, 1973.

[2] Carter, M., and B. van Brunt, The Lebesgue-Stieltjes Integral, Springer-Verlag, New York, 2000.

[3] Cohen, M.A., and A. Huchzermeier, Global supply chain management: a survey of research and applications,
Operations Research and Management Science, vol.17, pp.669–702, 1999.

[4] Ding, Q., Dong, L., and P. Kouvelis, On the integration of production and financial hedging decisions in global
markets, Operations Research, vol.55, no.3, pp.370–498, 2007.

[5] Feng, X., and G. Yuan, Optimizing two-stage fuzzy multi-product multi-period production planning problem,
Information, vol.14, no.6, pp.1879–1893, 2011,

[6] Huchzermeier, A., and M.A. Cohen, Valuing operational flexibility under exchange rate uncertainty, Operations
Research, vol.44, no.1, pp.100–113, 1996.

[7] Kazaz, B., Dada, M., and H. Moskowitz, Global production planning under exchange-rate uncertainty, Manage-
ment Science, vol,51, no.7, pp.1101–1119, 2005.

[8] Lee, C.F., Tzeng, G.H., and S.Y. Wang, A new application of fuzzy set theory to the Black-Scholes option pricing
model, Expert Systems with Applications, vol.29, no.2, pp.330–342, 2005.

[9] Li, Z., and X. Dai, Optimization of insuring critical path problem with uncertain activity duration times, Journal
of Uncertain Systems, vol.7, no.1, pp.72–80, 2013.

[10] Liu, B., and Y. Liu, Expected value of fuzzy variable and fuzzy expected value models, IEEE Transactions on
Fuzzy Systems, vol.10, no.4, pp.445–450, 2002.

[11] Liu, Y., Fuzzy programming with recourse, International Journal of Uncertainty, Fuzziness and Knowledge-Based
Systems, vol.13, no.4, pp.381–413, 2005.



108 M. Xu: Optimization of Fuzzy Production and Financial Investment Planning Problems

[12] Liu, Y., and X. Bai, Studying interconnections between two classes of two-stage fuzzy optimization problems, Soft
Computing, vol.17, no.4, pp.569–578, 2013.

[13] Liu, Y., Chen, Y., Liu, Y., and R. Qin, Fuzzy Optimization Methods with Applications, Science Press, Beijing,
2013.

[14] Liu, Y., and M. Tian, Convergence of optimal solutions about approximation scheme for fuzzy programming with
minimum-risk criteria, Computers & Mathematics with Applications, vol.57, no.6, pp.867–884, 2009.

[15] Mello, A.S., Parsons, J.E., and J.A. Triantis, An integrated model of multinational flexibility and financial hedging,
Journal of Internantional Economics, vol.39, nos.1-2, pp.27–51, 1995.

[16] Merton, R.C., Theory of rational option pricing, The Bell Journal of Economics and Managemenet Science, vol.4,
no.1, pp.141–183, 1973.

[17] O’Brien, T.J., Global Financial Management, Wiley, New York, 1996.

[18] Shen, S., and Y. Liu, A new class of fuzzy location-allocation problems and its approximation method, Information,
vol.13, no.3, pp.577–591, 2010.

[19] Sun, J., Global production planning with fuzzy exchange rates, Journal of Uncertain Systems, vol.8, no.1, pp.58–
65, 2014.

[20] Sun, G., Liu, Y., and Y. Lan, Optimizing material procurement planning problem by two-stage fuzzy program-
ming, Computers & Industrial Engineering, vol.58, no.1, pp.97–107, 2010.

[21] Sun, G., Liu, Y., and Y. Lan, Fuzzy two-stage material procurement planning problem, Journal of Intelligent
Manufacturing, vol.22, no.2, pp.319–331, 2011.

[22] Wang, R.C., and H.H. Fang, Aggregate prosuction planning with multiple objectives in a fuzzy environment,
European Journal of Operational Research, vol.133, no.3, pp.521–536, 2001.

[23] Yang, G., and Y. Liu, Designing fuzzy supply chain network problem by mean-risk optimization method, Journal
of Intelligent Manufacturing, pp.1–12, 2013, doi:10.1007/s10845-013-0801-7.

[24] Yuan, G., Two-stage fuzzy production planning expected value model and its approximation method, Applied
Mathematical Modelling, vol.36, no.6, pp.2429–2445, 2012.

[25] Zadeh, L.A., Fuzzy sets, Information and Control, vol.8, no.3, pp.338–353, 1965.

[26] Zadeh, L.A., Fuzzy sets as a basis for a theory of possibility, Fuzzy Sets and Systems, vol.1, no.1, pp.3–28, 1978.


	JUS 8-2-1.pdf
	Introduction
	The Basic Model
	Individual Liability Lending
	Individual Liability with Ex-ante Monitoring
	Ex-ante Monitoring in the Framework of Probability
	Ex-ante Monitoring in the Framework of Uncertainty

	Joint Liability with Assortive Matching
	Concluding Remarks

	JUS-8-2-3.pdf
	Introduction
	Formulation of Problem
	Model Analysis and Solution Method
	Equivalent Programming Models
	Decomposition Method

	A Numerical Example
	Problem Description
	Computational Results

	Conclusions

	JUS-8-2-5.pdf
	Introduction
	Formulation of Offshore Decision-making Problem
	Feasible Region Decomposition and Solution Method
	Feasible Region Decomposition
	Solution Method

	An Application Example
	Problem Description
	Computational Results

	Conclusions




