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Abstract

Type-2 (T2) fuzzy variable is a measurable map from a fuzzy possibility space to Euclidean space.
This note discusses fuzzy arithmetic about the linear combinations of common T2 fuzzy variables. Under
appropriate assumptions, we obtain some useful results about the representation of secondary possibility
distributions, which have potential applications when we apply T2 fuzzy theory to practical decision
making problems.
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1 Introduction

Type-2 fuzzy set was first proposed by Zadeh [11, 12] to overcome the difficulty of determining the crisp
membership function of a fuzzy set. Recently, fuzzy possibility theory was developed by Liu and Liu [6] with
the intention of adopting a variable-based approach to handling type-2 fuzziness. Fuzzy possibility measure,
type-2 fuzzy variable, type-2 possibility distribution and secondary possibility distribution are fundamental
concepts in fuzzy possibility theory. This theory has now been further developed by a number of researchers
[1, 3, 5, 10]. Besides, many interesting applications of T2 fuzzy theory can be found in the literature, such
as portfolio optimization [2, 9], data envelopment analysis [7, 8], and transportation problem [4]. In the
application areas mentioned above, the linear combinations of T2 fuzzy variables are often used to build
practical optimization models, but their secondary possibility distributions haven’t been well-established so
far. In this note, we resolve this issue for common T2 fuzzy variables, including T2 normal, gamma, trapezoidal
and triangular fuzzy variables.

2 Sum of T2 Fuzzy Variables

In this section, we adopt the concepts and notations documented in [5] and the references therein.
If we denote µ(x) = exp{−(x− µ)2/(2σ2)}, x ∈ <, then a type-2 fuzzy variable η̃ is called normal if its

secondary possibility distribution µ̃η̃(x) is the following regular triangular fuzzy variable (µ(x) − θl min{1 −
µ(x), µ(x)}, µ(x), µ(x) + θr min{1 − µ(x), µ(x)}) for any x ∈ <, where µ ∈ <, σ > 0, and θl, θr ∈ [0, 1] are
two parameters characterizing the degree of uncertainty that η̃ takes the value x. For simplicity, we denote
the type-2 normal fuzzy variable η̃ with the above second possibility distribution by ñ(µ, σ2; θl, θr), whose
principle possibility distribution is denoted as n(µ, σ2).

The first result is about the linear combination of T2 normal fuzzy variables, which is stated as:

Theorem 1. Let η̃i = ñ(µi, σ
2
i ; θil, θir) be a T2 normal fuzzy variable defined on a fuzzy possibility space

(Γi,Ai, P̃osi) for each positive integer i ≤ n. Suppose the principle possibility distributions n(µi, σ
2
i )’s

are mutually independent, and xi’s are real numbers. Then η̃ =
∑n
i=1 xiη̃i is the T2 normal fuzzy vari-

able ñ(µ, σ2; θl, θr), where the parameters µ =
∑n
i=1 xiµi, σ =

∑n
i=1 xiσi, θl = max1≤i≤n θil and θr =

min1≤i≤n θir.

Proof. Since the principle possibility distributions n(µi, σ
2
i )’s are mutually independent, for any nonzero

real numbers xi’s, the linear combination η̃ =
∑n
i=1 xiη̃i has principle possibility distribution n(µ, σ2) with
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parameters µ =
∑n
i=1 xiµi, and σ =

∑n
i=1 xiσi. Furthermore, for any z ∈ <, there exist real numbers zi’s

such that z =
∑n
i=1 zi and P̃os{η̃ = z} = minni=1 P̃osi{η̃i = zi}. Therefore, by the independence of regular

fuzzy variables P̃osi{η̃i = zi}’s, we have θl = max1≤i≤n θil and θr = min1≤i≤n θir. The proof of theorem is
complete.

If we introduce the following three real-valued functions r1(x; θl) = r2(x) − θl min{1 − r2(x), r2(x)},
r2(x) = (x/(λr))

r
exp (r − x/λ), and r3(x; θr) = r2(x) + θr min{1 − r2(x), r2(x)}, then a type-2 fuzzy vari-

able ζ̃ is called gamma if its secondary possibility distribution µ̃ζ̃(x) is the regular triangular fuzzy variable

(r1(x; θl), r2(x), r3(x; θr)) for any x ∈ <+, where λ > 0 (r is treated as a fixed positive constant), and
θl, θr ∈ [0, 1] are two parameters characterizing the degree of uncertainty that ζ̃ takes the value x. For
simplicity, we denote the type-2 gamma fuzzy variable ζ̃ with the above second possibility distribution by
γ̃(λ; θl, θr), whose principle possibility distribution is denoted as γ(λ).

Theorem 2. Let ζ̃i = γ̃(λi; θil, θir) be a T2 gamma fuzzy variable defined on a fuzzy possibility space
(Γi,Ai, P̃osi) for each positive integer i ≤ n. Suppose the principle possibility distributions γ(λi)’s are mutu-
ally independent, and xi’s are nonnegative real numbers. Then ζ̃ =

∑n
i=1 xiζ̃i is the T2 gamma fuzzy variable

γ̃(λ; θl, θr), where the parameters λ =
∑n
i=1 xiλi, θl = max1≤i≤n θil and θr = min1≤i≤n θir.

Proof. For each positive integer i ≤ n, let ζi be the gamma fuzzy variable associated with principle possibility
distribution γ(λi). By supposition, ζi’s are mutually independent gamma fuzzy variables. Therefore, for any
(x1, x2, . . . , xn) ∈ <+

n ,
∑n
i=1 xiζi is the gamma fuzzy variable γ(λ) with λ =

∑n
i=1 xiλi. It is evident that∑n

i=1 xiζi is the principle possibility distribution of ζ̃. As a consequence, for any z ∈ <, there exist real

numbers zi’s such that z =
∑n
i=1 zi and P̃os{ζ̃ = z} = minni=1 P̃osi{ζ̃i = zi}. By the independence of regular

fuzzy variables P̃osi{ζ̃i = zi}’s, we have θl = max1≤i≤n θil and θr = min1≤i≤n θir, which complete the proof
of theorem.

Let ri ∈ <, i = 1, 2, 3, 4 with r1 < r2 ≤ r3 < r4, and µ(x) be the following function

µ(x) =


x−r1
r2−r1 , if x ∈ [r1, r2]

1, if x ∈ (r2, r3]
r4−x
r4−r3 , if x ∈ (r3, r4].

(1)

Then a type-2 fuzzy variable ξ̃ is called trapezoidal if its secondary possibility distribution µ̃ξ̃(x) is the
regular triangular fuzzy variable (µ(x)− θl min{1− µ(x), µ(x)}, µ(x), µ(x) + θr min{1− µ(x), µ(x)}) for any
x ∈ [r1, r4], where θl, θr ∈ [0, 1] are two parameters characterizing the degree of uncertainty that ξ̃ takes the
value x. For simplicity, we denote the type-2 trapezoidal fuzzy variable ξ̃ with the above second possibility
distribution by (r̃1, r̃2, r̃3, r̃4; θl, θr), whose principle possibility distribution is the function µ(x) defined in
Eq. (1).

For the linear combination of T2 trapezoidal fuzzy variables, we have:

Theorem 3. Let ξ̃i = (r̃i1, r̃i2, r̃i3, r̃i4; θil, θir) be a T2 trapezoidal fuzzy variable defined on a fuzzy possibility
space (Γi,Ai, P̃osi) for each positive integer i ≤ n. Suppose the principle possibility distributions of ξ̃i’s are
mutually independent, and xi’s are real numbers. Then ξ̃ =

∑n
i=1 xiξ̃i is the T2 trapezoidal fuzzy variable

(r1(x), r2(x), r3(x), r4(x); θl, θr), where the parameters θl = max1≤i≤n θil, θr = min1≤i≤n θir, and

r1(x) =

n∑
i=1

(
x+i ri1 − x

−
i ri4

)
, r2(x) =

n∑
i=1

(
x+i ri2 − x

−
i ri3

)
, (2)

r3(x) =

n∑
i=1

(
x+i ri3 − x

−
i ri2

)
, r4(x) =

n∑
i=1

(
x+i ri4 − x

−
i ri1

)
(3)

with x+i = max{xi, 0}, and x−i = max{−xi, 0}.

Proof. The proof of theorem is similar to that of Theorem 1.

As a corollary of Theorem 3, we have the following result about the linear combination of T2 triangular
fuzzy variables.
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Corollary 1. Let ξ̃i = (r̃i1, r̃i2, r̃i3; θil, θir) be a T2 triangular fuzzy variable defined on a fuzzy possibility
space (Γi,Ai, P̃osi) for each positive integer i ≤ n. Suppose the principle possibility distributions of ξ̃i’s are
mutually independent, and xi’s are real numbers. Then ξ̃ =

∑n
i=1 xiξ̃i is the T2 triangular fuzzy variable

(r1(x), r2(x), r3(x); θl, θr), where the parameters θl = max1≤i≤n θil, θr = min1≤i≤n θir, and

r1(x) =

n∑
i=1

(
x+i ri1 − x

−
i ri3

)
, r2(x) =

n∑
i=1

xiri2, r3(x) =

n∑
i=1

(
x+i ri3 − x

−
i ri1

)
(4)

with x+i = max{xi, 0}, and x−i = max{−xi, 0}.
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