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Abstract

The stochastic ordering of random variables is extended to the cases where the available data are
imprecise quantities, rather than crisp. To do this, using some elements of fuzzy set theory, we suggest
the fuzzy reversed hazard rate and fuzzy mean inactivity time functions and apply them to construct
some new fuzzy stochastic orders for ranking fuzzy random variables. In addition, we study the relations
between the proposed fuzzy stochastic orders.
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1 Introduction

Stochastic ordering of random variables is a one of the most applicable topics in statistics and probability.
Various concepts of stochastic comparison between random variables have been defined and studied in the
literature, because of their usefulness in modelling for reliability, economics applications and as mathemat-
ical tools for proving important results in applied probability [24]. Mann and Whitney [18] introduced the
concept of stochastic order and Brinbaum [6] used their approach in the study of Peakedness. Van Zwet
[27] investigated some other important orders and then, the notation of the ordering distributions studied by
Lehmann [16] and also Bickel and Lehmann [5] (for more detailes, see Marshall and Olkin [19]). Shaked and
Shanthikumar presented a comprehensive report about the stochastic orders and the various studies that have
been done by researchers in this field (see, [24], section 1.E).

However, in practice, there are some situations in which, due to uncertainty in underlying system, the
classical random variables are not suitable tools for modelling the desired quantities. In such situations, if
we use the conventional methods for comparing the random variables, then we confront with some difficulties
and need to provide the new techniques. Different approaches and theories have been proposed for treating
uncertainty and imprecision during the past decades, among them the fuzzy set theory have a key role and
several researchers have concentrated on applying this theory to various fields [33], especially in probability
and statistics [2, 3, 7, 25, 28].

As authors known, even though there are many researchers pay attention to ranking the fuzzy numbers
[8, 9, 14, 29, 30], but there are only a few researches for comparing the fuzzy random variables. Piriyaku-
mar and Renganathan [21] provided a fuzzy analogue of the stochastic orderings based on the fuzzy random
variables introduced by Kwakernaak [15]. To rank the fuzzy random variables, a joint extension of interval
comparison and random variable comparison method is proposed by Aiche and Dubois [1]. Recently, Zarei et
al. proposed some new fuzzy stochastic orders for fuzzy random variables and also fuzzy order statistics [31].

The present paper aims to develop some important stochastic orders for fuzzy random variables, based
on extending the classical approach in stochastic orderings. The proposed approach has some novelty among
them is that, this approach uses some concepts of fuzzy lifetime data in stochastic orderings under fuzzy en-
vironment. Meanwhile, we develop some popular stochastic orders for ranking fuzzy random variables based
on the concept of ranking system for real valued interval.
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This paper is organized as follows: In Section 2, we recalls some concepts of fuzzy numbers, fuzzy random
variables, and also fuzzy cumulative distribution function. In Section 3, we introduce the fuzzy likelihood
ratio and fuzzy proportional likelihood ratio orders for comparing fuzzy random variables. Also, the relation
between these orders was studied. In Section 4, we introduce a method to provide two stochastic orders to
compare fuzzy random variables based on two important function in reliability theory. First, in Subsection
4.1, we proposed the reversed hazard rate order for fuzzy random variable and also fuzzy order statistics based
on the concept of fuzzy reversed hazard rate function. Then, the fuzzy mean inactivity order was investigated
using an extension of the concept of mean inactivity time function for imprecise observations in Subsection
4.2. Finally, we will study some properties of fuzzy mean inactivity time order and connections with fuzzy
reversed hazard rate order. In Section 5, we compare our method with some other works. A brief conclusion
is provided in Section 6.

2 Preliminaries

In the following, we recalls some definitions and results related to fuzzy numbers, fuzzy random variables and
fuzzy distribution function.

2.1 Fuzzy Numbers

Let X be a universal set and SX = {x ∈ X : f(x; θ) > 0} be the support of X. A fuzzy subset (briefly, a
fuzzy set) x̃ of SX is defined by its membership function µx̃ : SX → [0, 1]. We denote the α-cuts of x̃ by
x̃α = {x : µx̃(x) ≥ α}, and x̃0 is the closure of the set {x : µx̃(x) > 0}.

The fuzzy set x̃ is called a normal fuzzy set if there exists x ∈ SX such that µx̃(x) = 1, and called convex
fuzzy sets if µx̃(λx + (1 − λ)y) ≥ min{µx̃(x), µx̃(y)} for every x, y ∈ SX and λ ∈ [0, 1]. The fuzzy set x̃ is
called fuzzy number if it is a normal and convex fuzzy set and its α-cuts are bounded for all α ∈ [0, 1]. In
addition, if x̃ is a fuzzy number and the support of its membership function µx̃ is compact, then we called x̃
as a bounded fuzzy number.

If x̃ is a closed and bounded fuzzy number with xLα = inf{x : x ∈ x̃α} and xUα = sup{x : x ∈ x̃α} and
its membership function be strictly increasing on the interval [xLα, x

L
1 ] and strictly decreasing on the interval

[xU1 , x
U
α ], then x̃ is called a canonical fuzzy number.

2.2 Fuzzy Random Variables

The fuzzy number x̃ with membership function µx̃(r) can be induced by any real number x ∈ SX such that
µx̃(x) = 1 and µx̃(r) < 1 for r 6= x. We denote the set of all fuzzy real numbers induced by real number
x ∈ SX by F(SX) .

The relation ∼ on F(SX) define as x̃1 ∼ x̃2 if and only if x̃1 and x̃2 are induced by the same real number x.
Then ∼ is an equivalence relation, which induce the equivalence classes [x̃] = {ã : ã ∼ x̃}. The set (F(SX)/ ∼)
called a fuzzy real number system. In practice, we take only one element x̃ from each equivalence class [x̃] to
form the fuzzy real number system (F(SX)/ ∼). If the fuzzy real number system (F(SX)/ ∼) consists all of
the canonical fuzzy real numbers, then we call (F(SX)/ ∼) as the canonical fuzzy real number system.

Let X be a random variable with support SX and F(SX) is the set of all canonical fuzzy numbers induce
the real numbers in SX . A fuzzy random variable is a function X̃ : Ω→ F(SX) where for all α ∈ [0, 1]

{(ω, x) : ω ∈ Ω, x ∈ X̃α(ω)} ∈ F × B.

Noting that F(SX) is the support of the fuzzy random variable X̃ and hence, each α-cut set of X̃ depends
on the random variable X. In other words, the fuzzy random variable X̃ is induced by X [15].

Puri and Ralescu [22] provided another definition for fuzzy random variable.

Definition 2.1 Let F(R) be a canonical fuzzy real number system. Then X̃ is a Fr.v. if and only if X̃L
α and

X̃U
α are ordinary random variables for all α ∈ [0, 1].

In this paper, we using this definition for fuzzy random variable and to simplicity denoted it by Fr.v.
Let X be a random variable with cumulative distribution function F (x) and X̃ be a Fr.v. induced by
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X. The fuzzy function F̃ (x̃) is said a fuzzy cumulative distribution function of the Fr.v. X̃, whenever its
membership function is given by

µF̃ (x̃)(y) = sup
0≤α≤1

αI[[F̃ (x̃)]Lα,[F̃ (x̃)]Uα ](y),

where

[F̃ (x̃)]Lα = min

{
inf

α≤β≤1
{F (x̃Lβ )}, inf

α≤β≤1
{F (x̃Uβ )}

}
,

[F̃ (x̃)]Uα = max

{
sup

α≤β≤1
{F (x̃Lβ )}, sup

α≤β≤1
{F (x̃Uβ )}

}
.

The interval [[F̃ (x̃)]Lα, [F̃ (x̃)]Uα ] will contain all of the cumulative distribution functions of X̃L
β and X̃U

β for

β ≥ α. We note that x̃Lα ≤ x̃L1 ≤ x̃U1 ≤ x̃Uα , thus

[[F̃ (x̃)]Lα, [F̃ (x̃)]Uα ] = [F (x̃Lα), F (x̃Uα )]. (1)

Let A = [a, a] and B = [b, b] be two real intervals. Dobuis [10] was investigated a ranking system for such
real valued interval as follows:

[a, a] >1 [b, b]⇔ a > b, [a, a] >2 [b, b]⇔ a > b,

[a, a] >3 [b, b]⇔ a > b, [a, a] >4 [b, b]⇔ a > b.

Through this paper, we use the concept of this ranking system, to provide the fuzzy stochastic orders.

3 Fuzzy Likelihood Ratio and Fuzzy Proportional Likelihood Ratio
Orders

Likelihood ratio ordering [11, 16] prevalent in stochastic processes is very useful in extending bounds an
approximation for performance measures of stochastic systems. In the following definition, we extend the
likelihood ratio order to the case when the available observations are modelled as fuzzy random variables,
rather than crisp version’s.

Definition 3.1 Let X̃ and Ỹ are two Fr.v.’s with fuzzy density functions f̃ and g̃, respectively. We propose
four relations to compare X̃ and Ỹ as follows

(i) X̃ �lr1 Ỹ if
[g̃(y)]Lα

[f̃(y)]Uα
≥ [g̃(x)]Lα

[f̃(x)]Uα
, ∀x ≤ y, α ∈ [0, 1].

(ii) X̃ �lr2 Ỹ if
[g̃(y)]Lα

[f̃(y)]Lα
≥ [g̃(x)]Lα

[f̃(x)]Lα
, ∀x ≤ y, α ∈ [0, 1].

(iii) X̃ �lr3 Ỹ if
[g̃(y)]Uα

[f̃(y)]Uα
≥ [g̃(x)]Uα

[f̃(x)]Uα
, ∀x ≤ y, α ∈ [0, 1].

(iv) X̃ �lr4 Ỹ if
[g̃(y)]Uα

[f̃(y)]Lα
≥ [g̃(x)]Uα

[f̃(x)]Lα
, ∀x ≤ y, α ∈ [0, 1].

We present the following example as an evidence of Definition 3.1.

Example 3.2 Let X(λi), i=1,2 be two Exponential random variables with the following density function

fλi(x) = λie
−λix, x > 0, λi > 0, i = 1, 2.

In addition, suppose that X̃(λi), i=1,2, are two triangular Fr.v.’s induced by X(λi) with the following mem-
bership functions

µX̃(λi)
(t) =

{ t−X(λi)+a
a X(λi)− a ≤ t < X(λi)

X(λi)+b−t
b X(λi) ≤ t ≤ X(λi) + b,

a < b, i = 1, 2.
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The α-cuts of X̃(λ1) is

[X̃(λ1)]α = [X(λ1)− a(1− α), X(λ1) + b(1− α)]

and also the α-cuts of X̃(λ2) is

[X̃(λ2)]α = [X(λ2)− a(1− α), X(λ2) + b(1− α)].

In the following, we denote the f̃1(x̃) and f̃2(x̃) as fuzzy density functions of X̃(λ1) and X̃(λ2), respectively.
Therefore, the α-cuts of f̃1(x̃) and f̃2(x̃) are given by (for x > a(1− α))

[f̃1(x̃)]α = [λ1 exp{−λ1[x− a(1− α)]}, λ1 exp{−λ1[x+ b(1− α)]}] ,

[f̃2(x̃)]α = [λ2 exp{−λ2[x− a(1− α)]}, λ2 exp{−λ2[x+ b(1− α)]}] .

Therefore, X̃(λ1) �lr1 X̃(λ2) if and only if

λ2 exp{−λ2[y − a(1− α)]}λ1 exp{−λ1[x+ b(1− α)]}
≥ λ2 exp{−λ2[x− a(1− α)]}λ1 exp{−λ1[y + b(1− α)]}
⇔ (y − x)(λ1 − λ2) ≥ 0

⇔ λ1 ≥ λ2.

Note 3.3 It should be mentioned that, if the fuzzy random variables reduce to the crisp random variables
then, for every α ∈ [0, 1],

[g̃(.)]Lα

[f̃(.)]Uα
=

[g̃(.)]Lα

[f̃(.)]Lα
=

[g̃(.)]Uα

[f̃(.)]Uα
=

[g̃(.)]Uα

[f̃(.)]Lα
=
g(.)

f(.)

which is the classical likelihood ratio order.

Note 3.4 The order index �1 is the strongest and �4 is the weakest index in two previous fuzzy stochastic
orders and also for fuzzy stochastic orders will propose in the next section. Hence, the following relations are
holds (see [31] for more details):

(I) X̃ �1 Ỹ
(a)

==⇒ X̃ �2 Ỹ
(b)

==⇒ X̃ �4 Ỹ ,

(II) X̃ �1 Ỹ
(c)

==⇒ X̃ �3 Ỹ
(d)

==⇒ X̃ �4 Ỹ .

The concept of proportional likelihood ratio order, which is closely related to the usual likelihood ratio
order, was defined by Ramos Romero and Sordo Diaz [23]. The proportional likelihood ratio for Fr.v.’s, as
presented in the following definition, can be investigated in a manner similar to the fuzzy likelihood ratio
order.

Definition 3.5 Suppose that X̃ and Ỹ are two Fr.v.’s with fuzzy density functions f̃ and g̃, respectively. We
define the following indexes to compare these Fr.v.’s

(i) X̃ �plr1 Ỹ if
[g̃(λy)]Lα

[f̃(y)]Uα
≥ [g̃(λx)]Lα

[f̃(x)]Uα
, ∀x ≤ y, λ ∈ (0, 1], α ∈ [0, 1].

(ii) X̃ �plr2 Ỹ if
[g̃(λy)]Lα

[f̃(y)]Lα
≥ [g̃(λx)]Lα

[f̃(x)]Lα
, ∀x ≤ y, λ ∈ (0, 1], α ∈ [0, 1].

(iii) X̃ �plr3 Ỹ if
[g̃(λy)]Uα

[f̃(y)]Uα
≥ [g̃(λx)]Uα

[f̃(x)]Uα
, ∀x ≤ y, λ ∈ (0, 1], α ∈ [0, 1].

(iv) X̃ �plr4 Ỹ if
[g̃(λy)]Uα

[f̃(y)]Lα
≥ [g̃(λx)]Uα

[f̃(x)]Lα
, ∀x ≤ y, λ ∈ (0, 1], α ∈ [0, 1].
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Example 3.6 Let X(θi), i=1,2, be two Lindely random variables with the following density function

fθi(x) =
θi + 1

θi
e−θix, x > 0, θi > 0, i = 1, 2.

In addition, suppose that X̃(θi), i=1,2, are two triangular Fr.v.’s induced by X(θi) with the following mem-
bership functions

µX̃(θi)
(t) =

{ t−X(θi)+a
a X(θi)− a ≤ t < X(θi)

X(θi)+b−t
b X(θi) ≤ t ≤ X(θi) + b,

a < b, i = 1, 2.

Now, we can say that X̃(θ1) �plr1 X̃(θ2) if and only if

exp{−λθ2[y − a(1− α)]} exp{−θ1[x+ b(1− α)]}
≥ exp{−λθ2[x− a(1− α)]} exp{−θ1[y + b(1− α)]}
⇔ (y − x)(θ1 − λθ2) ≥ 0

⇔ λθ2 ≤ θ1.

The following result characterizes the fuzzy proportional likelihood ratio order by means of the fuzzy
likelihood ratio order.

Theorem 3.7 The two Fr.v.’s X̃ and Ỹ satisfy X̃ �plri Ỹ if and only if X̃ �lri aỸ for all a > 1 (i = 1, 2, 3, 4).

Proof. Suppose that X̃ �plr1 Ỹ . Thus, we have that

[g̃aY (y)]Lα

[f̃(y)]Uα
=

1
a [g̃Y (ya )]Lα

[f̃(y)]Uα

(λ =
1

a
) =

λ[g̃Y (λy)]Lα

[f̃(y)]Uα

(since X̃ �plr1 Ỹ ) ≥ λ[g̃Y (λx)]Lα

[f̃(x)]Uα

=
[g̃aY (x)]Lα

[f̃(x)]Uα

which implies that X̃ �lr1 aỸ . The similar proof are holds for another ranking indexes.

4 Fuzzy Reversed Hazard Rate and Fuzzy Mean Inactivity Time
Orders

In this section, we provide a novel approach to fuzzy stochastic orderings based on extending the definitions of
reversed hazard rate and mean inactivity time functions, which are two important functions in lifetime data,
in fuzzy environment.

4.1 Fuzzy Reversed Hazard Rate Order

In the literature, the function r(t) = f(t)/F (t) is known as the reversed hazard rate function which has
been found to be quite useful in the Forensic science, estimating the survival function for left censored data,
modelling and analyzing right truncated data and in other areas of applied probability and statistics. There
are quite cases in applications where the reversed hazard rate order (see [24] for more details) appears actually
as a natural condition which implies useful inequalities, and which leads to optimal structures. In addition,
it is worthwhile to mention that there are many situations in economics and risk theory where it is useful to
make comparisons between two distributions based on reversed hazard rate order due to naturally arising this
order in these fields [20].

Now, let us consider the situations which we cannot use the classical method to analyze our problem as
mentioned earlier in Section 1.



Journal of Uncertain Systems, Vol.8, No.1, pp.66-77, 2014 71

Definition 4.1 Let X be a non-negative random variable with density function f(x) and cumulative distri-
bution function F (x) respectively, and X̃ be a Fr.v. induced by X. The fuzzy function r̃F̃ (x̃) (for simplicity

r̃(x̃)) is said a fuzzy reversed hazard rate of Fr.v. X̃, whenever its membership function is given by

µr̃(y) = sup
0≤α≤1

αI[[r̃(x̃)]Lα,[r̃(x̃)]Uα ](y),

where

[r̃(x̃)]Lα = min

{
inf

α≤β≤1
{r(x) : x = x̃Lβ}, inf

α≤β≤1
{r(x) : x = x̃Uβ }

}
,

[r̃(x̃)]Uα = max

{
sup

α≤β≤1
{r(x) : x = x̃Lβ}, sup

α≤β≤1
{r(x) : x = x̃Uβ }

}
,

such that the interval [[r̃(x̃)]Lα, [r̃(x̃)]Uα ] will contain all of the reversed hazard rate of each x̃Lβ and x̃Uβ for β ≥ α.

Definition 4.2 Let X̃ and Ỹ are two Fr.v.’s with fuzzy reversed hazard rate functions r̃(t) and q̃(t), respec-
tively. Then, We compare X̃ and Ỹ in the sense of fuzzy reversed hazard rate as follows

(i) X̃ �rh1 Ỹ if [r̃(t)]Uα ≤ [q̃(t)]Lα, ∀t ≥ 0, ∀α ∈ [0, 1].

(ii) X̃ �rh2 Ỹ if (r̃(t))Lα ≤ [q̃(t)]Lα, ∀t ≥ 0, ∀α ∈ [0, 1].

(iii) X̃ �rh3 Ỹ if [r̃(t)]Uα ≤ [q̃(t)]Uα , ∀t ≥ 0, ∀α ∈ [0, 1].

(iv) X̃ �rh4 Ỹ if [r̃(t)]Lα ≤ [q̃(t)]Uα , ∀t ≥ 0, ∀α ∈ [0, 1].

Lemma 4.3 Suppose that X̃ and Ỹ are two Fr.v.’s with fuzzy cumulative distribution functions F̃ and G̃,
respectively. Then,

(a) X̃ �rh1 Ỹ if and only if [G̃(u)]Lα/[F̃ (u)]Uα is increasing in u > 0.

(b) X̃ �rh2 Ỹ if and only if [G̃(u)]Lα/[F̃ (u)]Lα is increasing in u > 0.

(c) X̃ �rh3 Ỹ if and only if [G̃(u)]Uα/[F̃ (u)]Uα is increasing in u > 0.

(d) X̃ �rh4 Ỹ if and only if [G̃(u)]Uα/[F̃ (u)]Lα is increasing in u > 0.

The next theorem gives the relationship between the fuzzy likelihood ratio and fuzzy reversed hazard rate
orders.

Theorem 4.4 Suppose that X̃ and Ỹ are two Fr.v.’s with fuzzy cumulative distribution functions F̃ and G̃,
and also fuzzy reversed hazard rate functions r̃(t) and q̃(t), respectively. The fuzzy likelihood ratio ordering is
stronger than the fuzzy reversed hazard rate ordering.

Proof. Suppose that X̃ �lr1 Ỹ . Then, for all x ≤ y, we can write

[
1

r̃(y)

]U
α

=
[F̃ (y)]Uα

[f̃(y)]Uα
=

∫ y

0

[f̃(x)]Uα

[f̃(y)]Uα
dx

(By Definition 3.1) ≥
∫ y

0

[g̃(x)]Lα
[g̃(y)]Lα

dx =

[
1

q̃(y)

]L
α

.
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Now, regarding to Definition 4.2, proof is complete.

Suppose that X̃1, X̃2, ..., X̃n and Ỹ1, Ỹ2, ..., Ỹn are two independent fuzzy random samples of size n, induced
by X1, X2, ..., Xn (with cumulative distribution functions F ) and Y1, Y2, ..., Yn (with cumulative distribution
functions G), respectively. We denote r̃k(x̃) as the fuzzy reversed hazard rate of the k-th fuzzy order statistic
X̃k:n, as the following

µr̃k(x̃)(y) = sup
0≤α≤1

αI[[r̃k(x̃)]Lα,[r̃k(x̃)]Uα ](y), (2)

where

[r̃k(x̃)]Lα = min[ infα≤β≤1


n!

(k−1)!(n−k)!
f(x)
F (x)∑n

j=k
n!

j!(n−j)! [
F̄ (x)
F (x) ]k−j

: x = x̃Lβ

 ,

infα≤β≤1


n!

(k−1)!(n−k)!
f(x)
F (x)∑n

j=k
n!

j!(n−j)! [
F̄ (x)
F (x) ]k−j

: x = x̃Uβ

],

[r̃k(x̃)]Uα = max[ supα≤β≤1


n!

(k−1)!(n−k)!
f(x)
F (x)∑n

j=k
n!

j!(n−j)! [
F̄ (x)
F (x) ]k−j

: x = x̃Lβ

 ,

supα≤β≤1


n!

(k−1)!(n−k)!
f(x)
F (x)∑n

j=k
n!

j!(n−j)! [
F̄ (x)
F (x) ]k−j

: x = x̃Uβ

].

Theorem 4.5 Suppose that X̃i �rh1 Ỹi for all i = 1, 2, ..., n and

inf
α≤β≤1

{
g(x)

G(x)
: x = x̃Lβ

}
≥ sup
α≤β≤1

{
f(x)

F (x)
: x = x̃Uβ

}
, (3)

then X̃i:n �rh1 Ỹi:n.

Proof. We can prove easily that the function
[∑n

j=k
n!

j!(n−j)! (
1−x
x )k−j

]−1

is nondecreasing function in x.

Since X̃i �rhr1 Ỹi, we can conclude that

1∑n
j=k

n!
j!(n−j)!

(
1−F (x̃Lα)
F (x̃Lα)

)k−j ≥ 1∑n
j=k

n!
j!(n−j)!

(
1−G(x̃Uα )
G(x̃Uα )

)k−j .
Let us suppose that

A = { n!

j!(n− j)!
f(x)

F (x)
: x = x̃Uβ }, B = { 1∑n

j=k
n!

j!(n−j)!

(
1−F (x̃Lα)
F (x̃Lα)

)k−j : x = x̃Uβ },

C = { n!

j!(n− j)!
g(x)

G(x)
: x = x̃Lβ}, D = { 1∑n

j=k
n!

j!(n−j)!

(
1−G(x̃Lα)
G(x̃Lα)

)k−j : x = x̃Lβ}.

Now, by using the infimum and supremum property and inequality 3, we have

inf
α≤β≤1


n!

(r−1)!(n−r)!
g(x)
G(x)∑n

j=k
n!

j!(n−j)! [
Ḡ(x)
G(x) ]k−j

: x = x̃Lβ

 ≥ sup
α≤β≤1


n!

(r−1)!(n−r)!
f(x)
F (x)∑r−1

j=1
n!

j!(n−j)! [
F̄ (x)
F (x) ]k−j

: x = x̃Uβ

 ,

or equivalently [r̃k(x̃)]Lα ≥ [r̃k(x̃)]Uα and hence, X̃i:n �rh1 Ỹi:n.

Remark 4.6 Fuzzy proportional reversed hazard rate order can be defined as in a manner similar to the
Definition 3.5. Also, the relation between this order and fuzzy reversed hazard rate order can be established.
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4.2 Fuzzy Mean Inactivity Time Order

Let T be a continuous random variable denoting the lifetime of a device or a system and assume that the
system has failed sometime before t > 0. In the real world, the underlying systems often are not monitored
continuously due to some problems. In such situations, one might be interested in getting inference more
about the history of the system. Consider the conditional random variable t− T |T < t . The mean inactivity
time (mit) of the component, can be defined as

m(t) = E(t− T |T ≤ t) =

∫ t
0
F (x)dx

F (t)
.

Recently, various concepts of stochastic comparisons between random variables have been defined entitled
mean inactivity time order (in some literature, reversed mean residual order) based on this definition [13].
However, in some situations, we can not determine the time elapsed from the failure due to human errors,
machine errors, or some other unexpected conditions.

In the following definition, we provide the fuzzy mean inactivity time and also related fuzzy stochastic
order, to modelling these mentioned situations.

Definition 4.7 Let X be a random variable with density function f(x) and cumulative distribution function
F (x), and X̃ be a Fr.v. induced by X. The fuzzy function m̃F̃ (x̃) (for simplicity m̃(x̃)) is said a fuzzy mean

inactivity time of Fr.v. X̃, whenever its membership function is given by

µm̃(y) = sup
0≤α≤1

αI[[m̃(x̃)]Lα,[m̃(x̃)]Uα ](y),

where

[m̃(x̃)]Lα = min

{
inf

α≤β≤1
{m(x) : x = x̃Lβ}, inf

α≤β≤1
{m(x) : x = x̃Uβ }

}
,

[m̃(x̃)]Uα = max

{
sup

α≤β≤1
{m(x) : x = x̃Lβ}, sup

α≤β≤1
{m(x) : x = x̃Uβ }

}
.

Now, using this definition, we investigate the fuzzy mean inactivity time order as follows.

Definition 4.8 Suppose that X̃ and Ỹ are two Fr.v.’s with fuzzy mean inactivity time functions l̃ and m̃,
respectively. Then, we define X̃ is smaller than Ỹ in the fuzzy mean inactivity time order as follows

(i) X̃ �mit1 Ỹ if [l̃(t)]Lα ≥ [m̃(t)]Uα , ∀t ≥ 0, ∀α ∈ [0, 1].

(ii) X̃ �mit2 Ỹ if [l̃(t)]Lα ≥ [m̃(t)]Lα, ∀t ≥ 0, ∀α ∈ [0, 1].

(iii) X̃ �mit3 Ỹ if [l̃(t)]Uα ≥ [m̃(t)]Uα , ∀t ≥ 0, ∀α ∈ [0, 1].

(iv) X̃ �mit4 Ỹ if [l̃(t)]Uα ≥ [m̃(t)]Lα, ∀t ≥ 0, ∀α ∈ [0, 1].

Example 4.9 Let X be a uniform random variable defined on interval (0, θ), i.e.,

fθ(x) =
1

θ
, 0 < x < θ, θ > 0.

Suppose that X̃ and Ỹ are two triangular Fr.v.’s induced by X with the following membership functions

µX̃(t) =


t−X+a1

a1
X − a1 ≤ t < X

X+b1−t
b1

X ≤ t ≤ X + b1,
µỸ (t) =


t−X+a2

a2
X − a2 ≤ t < X

X+b2−t
b2

X ≤ t ≤ X + b2.

It can be checked that m(t) = t/2. Hence

[l̃(t)]Lα =
t− a1(1− α)

2
≥ t− a2(1− α)

2
= [m̃(t)]Lα ⇔ a1 ≤ a2.
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In the following lemma, we present the equivalent condition for fuzzy mean inactivity time order.

Lemma 4.10 Suppose that X̃ and Ỹ are two Fr.v.’s with fuzzy cumulative distribution functions F̃ and G̃,
respectively. Then,

(a) X̃ �mit1 Ỹ if and only if
∫ t

0
[F̃ (u)]Lα du/

∫ t
0
[G̃(u)]Uα du is decreasing in u > 0.

(b) X̃ �mit2 Ỹ if and only if
∫ t

0
[F̃ (u)]Lα du/

∫ t
0
[G̃(u)]Lα du is decreasing in u > 0.

(c) X̃ �mit3 Ỹ if and only if
∫ t

0
[F̃ (u)]Uα du/

∫ t
0
[G̃(u)]Uα du is decreasing in u > 0.

(d) X̃ �mit4 Ỹ if and only if
∫ t

0
[F̃ (u)]Uα du/

∫ t
0
[G̃(u)]Lα du is decreasing in u > 0.

The non-negative and measurable function h(x, y) is said to be totally positivity of order 2 (TP2) on
x ∈ A ⊆ R and y ∈ B ⊆ R if for every x1, x2 ∈ A and y1, y2 ∈ B,

h(x1, y1)× h(x2, y2)− h(x1, y2)× h(x2, y1) ≥ 0, ∀x1 ≤ x2, y1 ≤ y2.

Let h(x, y) is TP2 function and f(x), g(y) are two non-negative measurable functions. Then, k(x, y) =
f(x)× g(y)× h(x, y) is TP2 function. In addition, the production of two TP2 functions h(x, y) and k(x, y) is
also TP2 function (for more details see [12]).

The following theorem gives the relationship between the fuzzy mean inactivity time and fuzzy reversed
hazard rate orders.

Theorem 4.11 Suppose that X̃ and Ỹ are two Fr.v.’s with fuzzy cumulative distribution functions F̃ and G̃,
respectively.

(a) If X̃ �rh1 Ỹ , then X̃ �mit4 Ỹ .

(b) If X̃ �rh2 Ỹ , then X̃ �mit2 Ỹ .

(c) If X̃ �rh3 Ỹ , then X̃ �mit3 Ỹ .

(d) If X̃ �rh4 Ỹ , then X̃ �mit1 Ỹ .

Proof. Suppose that X̃ �rh1 Ỹ . Based on Lemma 4.3, we know that [F̃2(u)]Lα/[F̃1(u)]Uα is increasing in u > 0
and hence

[F̃1(u2)]Uα [F̃2(u1)]Lα ≤ [F̃1(u1)]Uα [F̃2(u2)]Lα, 0 < u1 ≤ u2.

By defining

K(i, u) =

{
[F̃1(u)]Lα i = 1

[F̃2(u)]Uα i = 2,
L(u, t) = I(0,t](u); u, t > 0,

and recently discussion, we can easily see that the function K(i, u) for i = 1, 2 is TP2. In other hand, since
the function L(u, t) is TP2 function in u, t > 0, we have that the functions

M(i, t) =

∫ ∞
0

K(i, u) L(u, t) du, i = 1, 2

are also TP2.
Thus, we can conclude that ∫ t

0
[F̃1(u)]Uα du∫ t

0
[F̃2(u)]Lα du

is decreasing in u > 0. Now, using Lemma 4.10, the proof of part (a) is complete.
The proof of other parts are similar to that of the part (a). We omit it here.
The following example shows that, the converse of Theorem 4.11 in general is not true.
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Example 4.12 Consider the triangular Fr.v.’s X̃ and Ỹ which illustrated in Example 4.9. Just as saw in
that example, X̃ �mit2 Ỹ if and only if a1 ≤ a2. With due attention to this condition and the fact that the
reversed hazard rate of random variable X is r(t) = 1/t, we have that

[r̃(t)]Lα =
1

t− a1(1− α)
≤ 1

t− a2(1− α)
= [q̃(t)]Lα

if and only if a1 ≥ a2 which contradicted with the condition a1 ≤ a2.

In the following theorem, we state the necessary condition which leads to the converse of Theorem 4.11 is
holds.

Theorem 4.13 Let X̃ and Ỹ are two Fr.v.’s have a common fuzzy mean past life l̃ and m̃, respectively. Then,

(a) If [l̃(t)]Uα/[m̃(t)]Lα is increasing in t > 0, then X̃ �rh1 Ỹ if and only if X̃ �mit4 Ỹ .

(b) If [l̃(t)]Lα/[m̃(t)]Lα is increasing in t > 0, then X̃ �rh2 Ỹ if and only if X̃ �mit2 Ỹ .

(c) If [l̃(t)]Uα/[m̃(t)]Uα is increasing in t > 0, then X̃ �rh3 Ỹ if and only if X̃ �mit3 Ỹ .

(d) If [l̃(t)]Lα/[m̃(t)]Uα is increasing in t > 0, then X̃ �rh4 Ỹ if and only if X̃ �mit1 Ỹ .

Proof. Suppose that r̃ and q̃ are fuzzy reversed hazard rate functions for X̃ and Ỹ , respectively. Let us
consider that X̃ �mit1 Ỹ , i.e., [l̃(t)]Uα ≥ [m̃(t)]Lα for all t > 0. In addition, since [l̃(t)]Uα/[m̃(t)]Lα is increasing in
t > 0, we have that

d
dt{[l̃(t)]

U
α }

[l̃(t)]Uα
≥

d
dt{[m̃(t)]Lα}

[m̃(t)]Lα

Hence, we can conclude that

[r̃(t)]Uα =
1

[l̃(t)]Uα
−

d
dt{[l̃(t)]

U
α}

[l̃(t)]Uα
≤ 1

[m̃(t)]Lα
−

d
dt{[m̃(t)]Lα}

[m̃(t)]Lα
= [q̃(t)]Lα,

Now, by using Definition 4.2, the proof of part (a) is completed.

5 A Comparison Study

In this section, we compare our method with other well known methods proposed for ranking random variables
in the fuzzy environment.

5.1 Comparison with Piriyakumar and Renganathan’s Approach

Piriyakumar and Renganathan [22] studied the problem of stochastic ordering for fuzzy random variables
based on Kwakernaak’s definition [15]. They first provided usual stochastic order for this fuzzy random
variables. Then, they introduced the notion of ”probability with fuzzy state” (profust) life time and the
profust hazard rate function and have presented a stochastic ordering application to the profust life time
having a monotone profust hazard rate function.
Our proposed approach has the following advantages over Piriyakumar and Renganathan’s method.

• Each proposed fuzzy stochastic order in our proposed approach, contrary to the classical version’s and
Piriyakumar and Renganathan, do not leads to a binary decision concern with ranking random variable.
In fact, by using our approach in fuzzy stochastic orderings, a decision maker have a four choice to
compare fuzzy random variables (see Note 3.4).
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• We use the Puri and Ralescu’s definition for fuzzy random variables instead of Kwakernaak’s definition
which is modelling existing uncertainty in underlying systems in simplest way rather than Kwakernaak’s
definition.

• Our proposed fuzzy stochastic orders were defined based on the α-cuts of fuzzy functions in order to
give permission to us compare the fuzzy random variables in a general setting, while using the fuzzy
stochastic orders were investigated by Piriyakumar and Renganathan, one can just compare the especial
kind of fuzzy random variables.

5.2 Comparison with Aiche and Dubois’s Approach

Aiche and Dubois [10] proposed a direct extension of stochastic dominance to fuzzy random variables, whose
values are fuzzy intervals of the L-R type. They calculate the probability that a random interval is greater
than another in the sense of prescribed relations between intervals. Thereafter, based on these extensions and
the valued relations between L-R fuzzy intervals, proposed a direct extension of stochastic interval dominance
to fuzzy random variables of type L-R.

Although we also use the interval comparison for proposed stochastic orders in order to ranking fuzzy
random variables, similar to Aiche and Dubois’ approach, but our approach have some nuances with their
approach. First, they used the fuzzy random variables which introduced by Kwakernaak. Second, we provide
some additional fuzzy stochastic orders especially concern with reliability theory that certainly have an widely
application to system comparison in practical situations.

6 Conclusion

The fuzzy sets theory has successfully applied to ranking fuzzy random variables based on new fuzzy stochastic
orders in this paper. To do this, the associated likelihood ratio, proportional likelihood ratio, reversed hazard
rate, and also mean inactivity time orders were extended and proposed the unified indexes to ranking of fuzzy
random variables.

By using the proposed fuzzy stochastic orders, we may arrive at a deeper inference in situations where due
to insufficiency in the information, one can not use the classical random variable to modelling of underlying
systems. On the other hand, intuitionistic fuzzy set theory (in some literature: vague set theory) and
credibility theory are proposed to investigate the uncertainty in a more realistic manners [4, 17, 26, 32].
Therefor, regarding to our proposed approach in ranking fuzzy random variables in this paper, it is naturally
realized that the intuitionistic fuzzy sets theory and credibility theory can also impose upon some known
techniques of stochastic ordering of random variables in the future research.
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