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Abstract

This paper presents a new two-stage fuzzy optimization method for global production planning problem,
in which exchange rates are characterized by fuzzy variables with known possibility distributions. For this
purpose, we first introduce the measure generated by credibility distributions. Then we use the generated
measure to define the Lebesgue-Stieltjes (L–S) integral of function of fuzzy variables. When demands are
deterministic, we decompose the feasible regions into several subregions, and discuss the solution properties
of the proposed optimization model in each subregion. According to the obtained theoretical results, we
design a decomposition solution method for the proposed production planning problem. Finally, one
numerical example is presented to demonstrate the developed new optimization method.
c©2014 World Academic Press, UK. All rights reserved.
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1 Introduction

Production planning is an overall plan in manufacturing systems. The traditional production planning is a
simple material production process. With the continuous development of social economy and the increasingly
fierce market competition, production planning is now a complex process, in which an enterprise should
consider a variety of factors like market demands, cost information and capacity data that may affect the
production planning. In recent years, the global production planning becomes highly conspicuous. Many
enterprises increase their output by using favorable exchange rates, foreign economic policies and potential
market demands. Due to the uncertain demands and exchange rates, the global production planning under
uncertainty is an important issue for research. For example, Jucker et al. [7] considered the uncertain demand
and price into their plant-location problem, they were the first to incorporate uncertain exchange rates in the
context of an uncapacitated plant location problem. Hodder [5] introduced a capital market approach with an
exchange rate mean-covariance objective function. Flaherty [3] considered the uncertain exchange rates and
replaced the parameters by their expected values. Huchzermeier and Cohen [6] incorporated exchange rate
into a global supply chain, and employed a recourse-after-capacity model in selecting the design of the supply
chain. Rosenfield [15] addressed the planning capacity and facilities in the environment of uncertain exchange
rates. Ding et al. [2] considered one production planning under uncertain exchange rate and demand with a
risk and introduced a mean-variance utility function for risk aversion.

Since the pioneering work of Zadeh [18], fuzzy theory was being perfected and became a strong tool to
deal with possibilistic uncertainty [8, 10, 19]. Since then a number of researchers have applied fuzzy theory
into the production decision systems. For instance, Partha et al. [14] used fuzzy differential equation and
fuzzy Riemann-integration to formulate a production inventory model. Halim et al. [4] considered a single-unit
unreliable production system and developed two production planning models, they employed the graded mean
integration representation methods to solve the problem. Sun et al. [16, 17] studied material procurement
planning problems by using two-stage fuzzy optimization methods [11], they designed approximation-based
heuristic algorithms to solve the proposed material procurement planning model. For recent development
about two-stage fuzzy optimization methods, the interested reader may refer to [9, 12, 13].

Motivated by the work mentioned above, in the current development, we present a new two-stage fuzzy
optimization method for global production planning problem, in which uncertain exchange rates are charac-
terized by possibility distributions. Different from the expected value method in the literature, we employ
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L–S integral [1] to construct the objective function. The L–S integral is based on credibility distributions of
fuzzy exchange rates. When demands are deterministic, we discussed the solution properties of our optimiza-
tion model by decomposing the feasible region into several subregions. According to the obtained theoretical
results, we give a decomposition method to solve our global production planning problem.

The rest of this paper is organized as follows. Section 2 gives the measure generated by credibility
distribution and defines the L–S integral of function of fuzzy variables. In Section 3, we formulate a new two-
stage optimization model for global production planning problem. Section 4 analyzes the solution properties of
the proposed model by decomposing the feasible region into several subregions. Section 5 gives an application
example to demonstrate the validity of the developed method. Finally, Section 6 gives the conclusions of this
paper.

2 L–S Integral of Function of Fuzzy Variables

Suppose ξ̃ is a fuzzy variable, and its realized value is denoted by ξ. Let α(ξ) = Cr{ξ̃ ≤ ξ} be the credibility
distribution of ξ̃. Then α(ξ) is a monotone increasing function. We define the α-measure of an interval I by
the following formula

µα(I) =

 α(b+)− α(a−), I = [a, b]
α(b+)− α(a+), I = (a, b]
α(b−)− α(a−), I = [a, b),

(1)

where a ≤ b, and if a < b, then µα((a, b)) = α(b−)−α(a+). I = (a, a) is an empty set and its measure is zero.
For multiple fuzzy variables ξ̃i, i = 1, 2, . . . , n, we denote αi(ξ) = Cr{ξ̃i ≤ ξ} (i = 1, 2, . . . , n). The interval

in <n is denoted as I = I1 × I2 × · · · × In. In this case, the α-measure of I is defined as

µα1×···×αn(I) = µα1
(I1)× · · · × µαn(In). (2)

We next define the L–S integral of function of fuzzy variables ξ̃i, i = 1, 2, . . . , n. Let g(ξ) : <n → <+ be a
non-negative Borel measurable function. Then the L–S integral of fuzzy variable g(ξ̃1, ξ̃2, · · · , ξ̃n) with respect
to µα1×···×αn is defined as∫

<n
g(ξ)dµα1×···×αn = lim

n→∞

∞∑
k=0

k

2n
µα1×···×αn

{
ξ ∈ <n :

k

2n
< g(ξ) ≤ k + 1

2n

}
. (3)

For general Borel measurable function g(ξ), we define g+(ξ) = max{g(ξ), 0} and g−(ξ) = min{g(ξ), 0}. Then
the L–S integral of fuzzy variable g(ξ̃1, ξ̃2, · · · , ξ̃n) is defined by∫

<n
g(ξ)dµα1×···×αn =

∫
<n
g+(ξ)dµα1×···×αn −

∫
<n
g−(ξ)dµα1×···×αn . (4)

3 Formulation of Global Production Planning Problem

In this section, we give a two-stage optimization method for global production planning problem. The following
notations are required in building our model:

• i: index representing the ith production, i = 1, 2, ..., n.

• xi: the amount of product i.

• j: index representing the sale in country j, j = 1, 2.

• rij : unit revenue of product i from the market j.

• tj : unit transportation cost between the producing country and market j.

• dij : the determistic demand of product i in country j.

• yij : the amount of product i shipped for sale to country j.
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• ξ̃j : a fuzzy variable representing uncertain exchange rate that converts foreign currency j to home country
currency.

• ci: unit cost of product i in the currency of the home country.

In the production planning problem, the decision-makers should first determine a product quantity. In
other words, we denote xi i = 1, 2, . . . , n as the first-stage decisions that must be taken before knowing the
values of fuzzy variables. When we have known the values of fuzzy parameters, we must decide how to
distribute the products. In this sense, yij , i = 1, 2, . . . , n; j = 1, 2, are called the second-stage decisions.

In the allocation process, because of the influence of uncertain exchange rates the amount of product i
shipped to each country may less than the demand. We express this situation in constraints (5)

yij ≤ dij ∀ i = 1, 2, . . . , n, j = 1, 2. (5)

In the production process, because of the influence of income and freight, the firm may not serve a market
completely, which is represented as constraints (6)

yi1 + yi2 ≤ xi, i = 1, 2, . . . , n. (6)

Our goal is to maximize the profits in the production process. So using the above notations, we formally
build a two-stage model as follows

max z(x) =
n∑
i=1

(−cixi +
∫∫
R2

(ri1ξ1 − t1)yi1 + (ri2ξ2 − t2)yi2)dα1 × α2(ξ1, ξ2)

s.t.: yij ≤ dij , i = 1, 2, ..., n, j = 1, 2,
yi1 + yi2 ≤ xi, i = 1, 2, . . . , n,
xi ≥ 0, yi1, yi2 ≥ 0, i = 1, 2, . . . , n,

(7)

where α1(ξ1) = Cr{ξ̃1 ≤ ξ1} and α2(ξ2) = Cr{ξ̃2 ≤ ξ2}.
Since the objective is separable, we can solve problem (7) indirectly by solving its subproblems. In the

next section, we will address this issue in detail.

4 Theoretical Results and Solution Method

4.1 Theoretical Results

For convenience, we denote the second-stage value function as Q (xi|(ξ1, ξ2)), i.e.,

Q (xi|(ξ1, ξ2)) = max(ri1ξ1 − t1)yi1 + (ri2ξ2 − t2)yi2. (8)

Based on the values of exchange rates ξ1 and ξ2, the feasible region is decomposed into five subregions,

A :
{
t1
ri1

< ξ1 <∞, 0 ≤ ξ2 ≤ t2
ri2

}
;

B :
{
t1
ri1

< ξ1 <∞, t2ri2 < ξ2 <
ri1ξ1−t1+t2

ri2

}
;

C :
{
t1
ri1

< ξ1 <∞, ri1ξ1−t1+t2ri2
< ξ2 <∞

}
;

D :
{

0 ≤ ξ1 ≤ t1
ri1
, t2ri2 < ξ2 <∞

}
;

E :
{

0 ≤ ξ1 ≤ t1
ri1
, 0 ≤ ξ2 ≤ t2

ri2

}
.

By the properties of the second-stage programming model, the second value function Q (xi|(ξ1, ξ2)) is piece-
wise linear with break points min(di1, di2), max(di1, di2), and (di1 + di2). Therefore, we can design a feasi-
ble domain decomposition method to solve model (7). When demands di1 and di2 are deterministic, the
real line is decomposed into the following four subintervals [0,min(di1, di2)], [min(di1, di2),max(di1, di2)],
[max(di1, di2), di1 + di2], and [di1 + di2,∞). After decomposing the feasible region, we can find the local
optimal solutions on each subregion.

In the following results, we assume that uncertain exchange rates ξ1, ξ2 have general probability distribu-
tions.
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Proposition 1. Let 0 ≤ xi ≤ min(di1, di2), and Ei1 =
∫
(
t1
ri1

,∞)

∫
[0,

ri1e1−t1+t2
ri2

)
(ri1ξ1 − t1)dα1 × α2(ξ1, ξ2) +∫

[0,
ri2e2−t2+t1

ri1
)

∫
(
t2
ri2

,∞)
(ri2ξ2 − t2)dα1 × α2(ξ1, ξ2). If Ei1 ≤ ci, then the local optimal production quantity

xi = 0. If Ei1 > ci, then the local optimal production quantity xi = min(di1, di2).

Proof. When 0 ≤ xi ≤ min(di1, di2), we define the following two sets

A1 = I1 × I2 : (
t1
ri1
,∞)× [0,

ri1ξ1 − t1 + t2
ri2

), A2 = I3 × I4 : [0,
ri2ξ2 − t2 + t1

ri1
)× (

t2
ri2
,∞).

Then the objective function is calculated as

z(xi) =− cixi +

∫
R2

∫
Q (xi|(ξ1, ξ2)) dα1 × α2(ξ1, ξ2)

=− cixi + xi(

∫
A1

∫
(ri1ξ1 − t1)dα1 × α2(ξ1, ξ2) +

∫
A2

∫
(ri2ξ2 − t2)dα1 × α2(ξ1, ξ2))

=(−ci + Ei1)xi.

It is evident that z(xi) is a linear function of xi. If Ei1 ≤ ci, then z(xi) is monotone decreasing, which
implies the local optimal production quantity xi = 0. On the other hand, if Ei1 > ci, then the local optimal
production quantity xi = min(di1, di2).

Proposition 2. Let min(di1, di2) ≤ x ≤ max(di1, di2) with di1 < di2, and Ei2 =
∫
B

∫
(ri2ξ2 − t2)dα1 ×

α2(ξ1, ξ2) +
∫
C

∫
(ri2ξ2 − t2)dα1 × α2(ξ1, ξ2) +

∫
D

∫
(ri2ξ2 − t2)dα1 × α2(ξ1, ξ2). If Ei2 > ci, then the optimal

production quantity xi = d2i. If Ei2 ≤ ci, then the optimal production quantity xi = di1.

Proof. When di1 ≤ xi ≤ di2, the objective function is computed as

z(xi) =− cixi +

∫
R2

∫
Q (xi|(ξ1, ξ2)) dα1 × α2(ξ1, ξ2)

=− cixi +

∫
A

∫
(r1ξ1 − t1)di1dα1 × α2(ξ1, ξ2)

+

∫
B

∫
(ri1ξ1 − t1)di1 + (ri2ξ2 − t2)(xi − di1)dα1 × α2(ξ1, ξ2)

+

∫
C

∫
(ri2ξ2 − t2)xidα1 × α2(ξ1, ξ2) +

∫
D

∫
(ri2ξ2 − t2)xidα1 × α2(ξ1, ξ2).

Thus the first-order derivative of z(xi) is

dz(xi)

dxi
=− ci +

∫
B

∫
(ri2ξ2 − t2)dα1 × α2(ξ1, ξ2) +

∫
C

∫
(ri2ξ2 − t2)dα1 × α2(ξ1, ξ2)

+

∫
D

∫
(ri2ξ2 − t2)dα1 × α2(ξ1, ξ2)

=− ci + Ei2.

Due to the convexity of z(xi), the first-order derivative is sufficient to determine the optimal behavior of
xi. Solving the equation

dz(xi)

dxi
= 0,

we get Ei2 = ci. So, when Ei2 > ci, we have xi = di1; otherwise, the local optimal solution xi = di2.

Proposition 3. Let max(di1, di2) ≤ xi ≤ di1 + di2, and Ei3 =
∫
B

∫
(ri2ξ2− t2)dα1×α2(ξ1, ξ2) +

∫
C

∫
(ri1ξ1−

t1)dα1 × α2(ξ1, ξ2). If Ei3 > ci, then the local optimal production quantity is di1 + di2. If Ei3 ≤ ci, then the
local optimal production quantity is max(di1, di2).
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Proof. By the supposition of propositon, the objective function is calculated as

z(xi) =− cixi +

∫
R2

∫
Q (xi|(ξ1, ξ2)) dα1 × α2(ξ1, ξ2)

=− cixi +

∫
A

∫
(ri1ξ1 − t1)di1dα1 × α2(ξ1, ξ2)

+

∫
B

∫
(ri1ξ1 − t1)di1 + (ri2ξ2 − t2)(xi − di1)dα1 × α2(ξ1, ξ2)

+

∫
C

∫
(ri1ξ1 − t1)(xi − di2) + (ri2ξ2 − t2)di2dα1 × α2(ξ1, ξ2)

+

∫
D

∫
(ri2ξ2 − t2)di2dα1 × α2(ξ1, ξ2).

Thus the first-order derivative of z(xi) is

dz(xi)

dxi
=− ci +

∫
B

∫
(ri2ξ2 − t2)dα1 × α2(ξ1, ξ2) +

∫
C

∫
(ri1ξ1 − t1)dα1 × α2(ξ1, ξ2) = −ci + Ei3.

Solving the equation
dz(xi)

dxi
= 0,

we get Ei3 = ci. So, when Ei3 ≤ ci, we have xi = max(di1, di2); when Ei3 > ci, we have xi = di1 + di2.

Proposition 4. If di1 + di2 ≤ xi <∞, then the local optimal production quantity xi = di1 + di2.

Proof. Because the demand is deterministic, the production quantity cannot be greater than aggregate de-
mand, i.e. xi ≤ di1 + di2. Therefore, we can simplify the solution process in this region and obtain the local
optimal solution xi = di1 + di2.

4.2 Solution Method

Based on the theoretical results obtained in the above section, we can find the local optimal solutions on
each subregion. We next provide a general solution procedure to find the global optimal solution and the
optimal value. We take the product i as an example. Suppose di1 < di2, and the case di1 ≥ di2 can be treated
similarly. We first divide the feasible region into several subregions; then, we find the local optimal solution on
each subregion and calculate the corresponding objective value. Finally, we compare the obtained objective
values on each subregion and get the global optimal solution. The procedure is summarized as follows.
Step 1: Divide the feasible region [0,∞) of the product i into four subregion, [0,min(di1, di2)] , [min(di1, di2),

max(di1, di2)], [max(di1, di2), di1 + di2], [di1 + di2,∞).
Step 2: Find the local optimal solution in each subregion and calculate the corresponding objective value.

According to Proposition 1, we can find the local optimal solution in [0,min(di1, di2)]:
If Ei1 ≤ ci, we get the maximum objective value 0 at 0; if Ei1 > ci we obtain the maximum objective
value (−ci + Ei1)di1 at xi = di1 .
According to Proposition 2, we can find the local optimal solution in [min(di1, di2),max(di1, di2)]:
If Ei2 ≤ ci, the local optimal solution is xi = di1 with objective value (−ci + Ei1)di1;
If Ei2 > ci we reach maximum at point xi = di2 and the value is
−cidi2+

∫
A

∫
(ri1ξ1−t1)di1dα1×α2(ξ1, ξ2)+

∫
B

∫
(ri1ξ1−t1)di1+(ri2ξ2−t2)(di2−di1)dα1×α2(ξ1, ξ2)+∫

C

∫
(ri2ξ2− t2)di2dα1×α2(ξ1, ξ2) +

∫
D

∫
(ri2ξ2− t2)di2dα1×α2(ξ1, ξ2). (∗)

According to Proposition 3, we can find the local optimal solution in [max(di1, di2), di1 + di2]:
If Ei3 > ci, at the point xi = di1 + di2 we get the maximum value (−ci + Ei1)(di1 + di2);
If Ei3 ≤ ci, then the objective value is the same as the quantity defined in (∗).
In the subregion [di1 + di2,∞), Proposition 4 implies xi = di1 + di2 and the value is
(−ci + Ei1)(di1 + di2).

Step 3: Comparing the objective values on each subregion, we can obtain the global optimal solution.
In the next section, we will provide a numerical example to demonstrate the validity of the proposed

decomposition method.
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5 Numerical Experiments

In order to demonstrate the developed two-stage optimization method, we next present a numerical example,
and solve the instance by the proposed decomposition method.

5.1 Problem Description

Consider an electronics production planning problem that includes three markets, one is domestic that pro-
duces the electronic products, the other two are abroad markets that required the produced products in the
domestic market. Three kinds of electronic products are produced in domestic firm, i=1 represents USB flash
disk, i=2 indicates MP5 and i=3 shows removable drives. The unit transport cost tij , the unit revenue rij
and the demand dij in each country are provided in Table 1. The exchange rates ξ1, ξ2 are triangular fuzzy
variables (8,9,10) and (4,5,6), respectively. Their credibility distribution functions are α1(ξ1), α2(ξ2) and
calculated by

α1(ξ1) = Cr{ξ̃1 ≤ ξ1} =


0, ξ1 ≤ 8
ξ1−8
2 , 8 ≤ ξ1 ≤ 9

ξ1−8
2 , 9 ≤ ξ1 ≤ 10

1, ξ1 ≥ 10,

(9)

and

α2(ξ2) = Cr{ξ̃2 ≤ ξ2} =


0, ξ2 ≤ 4
ξ2−4
2 , 4 ≤ ξ1 ≤ 5

ξ2−4
2 , 5 ≤ ξ1 ≤ 6

1, ξ2 ≥ 6.

(10)

Using the notations above, the production planning about product 1 is build as the following mathematical
programming model

max z(x1) = −30x1 +
∫
(4,∞)

∫
[0,

2ξ1+2
3 )

(10ξ1 − 40)dα1 × α2(ξ1, ξ2)

+
∫
(0,

3ξ2−2
2 )

∫
[ 103 ,∞)

(10ξ1 − 40)dα1 × α2(ξ1, ξ2)

s.t.: 0 ≤ x1 ≤ 200
y11 + y12 ≤ x1
0 ≤ y11 ≤ 200
0 ≤ y12 ≤ 300.

(11)

When 200 ≤ x1 ≤ 300, the objective function becomes

max z(x1) = −30x1 +
∫
(4,∞)

∫
[0, 103 )

200(10ξ1 − 40)dα1 × α2(ξ1, ξ2)

+
∫
(4,∞)

∫
[ 103 ,

2ξ1+2
3 )

200(10ξ1 − 40) + (x1 − 200)(15ξ2 − 50)dα1 × α2(ξ1, ξ2)

+
∫
(4,∞)

∫
[
2ξ1+2

3 ,∞)
(15ξ2 − 50)x1dα1 × α2(ξ1, ξ2)

+
∫
[0,4]

∫
[ 103 ,∞)

(15ξ2 − 50)x1dα1 × α2(ξ1, ξ2),

(12)

and the other constraints are same as in model (11).
When 300 ≤ x1 ≤ 500, the objective function reads

max z(x1) = −30x1 +
∫
(4,∞)

∫
[0, 103 )

200(10ξ1 − 40)dα1 × α2(ξ1, ξ2)

+
∫
(4,∞)

∫
[ 103 ,

2ξ1+2
3 )

200(10ξ1 − 40) + (x1 − 200)(15ξ2 − 50)dα1 × α2(ξ1, ξ2)

+
∫
(4,∞)

∫
[
2ξ1+2

3 ,∞)
(10ξ1 − 40)(x1 − 300) + 300(15ξ2 − 50)dα1 × α2(ξ1, ξ2)

+
∫
[0,4]

∫
[ 103 ,∞)

300(15ξ2 − 50)dα1 × α2(ξ1, ξ2),

(13)

and the other constraints are same as in model (11).

5.2 Computational Results

In this section, we solve models (11), (12) and (13) by our decomposition method, and get the following results.
In subregion [0, 20], the local optimal solution is 200 with objective value 4000. In subregion [200, 300], the
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Table 1: Problem data (cost, freight, price, demand)
Product ci(RMB) tij(RMB) rij(GBP,AUD) dij

1 30 40,50 10,15 200,300
2 110 50,60 30,70 150,200
3 460 70,80 65,110 50,100

Table 2: Solution results of production planning problem
Product Subregion Solutionopt V alueopt Global Solutionopt Global V alueopt

[0, 200] 200 4000
1 [200, 300] 200 4000 200 4000

[300, 500] 300 3500
[0, 150] 150 27080

2 [150, 200] 200 36080 350 37125
[200, 350] 350 37125

[0, 50] 50 6950
3 [50, 100] 100 7350 100 7350

[100, 150] 100 7350

local optimal solution is 200 with objective value 4000. In subregion [300, 500], the local optimal solution is
300 with objective value 3500. Comparing the obtained objective values on each subregion, we obtain the
global optimal solution is 200, and the optimal value is 4000. Using the similar method we can find the
optimal production plan for products 2 and 3, and report the computational results in Table 2.

From Table 2, we observe that the optimal production planning for products 1, 2 and 3 are 200, 350 and
100, respectively, whose maximum profit is 48475.

6 Conclusions

In this paper, we presented a new two-stage fuzzy optimization method for global production planning prob-
lem. We first generated an additive measure by using credibility distribution, and used the obtained measure
to define the L–S integral of function of fuzzy variables. Then, taking the L–S integral as our research tool,
we built a two-stage programming model for global production planning problem, in which the exchange
rates are described by possibility distributions. When demands are deterministic, we decomposed the feasible
region into several subregions and found the local optimal solution on each subregion. To demonstrate our
new modeling idea, we presented a numerical example and solved the instance by our decomposition solution
method.
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