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1 1 1 1

1 1 1 1 1
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
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
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   
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  






                                                        (4.2) 

 Four control functions , 1,2,3,4iu i  can synchronize two identical systems in the sense of projective 

synchronization. Here, we define the state errors as 1 2 1 2 2 1 3 2 1 4 2 1, , ,e x x e y y e z z e w w           . In order 

to observe the projective synchronization between systems (4.1) and (4.2). The errors dynamics is developed as 

1 2 1 4 1

2 1 2 2 2 1 1 2

3 2 2 3 1 1 3

4 2 2 4 1 1 4

( )

.

e a e e e u

e de ce x z x z u
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                                                  (4.3) 

Further, we chose the active control functions as 

1 1
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
  
   
   

                                                          (4.4) 

Substituting (4.4) and (4.3), we get 
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( )

.
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




                                                            (4.5) 

The system (4.5) to be controlled must be a linear system with the control input function 1 2 3 4[ , , , ]TV V V V V as 

the functions of the error states 1 2 3, ,e e e and 4e . When the error system (4.5) is stabilized by the feedback V, the error 

will converge to zero as t  which implies that the systems (4.1) and (4.2) are globally synchronized. Choosing V
as 

1 2 3 4 1 2 3 4( , , , ) ( , , , )T TV V V V A e e e e  
where A is a 4 4 constant matrix. For the error system (4.5) to be asymptotically stable, the elements of the matrix A 
are chosen so as the error system (4.5) will have all eigen values with negative real parts. Various choices of A are 
possible. For though there are various choices in the selection of matrix, the best possible choice is 
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5 Projective Synchronization of Two Identical Hyper-Chaotic Lu Systems 
 

In this section we study projective synchronization between two identical hyper- chaotic Lu system by active 
nonlinear control. We denote the master system with subscript 1 and slave system with subscript 2 in their following 
representations: 

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

( )

,

x a y x w

y x z cy

z x y bz

w x z rw

  
  
 
 






                                                             (5.1) 

2 2 2 2 1

2 2 2 2 2

2 2 2 2 3

2 2 2 2 4

( )

.

x a y x w u

y x z cy u

z x y bz u

w x z rw u

   
   
  
  






                                                         (5.2) 

 Four control functions , 1,2,3,4iu i   are introduced to synchronize the two identical systems in the form of 

projective synchronization.  
We define the state errors as 1 2 1 2 2 1 3 2 1 4 2 1, , ,e x x e y y e z z e w w           . 

In order to observe the projective synchronization between systems (5.1) and (5.2), we obtain the errors 
dynamics 

1 2 1 4 1

2 2 2 2 1 1 2

3 2 2 3 1 1 3

4 2 2 4 1 1 4

( )

.

e a e e e u

e x z ce x z u

e x y be x y u

e x z re x z u





   
    
   
   






                                                      (5.3) 

Choosing the active control functions  

1 1

2 2 2 1 1 2

3 2 2 1 1 3

4 2 2 1 1 4 .

u V

u x z x z V

u x y x y V

u x z x z V






  
   
   

                                                          (5.4) 

Substituting (5.4) and (5.3), we get 

1 2 1 4 1

2 2 2

3 3 3

4 4 4

( )

.

e a e e e V

e ce V

e be V

e re V

   
 
  
 






                                                          (5.5) 

Thus, the system (5.5) to be controlled is a linear system with the control input function 1 2 3 4[ , , , ]TV V V V V being 

the functions of the error states 1 2 3, ,e e e and 4e . When the error system (5.5) is stabilized by the feedback V, the error 

will converge to zero as t  which implies that the systems (5.1) and (5.2) are globally synchronized. We choose 
V as follows: 

1 2 3 4 1 2 3 4( , , , ) ( , , , )T TV V V V A e e e e  

where A is a 4 4 constant matrix. For the error system (5.5) to be asymptotically stable, the elements of the matrix A 
are chosen so as the error system (5.5) will have all eigen values with negative real parts. From the various possible 
choices of ,A  the most adequate choice is  
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