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Abstract

In this paper we represent a two-vehicle cost varying transportation model. In this model the trans-
portation cost is vary due to capacity of vehicles as well as amount of transport quantity. At first we
propose an algorithm to determine unit transportation cost with initial allocation to the basic cells by
North-west corner rule. Then solve it. The unit transportation cost vary during optimality test when
allocations are changed. Numerical examples are presented to illustrate the two-vehicle cost varying
transportation problem(TVCVTP). Finally, comparison is given to show better effective of this model.
c©2014 World Academic Press, UK. All rights reserved.
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1 Introduction

Transportation problem is a special class of linear programming problem which deals with the distribution of
single commodity from various sources of supply to various destination of demand in such a manner that the
total transportation cost is minimized. In order to solve a transportation problem, the decision parameters
such as availability, requirement and the unit transportation cost of the model must be fixed at crisp values
but in real life applications unit transportation cost may vary.

In transportation problem unit transportation cost is constant from each source to each destination. But
in reality, it is not constant; it depends on amount of transport quantity and capacity of vehicles. If amount
of quantity is small then small(capacity) vehicle is sufficient for deliver. Where as if amount of quantity is
large then big(capacity) vehicle is needed. So, depend on amount of transport quantity and the capacity of
vehicles, the unit transportation cost is not constant.

Here we present some transportation problem whose unit transportation cost is varied. This type of
transportation problem is named as cost varying transportation problem. In our model we consider this type
of transportation problem with two vehicles.

The basic transportation problem was originally developed by Hitchock [11]. Efficient methods of solution
derived from the simplex algorithm were developed in 1947. The transportation problem can be modeled as a
standard linear programming problem, which can be solved by simplex method. However, because of its very
special mathematical structure, it was recognized early that the simplex method applied to transportation
problem can be made quit efficient in terms of how to evaluate the necessary simplex-method information
(variable to enter the basis, variable to leave the basis and optimality conditions).

In many real life situations, the commodity does vary in some characteristics according to its source and
the final commodity mixture reaching at destinations, may then be required to have known specifications. TP
with additional impurity restrictions was stated by Haley [10]. Chandra et al. [4] developed a method for solvig
time minimizing TP with impurities. Interval transportation problem Pandian and Anuradha [16] (ITP) is a
generalization of the TP in which input data are expressed as intervals instead of fixed values. This problem
can arise when uncertainty exists in data problem and decision makers are more comfortable expressing it as
intervals. Many researchers [1, 6, 12, 14, 15, 20] have proposed fuzzy and interval programming techniques
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for solving them. Chanas et al. [2] developed an algorithm determining the optimal integer solution of a more
general fuzzy transportation problem. Das et al. [8] introduced a method, called fuzzy technique to solve
ITP by considering the right bound and the midpoint of the interval. Sengupta and Pal [18] proposed a new
fuzzy oriented method to solve ITP by considering the midpoint and width of the interval in the objective
function. Singh and Saxena [19] proposed a method for solving multiobjective time TP with additional
impurity restrictions. A procedure for finding an optimal solution to fully interval integer TP was presented
by Pandian and Natarajan [17]. Dutta et al. [9] introduced a linear fractional programming method for solving
a fuzzy TP with additional restrictions in which transportation costs are intervals. Pandian and Anuradha
[16] have proposed a floating point method for solving TP with additional constraints.

In this paper, we present the 2-vehicle cost varying transportation problem which is a Bi-level Mathematical
programming model. To solve this model, use north west corner rule for determining initial basic feasible
solution and then set up unit transportation cost (which varies in each iteration) by proper choice of vehicles
with our proposed algorithm. Apply optimality test for determining optimal solution. Comparison is made
with single vehicle cost varying transportation model.

2 Mathematical Formulation

2.1 Preliminaries

A transportation problem can be stated in Model 1 as follows:
Model 1

min

m∑
i=1

n∑
j=1

cijxij ,

subject to

m∑
i=1

xij = ai, i = 1, . . . ,m (1)

n∑
j=1

xij = bj , j = 1, . . . , n (2)

m∑
i=1

ai =

n∑
j=1

bj

xij ≥ 0 ∀i, ∀j.

Table 1: Tabular representation of a multi-objective transportation problem

D1 D2 ... Dn stock
O1 c11 c12 ... c1n a1
O2 c21 c22 ... c2n a2
... ... ... ... ... ...
Om cn1 cn2 ... cnn am

Demand b1 b2 ... bn

A transportation problem can be represent in Table 1. Where ai is the quantity of material available at
source Oi, i = 1, . . . ,m, bj is the quantity of material required at destination Dj , j = 1, . . . , n, cij is the unit
cost of transportation from st source Oi to destination Dj .

The following terms are to be defined with reference to the transportation problems.

Definition 1. (Feasible Solution (F.S.)) A set of non-negative allocations xij ≥ 0 which satisfies (1), (2)
is known as feasible solution.

Definition 2. (Basic Feasible Solution (B.F.S.)) A feasible solution to a m-origin and n-destination
problem is said to be basic feasible solution if number of positive allocations are (m+ n− 1).
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If the number of allocations in a basic feasible solutions are less than (m+n-1), it is called degenerate basic
feasible solution (DBFS), otherwise non-degenerate basic feasible solution (NDBFS).

Definition 3. (Optimal Solution) A feasible solution (not necessarily basic) is said to be optimal if it
minimizes the total transportation cost.

Theorem 2.1. The number of basic variables in a Transportation Problem(T.P.) is at most (m+ n− 1).

Theorem 2.2. There exits a F.S. in each Transportation Problem (T.P.).

Theorem 2.3. In each T.P. there exits at least one B.F.S. which makes the objective function a minimum.

Theorem 2.4. The solution of a T.P. is never unbounded.

Definition 4. (Loop) In the Transportation table, a sequence of cells is said to form a loop, if
(i) each adjacent pair of cells either lies in the same column or in the same row;
(ii) not more than two consecutive cells in the sequence lie in the same row or in the same column;
(iii) the first and the last cells in the sequence lie either in the same row or in the same column;
(iv) the sequence must involve at least two rows or two columns of the table.

Theorem 2.5. A sub-set of the columns of the coefficient matrix of a T.P. are linearly dependent, iff, the
corresponding cells or a sub-set of them can be sequenced to form a loop.

2.2 North-West Corner Rule

Step 1. Compute min (a1, b1). If a1 < b1, min (a1, b1) = a1 and if a1 > b1, min (a1, b1) = b1. Select
x11 = min(a1, b1) allocate the value of x11 in the cell (1, 1).

Step 2. If a1 < b1, compute min (a2, b1 − a1). Select x21 = min (a2, b1 − a1) and allocate the value of x21 in
the cell (2, 1).

If a1 > b1, compute min (a1 − b1, b2). Select x12 = min (a1 − b1, b2) and allocate the value of x12 in the
cell (1, 2).

Let us now make an assumption that a1 − b1 < b2. With this assumption the next cell for which some
allocation is to made, is the cell (2, 2).

If a1 = b1, then allocate 0 only in one of two cells (2, 1) or (1, 2). The next allocation is to be made cell
(2, 2).

In general, if an allocation is made in the cell (i + 1, j) in the current step, the next allocation will be
made either in cell (i, j) or (i, j + 1).

The feasible solution obtained by this away is always a B.F.S..

2.3 Optimality Test:

In order to test for optimality we should follow the procedure as given bellow:

Step 1. Start with B.F.S. consisting of m+ n− 1 allocation in independent positions.

Step 2. Determine a set of m + n numbers ui, i = 1, . . . ,m and vj , j = 1, . . . , n such that in each cell (i, j)
cij = ui + vj .

Step 3. Calculate cell evaluations (unit cost difference) dij for each empty cell (i, j) by using formula
dij = cij − (ui + vj).

Step 4. Examine the matrix of cell evaluation dij for negative entries and conclude that
(i) If all dij > 0, then solution is optimal and unique.
(ii) If all dij ≥ 0 and at least one dij = 0, then solution is optimal and alternative solution also exists.
(iii) If at least one dij < 0, then solution is not optimal.

If it is so, further improvement is required by repeating the above process after Step 5 and onwards.

Step 5. (i) See the most negative cell in the matrix [dij ].
(ii) Allocate θ to this empty cell in the final allocation table. Subtract and add the amount of this allocation
to other corners of the loop in order to restore feasibility.
(iii) This value of θ, in general is obtained by equating to zero the minimum of the allocations containing −θ
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(not +θ) only at the corners of the closed loop.
(iv) Substitute the value of θ and find a fresh allocation table.

Step 6. Again, apply the above test for optimality till we find dij ≥ 0.

2.4 2-Vehicle Cost Varying Transportation Problem

Suppose there are two types off vehicles V1, V2 from each source to each destination. Let C1 and C2(> C1)
be the capacities(in unit) of the vehicles V1 and V2 respectively. Rij = (R1

ij , R
2
ij) represent transportation

cost for each cell (i, j), where R1
ij is the transportation cost from source Oi, i = 1, . . . ,m to the destination

Dj , j = 1, . . . , n by the vehicle V1, and R2
ij is the transportation cost from source Oi, i = 1, . . . ,m to the

destination Dj , j = 1, . . . , n by the vehicle V2. So, cost varying transportation problem can be represent in
the following tabulated form.

Table 2: Tabular representation of cost varying transportation problem

D1 D2 ... Dn stock
O1 R1

11, R
2
11 R1

12, R
2
12 ... R1

1n, R
2
1n a1

O2 R1
21, R

2
21 R1

22, R
2
22 ... R1

2n, R
2
2n a2

... ... ... ... ... ...
Om R1

m1, R
2
m1 R1

m2, R
2
m2 ... R1

mn, R
2
mn am

Demand b1 b2 ... bn

2.5 Solution Procedure of 2-Vehicle Cost Varying Transportation Problem

2.5.1 Determination of cij

To solve this problem, apply our proposed Algorithms stated as follows:
Case 1:

max
i

ai ≤ C2.

2.5.2 Algorithm (TP1)

Step 1. Since unit cost is not determined (because it depends on quantity of transport), North-west corner
rule (because it does not depend on unit transportation cost) is applicable to allocate initial B.F.S..

Step 2. After the allocate xij by North-west corner rule, for basic cell we determine cij (unit transportation
cost from source Oi to destination Dj) as

cij =



R1ij
xij

if xij ≤ C1

R2ij
xij

if C1 < xij ≤ C2

0 if xij = 0.

(3)

Step 3. For non-basic cell (i, j) possible allocation is the minimum of allocations in ith row and jth column
(for possible loop). If possible allocation is xij , then non-basic cell cij (unit transportation cost from source
Oi to destination Dj) as

cij =



R1ij
xij

if xij ≤ C1

R2ij
xij

if C1 < xij ≤ C2

0 if xij = 0.

(4)
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In this manner we convert cost varying transportation problem to a usual transportation problem but cij is
not fixed, it may be changed (when this allocation will not serve optimal value) during optimality test.

Step 4. During optimality test some basic cell changes to non-basic cell and some non-basic cell changes to
basic cell, depends on running basic cell we first fix cij by Step 2 and for non-basic we fix cij by Step 3.

Step 5. Repeat Step 2 to Step 4 until we obtain optimal solution.

Case 2:

max
i

ai ≤ C1 + C2.

To solve this problem, apply our proposed algorithm stated as follows:

2.5.3 Algorithm (TP2)

Step 1. Since unit cost is not determined (because it depends on quantity of transport), North-west corner
rule (because it does not depend on unit transportation cost) is applicable to allocate initial B.F.S..

Step 2. After the allocate xij by North-west corner rule, for basic cell we determine cij unit transportation
cost from source Oi to destination Dj) as

cij =



R1ij
xij

if xij ≤ C1

R2ij
xij

if C1 < xij ≤ C2

R1ij+R2ij
xij

if C2 < xij ≤ C1 + C2

0 if xij = 0.

(5)

Step 3. For non-basic cell (i, j) possible allocation is the minimum of allocations in ith row and jth column
(for possible loop). If possible allocation is xij , then non-basic cell cij (unit transportation cost from source
Oi to destination Dj) as

cij =



R1ij
xij

if xij ≤ C1

R2ij
xij

if C1 < xij ≤ C2

R1ij+R2ij
xij

if C2 < xij ≤ C1 + C2

0 if xij = 0.

(6)

In this manner we convert cost varying transportation problem to a usual transportation problem but cij is
not fixed, it may be changed (when this allocation will not serve optimal value) during optimality test.

Step 4. During optimality test some basic cell changes to non-basic cell and some non-basic cell changes to
basic cell, depends on running basic cell we first fix cij by Step 2 and for non-basic we fix cij by Step 3.

Step 5. Repeat Step 2 to Step 4 until we obtain optimal solution.

2.5.4 Algorithm (TP3)

Step 1. Since unit cost is not determined (because it depends on quantity of transport), North-west corner
rule (because it does not depend on unit transportation cost) is applicable to allocate initial B.F.S..

Step 2. After the allocate xij by North-west corner rule, for basic cell we determine crij (unit transportation
cost from source Oi to destination Dj) as

cij =


p1ijR1ij+p2ijR2ij

xij
, if xij 6= 0

0 if xij = 0,

(7)
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where p1ij , p2ij , i = 1, . . . ,m; j = 1, . . . , n are integer solutions of

min p1ijR1ij + p2ijR2ij

s.t. xij ≤ p1ijC1 + p2ijC2.

Step 3. For non-basic cell (i, j) possible allocation is the minimum of allocations in ith row and jth column
(for possible loop). If possible allocation is xij , then non-basic cell cij (unit transportation cost from source
Oi to destination Dj) as

cij =


p1ijR1ij+p2ijR2ij

xij
, if xij 6= 0

0 if xij = 0,

(8)

where p1ij , p2ij , i = 1, . . . ,m; j = 1, . . . , n are integer solutions of

min p1ijR1ij + p2ijR2ij

s.t. xij ≤ p1ijC1 + p2ijC2.

In this manner we convert cost varying transportation problem to a usual transportation problem but cij is
not fixed, it may be changed (when this allocation will not serve optimal value) during optimality test.

Step 4. During optimality test some basic cell changes to non-basic cell and some non-basic cell changes to
basic cell, depends on running basic cell we first fix cij by Step 2 and for non-basic we fix cij by Step 3.

Step 5. Repeat Step 2. to Step 4 until we obtain optimal solution.

2.5.5 Bi-level Mathematical Programming for 2-Vehicle Cost Varying Transportation Problem

The bi-level mathematical programming for 2-vehicle cost varying transportation problem is formulated in
Model 2 as follows:
Model 2

min

m∑
i=1

n∑
j=1

cijxij , (9)

where

cij =


p1ijR1ij+p2ijR2ij

xij
, if xij 6= 0

0 if xij = 0,

cij is determined by following mathematical programming, p1ij , p2ij , i = 1, . . . ,m; j = 1, . . . , n are integer
solutions of

min p1ijR1ij + p2ijR2ij (10)

s. t. xij ≤ p1ijC1 + p2ijC2

m∑
i=1

xij = ai, i = 1, . . . ,m

n∑
j=1

xij = bj , j = 1, . . . , n

m∑
i=1

ai =

n∑
j=1

bj

xij ≥ 0 ∀i, ∀j.
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3 Numerical Example

Example 1: Consider a cost varying transportation problem as

D1 D2 D3 stock
O1 5, 10 8, 12 6, 9 15
O2 6, 8 12, 15 15, 18 12
O3 4, 6 8, 16 5, 10 3

Demand 10 10 10

The capacities of vehicles of V1 and V2 are respectively, C1 = 10 and C2 = 20.

Step 1. By North-west corner rule, initial B.F.S. is

D1 D2 D3 stock
O1 x11 = 10 x12 = 5

5, 10 8, 12 6, 9 15
O2 x22 = 5 x23 = 7

6, 8 12, 15 15, 18 12
O3 x33 = 3

4, 6 8, 16 5, 10 3
Demand 10 10 10

Step 2. Using (3), we determine c11 = 5/10, c12 = 8/5, c22 = 12/5, c23 = 15/7, c33 = 5/3.

Step 3. Using (4), we determine c13 = 6/5, c21 = 6/5, c31 = 4/3, c32 = 8/3.

With these cij the transportation problem converted to

D1 D2 D3 stock
O1 x11 = 10, c11 = 5

10 x12 = 5, c12 = 8
5 c13 = 6

5
5, 10 8, 12 6, 9 15

O2 c21 = 6
5 x22 = 5, c22 = 12

5 x23 = 7, c23 = 15
7

6, 8 12, 15 15, 18 12
O3 c31 = 4

3 c32 = 8
3 x33 = 3, c33 = 5

3
4, 6 8, 16 5, 10 3

Demand 10 10 10

optimality test

Determine a set of 6 numbers ui, i = 1, 2, 3 and vj , j = 1, 2, 3 such that in each cell basic (i, j) cij = ui +vj ,
each non-basic cell (i, j) by using formula dij = cij − (ui + vj).

So the tabular representation of ui, i = 1, 2, 3, vj , j = 1, 2, 3 and dij non-basic cell (i, j) is given in the
following table.

D1 D2 D3 ui
O1 x11 = 10, c11 = 5

10 x12 = 5, c12 = 8
5 c13 = 6

5
5, 10 8, 12 6, 9 d13 = − 1

7 0
O2 c21 = 6

5 x22 = 5, c22 = 12
5 x23 = 7, c23 = 15

7
6, 8 d21 = − 1

10 12, 15 15, 18 4
5

O3 c31 = 4
3 c32 = 8

3 x33 = 3, c33 = 5
3

4, 6 d31 = 107
210 8, 16 d32 = 78

105 5, 10 34
105

vj
5
10

8
5

47
35

Since d13 = −1/7 < 0 and d21 = −1/10 < 0, solution is not optimal. So a loop occurred in cells (1,1), (1,2),
(2,1), (2,2) and modified basic cell and unit transportation cost (by our proposed algorithm) is represented
in the following table.
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D1 D2 D3 stock
O1 x11 = 5, c11 = 5

5 x12 = 10, c12 = 8
10 c13 = 6

5
5, 10 8, 12 6, 9 15

O2 x21 = 5, c21 = 6
5 c22 = 12

5 x23 = 7, c23 = 15
7

6, 8 12, 15 15, 18 12
O3 c31 = 4

3 c32 = 8
3 x33 = 3, c33 = 5

3
4, 6 8, 16 5, 10 3

Demand 10 10 10

Determine a set of 6 numbers ui, i = 1, 2, 3 and vj , j = 1, 2, 3 such that in each cell basic (i, j) cij = ui +vj ,
each non-basic cell (i, j) by using formula dij = cij − (ui + vj .)

So the tabular representation of ui, i = 1, 2, 3, vj , j = 1, 2, 3 and dij non-basic cell (i, j) is given in the
following table.

D1 D2 D3 ui
O1 x11 = 5, c11 = 5

5 x12 = 10, c12 = 8
10 c13 = 6

5
5, 10 8, 12 6, 9 d13 = − 32

35 0
O2 x21 = 5, c21 = 6

5 c22 = 12
5 x23 = 7, c23 = 15

7
6, 8 12, 15 d22 = 7

5 15, 18 1
5

O3 c31 = 4
3 c32 = 8

3 x33 = 3, c33 = 5
3

4, 6 d31 = 82
105 8, 16 d32 = 143

105 5, 10 − 47
105

vj 1 8
10

74
35

Since d13 = −32/35 < 0, solution is not optimal. So a loop occurred in cells (1,1), (1,3), (2,1), (2,3) and
modified basic cell and unit transportation cost (by our proposed algorithm) is represented in the following
table.

D1 D2 D3 Stock
O1 c11 = 5

5 x12 = 10, c12 = 8
10 x13 = 5, c13 = 6

5
5, 10 8, 12 6, 9 15

O2 x21 = 10, c21 = 6
10 c22 = 12

2 x23 = 2, c23 = 15
2

6, 8 12, 15 15, 18 12
O3 c31 = 4

3 c32 = 8
3 x33 = 3, c33 = 5

3
4, 6 8, 16 5, 10 3

Demand 10 10 10

Determine a set of 6 numbers ui, i = 1, 2, 3 and vj , j = 1, 2, 3 such that in each cell basic (i, j) cij = ui +vj ,
each non-basic cell (i, j) by using formula dij = cij − (ui + vj).

So the tabular representation of ui, i = 1, 2, 3, vj , j = 1, 2, 3 and dij non-basic cell (i, j) is given in the
following table

D1 D2 D3 ui
O1 c11 = 5

5 x12 = 10, c12 = 8
10 x13 = 5, c13 = 6

5
5, 10 d11 > 0 8, 12 6, 9 6

5

O2 x21 = 10, c21 = 6
10 c22 = 12

2 x23 = 2, c23 = 15
2

6, 8 12, 15 d22 < 0 15, 18 15
2

O3 c31 = 4
3 c32 = 8

3 x33 = 3, c33 = 5
3

4, 6 d31 > 0 8, 16 d32 > 0 5, 10 5
3

vj − 69
10 − 2

5 0

Since d22 < 0, solution is not optimal. So a loop occurred in cells(1, 2), (2, 2), (1, 3), (2, 3) and modified
basic cell and unit transportation cost (by our proposed algorithm) is represented in the following table.
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D1 D2 D3 Stock
O1 c11 = 5

5 x12 = 8, c12 = 8
8 x13 = 7, c13 = 6

7
5, 10 8, 12 6, 9 15

O2 x21 = 10, c21 = 6
10 x22 = 2 c22 = 12

2 c23 = 15
2

6, 8 12, 15 15, 18 12
O3 c31 = 4

3 c32 = 8
3 x33 = 3, c33 = 5

3
4, 6 8, 16 5, 10 3

Demand 10 10 10

Determine a set of 6 numbers ui, i = 1, 2, 3 and vj , j = 1, 2, 3 such that in each cell basic (i, j) cij = ui +vj ,
each non-basic cell (i, j) by using formula dij = cij − (ui + vj).

So the tabular representation of ui, i = 1, 2, 3, vj , j = 1, 2, 3 and dij non-basic cell (i, j) is given in the
following table

D1 D2 D3 ui
O1 c11 = 5

5 x12 = 8, c12 = 8
8 x13 = 7, c13 = 6

7
5, 10 d11 > 0 8, 12 6, 9 −5

O2 x21 = 10, c21 = 6
10 x22 = 2, c22 = 12

2 c23 = 15
2

6, 8 12, 15 15, 18 d23 > 0 0
O3 c31 = 4

3 c32 = 8
3 x33 = 3, c33 = 5

3
4, 6 d31 > 0 8, 16 d32 > 0 5, 10 − 88

21

vj
6
10 6 41

7

Since all dij > 0 for all non-basic cell so the table give optimal solution. x12 = 8, x13 = 7, x21 = 10,
x22 = 2, x33 = 3. Minimum cost Z∗ = 8 + 6 + 6 + 10 + 5 = 25 unit(Rs.)

Example 2: Consider a cost varying transportation problem as

D1 D2 D3 stock
O1 6, 9 10, 15 8, 12 25
O2 4, 6 12, 18 6, 9 17
O3 14, 21 8, 12 4, 6 8

Demand 23 15 12

The capacities of vehicles of V1 and V2 are respectively, C1 = 10 and C2 = 20.

Step 1. By North-west corner rule, initial B.F.S. is

D1 D2 D3 stock
O1 x11 = 23 x12 = 2

6, 9 10, 15 8, 12 25
O2 x22 = 13 x23 = 4

4, 6 12, 18 6, 9 17
O3 x33 = 8

14, 21 8, 12 4, 6 8
Demand 23 15 12

Step 2. Using (5), we determine c11 = 15/23, c12 = 10/2, c22 = 18/13, c23 = 6/4, c33 = 4/8.

Step 3. Using (6), we determine c13 = 8/2, c21 = 6/13, c31 = 14/8, c32 = 8/8.

With these cij the transportation problem converted to

D1 D2 D3 stock
O1 x11 = 23, c11 = 15

23 x12 = 2, c12 = 10
2 c13 = 8

2
6, 9 10, 15 8, 12 25

O2 c21 = 6
13 x22 = 13, c22 = 18

13 x23 = 4, c23 = 6
4

4, 6 12, 18 6, 9 17
O3 c31 = 14

8 c32 = 8
8 x33 = 4, c33 = 4

8
14, 21 8, 12 4, 6 8

Demand 23 15 12
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optimality test

Determine a set of 6 numbers ui, i = 1, 2, 3 and vj , j = 1, 2, 3 such that in each cell basic (i, j) cij = ui +vj ,
each non-basic cell (i, j) by using formula dij = cij − (ui + vj).

So the tabular representation of ui, i = 1, 2, 3, vj , j = 1, 2, 3 and dij non-basic cell (i, j) is given in the
following table.

D1 D2 D3 ui
O1 x11 = 23, c11 = 15

23 x12 = 2, c12 = 10
2 c13 = 8

2
6, 9 10, 15 8, 12 d13 < 0 0

O2 c21 = 6
13 x22 = 13, c22 = 18

13 x23 = 4, c23 = 6
4

4, 6 d21 > 0 12, 18 6, 9 − 47
13

O3 c31 = 14
8 c32 = 8

8 x33 = 4, c33 = 4
8

14, 21 d31 > 0 8, 12 d32 > 0 4, 6 − 60
13

vj
15
23 5 133

26

Since d13 < 0, solution is not optimal. So a loop occurred in cells(1, 3), (1, 2), (2, 2), (2, 3), (1, 3) and
modified basic cell and unit transportation cost (by our proposed algorithm) is represented in the following
table.

D1 D2 D3 stock
O1 x11 = 23, c11 = 15

23 c12 = 10
2 x13 = 2, c13 = 8

2
6, 9 10, 15 8, 12 25

O2 c21 = 6
13 x22 = 15, c22 = 18

15 x23 = 2, c23 = 6
2

4, 6 12, 18 6, 9 17
O3 c31 = 14

8 c32 = 8
8 x33 = 4, c33 = 4

8
14, 21 8, 12 4, 6 8

Demand 23 15 12

Determine a set of 6 numbers ui, i = 1, 2, 3 and vj , j = 1, 2, 3 such that in each cell basic (i, j) cij = ui +vj ,
each non-basic cell (i, j) by using formula dij = cij − (ui + vj).

So the tabular representation of ui, i = 1, 2, 3, vj , j = 1, 2, 3 and dij non-basic cell (i, j) is given in the
following table.

D1 D2 D3 ui
O1 x11 = 23, c11 = 15

23 c12 = 10
2 x13 = 2, c13 = 8

2
6, 9 10, 15 d12 > 0 8, 12 4

O2 c21 = 6
13 x22 = 15, c22 = 18

15 x23 = 2, c23 = 6
2

4, 6 d21 > 0 12, 18 6, 9 3
O3 c31 = 14

8 c32 = 8
8 x33 = 4, c33 = 4

8
14, 21 d31 > 0 8, 12 d32 > 0 4, 6 1

2

vj − 15
4 − 9

5 0

Since all dij > 0 for all non-basic cell, the table give optimal solution. x11 = 23, x13 = 2, x22 = 15, x23 = 2,
x33 = 8. Minimum cost Z∗ = 15 + 8 + 18 + 6 + 4 = 51 unit(Rs.).

Example 3: Consider a cost varying transportation problem as

D1 D2 D3 stock
O1 4, 8 5, 10 10, 20 48
O2 2, 3 8, 16 6, 12 52
O3 7, 14 3, 6 9, 18 25

Demand 75 30 20

The capacities of vehicles of V1 and V2 are respectively, C1 = 6 and C2 = 18.

Step 1. By North-west corner rule, initial B.F.S. is
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D1 D2 D3 stock
O1 x11 = 48

4, 8 5, 10 10, 20 48
O2 x21 = 27 x22 = 25

2, 3 8, 16 6, 12 52
O3 x32 = 5 x33 = 20

7, 14 3, 6 9, 18 25
Demand 75 30 20

Step 2. Using (5), we determine c11 = 24/48, c21 = 6/27, c22 = 32/25, c32 = 3/5, c33 = 27/20.

Step 3. Using (6), we determine c12 = 20/25, c23 = 18/20, c13 = 30/20, c31 = 7/5.

With these cij the transportation problem converted to

D1 D2 D3 stock
O1 x11 = 48, c11 = 24

48 c12 = 20
25 c13 = 30

20
4, 8 5, 10 10, 20 48

O2 x21 = 27, c21 = 6
27 x22 = 25, c22 = 32

25 c23 = 18
20

2, 3 8, 16 6, 12 52
O3 c31 = 7

5 x32 = 5, c32 = 3
5 x33 = 20, c33 = 27

20
7, 14 3, 6 9, 18 25

Demand 75 30 20

optimality test
Determine a set of 6 numbers ui, i = 1, 2, 3 and vj , j = 1, 2, 3 such that in each cell basic (i, j) cij = ui +vj ,

each non-basic cell (i, j) by using formula dij = cij − (ui + vj).
So the tabular representation of ui, i = 1, 2, 3, vj , j = 1, 2, 3 and dij non-basic cell (i, j) is given in the

following table.

D1 D2 D3 ui
O1 x11 = 48, c11 = 24

48 c12 = 20
25 c13 = 30

20
4, 8 5, 10 d12 < 0 10, 20 d13 > 0 0

O2 x21 = 27, c21 = 6
27 x22 = 25, c22 = 32

25 c23 = 18
20

2, 3 8, 16 6, 12 d23 > 0 − 5
18

O3 c31 = 7
5 x32 = 5, c32 = 3

5 x33 = 20, c33 = 27
20

7, 14 d31 < 0 3, 6 9, 18 2077
900

vj
1
2

701
450 − 431

450

Since d12 < 0, solution is not optimal. So a loop occurred in cells(1, 1), (1, 2), (2, 2), (2, 1), (1, 1) and
modified basic cell and unit transportation cost (by our proposed algorithm) is represented in the following
table.

D1 D2 D3 stock
O1 x11 = 23, c11 = 12

23 x12 = 25, c12 = 20
25 c13 = 30

20
4, 8 5, 10 10, 20 48

O2 x21 = 52, c21 = 9
52 c22 = 32

25 c23 = 18
20

2, 3 8, 16 6, 12 52
O3 c31 = 7

5 x32 = 5, c32 = 3
5 x33 = 20, c33 = 27

20
7, 14 3, 6 9, 18 25

Demand 75 30 20

Determine a set of 6 numbers ui, i = 1, 2, 3 and vj , j = 1, 2, 3 such that in each cell basic (i, j) cij = ui +vj ,
each non-basic cell (i, j) by using formula dij = cij − (ui + vj).

So the tabular representation of ui, i = 1, 2, 3, vj , j = 1, 2, 3 and dij non-basic cell (i, j) is given in the
following table.
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D1 D2 D3 ui
O1 x11 = 23, c11 = 12

23 x12 = 25, c12 = 20
25 c13 = 30

20
4, 8 5, 10 10, 20 d13 < 0 0

O2 x21 = 52, c21 = 9
52 c22 = 32

25 c23 = 18
20

2, 3 8, 16 d22 > 0 6, 12 d23 < 0 − 417
1196

O3 c31 = 7
5 x32 = 5, c32 = 3

5 x33 = 20, c33 = 27
20

7, 14 d31 > 0 3, 6 9, 18 − 1
5

vj
12
23

20
25

31
20

Since d13 < 0 (i.e, most negative), solution is not optimal. So a loop occurred in cells (1,2), (3,2), (3,3),
(1,3), (1,2) and modified basic cell and unit transportation cost (by our proposed algorithm) is represented
in the following table.

D1 D2 D3 stock
O1 x11 = 23 c11 = 12

23 x12 = 5, c12 = 5
5 x13 = 20, c13 = 30

20
4, 8 5, 10 10, 20 48

O2 x21 = 52, c21 = 9
52 c22 = 8

5 c23 = 18
20

2, 3 8, 16 6, 12 52
O3 c31 = 7

5 x32 = 25, c32 = 6
25 x33 = 20, c33 = 27

20
7, 14 3, 6 9, 18 25

Demand 75 30 20

Determine a set of 6 numbers ui, i = 1, 2, 3 and vj , j = 1, 2, 3 such that in each cell basic (i, j) cij = ui +vj ,
each non-basic cell (i, j) by using formula dij = cij − (ui + vj).

So the tabular representation of ui, i = 1, 2, 3, vj , j = 1, 2, 3 and dij non-basic cell (i, j) is given in the
following table.

D1 D2 D3 ui
O1 x11 = 23, c11 = 12

23 x12 = 5, c12 = 5
5 x13 = 20, c13 = 30

20
4, 8 5, 10 10, 20 0

O2 x21 = 52, c21 = 9
52 c22 = 8

5 c23 = 18
20

2, 3 8, 16 d22 > 0 6, 12 d23 < 0 − 417
1196

O3 c31 = 7
5 x32 = 25, c32 = 6

25 c33 = 27
20

7, 14 d31 > 0 3, 6 9, 18 d33 > 0 − 19
25

vj
12
23

25
25

3
2

Since d23 < 0 (i.e, most negative), solution is not optimal. So a loop occurred in cells (1,1), (1,3), (2,3),
(2,1), (1,1) and modified basic cell and unit transportation cost (by our proposed algorithm) is represented
in the following table.

D1 D2 D3 stock
O1 x11 = 43, c11 = 28

43 x12 = 5, c12 = 5
5 c13 = 30

20
4, 8 5, 10 10, 20 48

O2 x21 = 32, c21 = 6
32 c22 = 8

5 x23 = 20, c23 = 18
20

2, 3 8, 16 6, 12 52
O3 c31 = 28

25 x32 = 25, c32 = 6
25 c33 = 27

20
7, 14 3, 6 9, 18 25

Demand 75 30 20

Determine a set of 6 numbers ui, i = 1, 2, 3 and vj , j = 1, 2, 3 such that in each cell basic (i, j) cij = ui +vj ,
each non-basic cell (i, j) by using formula dij = cij − (ui + vj).

So the tabular representation of ui, i = 1, 2, 3, vj , j = 1, 2, 3 and dij non-basic cell (i, j) is given in the
following table.
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D1 D2 D3 ui
O1 x11 = 43, c11 = 28

43 x12 = 5, c12 = 5
5 c13 = 30

20
4, 8 5, 10 10, 20 d13 > 0 0

O2 x21 = 32, c21 = 6
32 c22 = 8

5 x23 = 20, c23 = 18
20

2, 3 8, 16 d22 > 0 6, 12 − 319
688

O3 c31 = 28
25 x32 = 25, c32 = 6

25 c33 = 27
20

7, 14 d31 > 0 3, 6 9, 18 d33 > 0 − 19
25

vj
28
43

25
25 1.364

Since all dij > 0 for all non-basic cell so the table give optimal solution. x11 = 43, x12 = 5, x21 = 32,
x23 = 20, x32 = 25. Minimum cost Z∗ = 28 + 5 + 6 + 18 + 6 = 61 unit(Rs.).

If the Examples 1, 2 and 3 are solved by considering only single vehicle either V1 or V2 then minimum
transportation cost is increased. The results of Examples 1, 2 and 3 for V1, for V2 and for both V1, V2 are
given in the following Table 3.

Table 3: The computational results of Examples 1, 2 and 3

Problems Single Vehicle CVTP Two-vehicle CVTP
V1 V2 V1, V2

Z∗ = 25 Z∗ = 54 Z∗ = 25
Example 1 x12 = 8, x13 = 7 x11 = 5, x12 = 10 x12 = 8, x13 = 7

x21 = 10, x22 = 2 x21 = 2, x23 = 10 x21 = 10, x22 = 2
x33 = 3 x31 = 3 x33 = 3
Z∗ = 60 Z∗ = 63 Z∗ = 51

Example 2 x11 = 23, x13 = 2 x11 = 23, x13 = 2 x11 = 23, x13 = 2
x22 = 15, x23 = 6 x22 = 15, x23 = 6 x22 = 15, x23 = 2
x33 = 4 x33 = 8 x33 = 8
Z∗ = 88 Z∗ = 87 Z∗ = 61

Example 3 x11 = 43, x12 = 5 x11 = 23, x12 = 25 x11 = 43, x12 = 5
x21 = 32, x23 = 20 x22 = 52 x21 = 32, x23 = 20
x32 = 25 x32 = 5, x33 = 20 x32 = 25

It is seen from Table 3 that two-vehicle cost varying transportation model give more efficient result than
a single vehicle cost varying transportation model.

4 Conclusion

In this paper we have developed two-vehicle cost varying transportation problem. We transfer this cost varying
transportation problem to usual transportation problem by North-west corner rule and by proposed algorithm.
Then apply optimality test where unit transportation cost vary from one table to another table. Finally,
achieve optimal solution. Comparing numerically, it is seen that two-vehicle cost varying transportation
model gives more efficient result than single objective cost varying transportation problem. This problem is
more real life problem than usual transportation problem.

References

[1] Chanas, S., Kolosziejezyj, W., and A. Machaj, A fuzzy approach to the transportation problem, Fuzzy Sets and
Systems, vol.13, pp.211–221, 1984.

[2] Chanas, S., and D. Kutcha, Fuzzy integer transportation problem, Fuzzy Sets and Systems, vol.98, pp.291–298,
1998.

[3] Chandra, S., and P.K. Saxena, Fractional transportation problem with impurities, Advances in Management
Studies, vol.2, no.4, pp.335–349, 1983.



Journal of Uncertain Systems, Vol.8, No.1, pp.44-57, 2014 57

[4] Chandra, S., Seth, K., and P.K. Saxena, Time minimizing transportation problem with impurities, Asia-Pacific
Journal of Operational Research, vol.4, pp.19–27, 1987.

[5] Charnes, C., and W.W. Cooper, The stepping-stone method for explaining linear programming calculation in
transportation problem, Management Science, vol.1, pp.49–69, 1954.

[6] Chinneck, J.W., and K. Ramadan, Linear programming with interval coefficients, Journal of the Operational
Research Society, vol.51, pp.209–220, 2000.

[7] Dantzig, G.B., Linear Programming and Extensions, Princeton University Press, Princeton, 1963.

[8] Das, S.K., Goswami, A., and S.S. Alam, Multiobjective transportation problem with interval cost, source and
destination parameters, European Journal of Operational Research, vol.117, pp.100–112, 1999.

[9] Dutta, D., and A.S. Murthy, Fuzzy transportation problem with additional restrictions, ARPN Journal of Engi-
neering and Applied Sciences, vol.5 no.2, pp.36–40, 2010.

[10] Haley, K.B., and A.J. Smith, Transportation problems with additional restrictions, Journal of the Royal Statistical
Society. Series C (Applied Statistics), vol.15, no.2, pp.116–127, 1966.

[11] Hitchcock, F.L., The distribution of a product from several sources to numerous localities, Journal of Mathematical
Physics, vol.20, pp.224–230, 1941.

[12] Ishibuchi, H., and H. Tanaka, Multiobjective programming in optimization of the interval objective function,
European Journal of Operational Research, vol.48, pp.219–225, 1990.

[13] Klir, G.J., and B. Yuan, Fuzzy Sets and Fuzzy Logic: Theory and Applications, Prentice-Hall, New Jersey, 2008.

[14] Moore, R.E., Method and Applications of Interval Analysis, SIAM, Philadelphia, PA, 1979.

[15] Oliveira, C., and C.H. Antunes, Multiple objective linear programming models with interval coefficients–an illus-
trated overview, European Journal of Operational Research, vol.181, pp.1434–1463, 2007.

[16] Pandian, P., and D. Anuradha, Floating point method for solving transportation problem with additional con-
straints, International Mathematical Forum, vol.6, pp.1983–1992, 2011.

[17] Pandian, P., and G. Natarajan, A new method for finding an optimal solution of fully interval integer transporta-
tion problems, Applied Mathematical Sciences, vol.4, pp.1819–1830, 2010.

[18] Sengupta, S., and T.K. Pal, Interval-valued transportation problem with multiple penalty factors, VU Journal of
Physical Sciences, vol.9, pp.71–81, 2003.

[19] Singh, P., and P.K. Saxena, The multiobjective time transportation problem with additional restrictions, European
Journal of Operational Research, vol.146, pp.460–476, 2003.

[20] Tong, S., Interval number and fuzzy number linear programming, Fuzzy Sets and Systems, vol.66, pp.301–306,
1994.


	JUS-8-1-1.pdf
	Introduction
	Preliminaries
	Uncertainty Theory
	Chance Theory

	Uncertain Random Graph
	Uncertain Random Network
	Conclusion

	JUS-8-1-2.pdf
	Introduction
	Preliminaries
	The Core
	Uncertainty Theory

	Two Uncertain Cores
	The Expected Core
	The -Optimistic Core

	An Example
	Conclusion

	JUS-8-1-3.pdf
	Introduction
	Preliminaries
	Fuzzy Dot Subalgebras of B-algebras
	Fuzzy Normal Dot Subalgebras of B-algebras
	Fuzzy -product Relation of B-algebra
	Fuzzy Dot Ideals of B-algebras
	Conclusions

	JUS-8-1-5.pdf
	Introduction
	 Mathematical Formulation 
	Preliminaries
	 North-West Corner Rule
	 Optimality Test:
	2-Vehicle Cost Varying Transportation Problem
	Solution Procedure of 2-Vehicle Cost Varying Transportation Problem
	Determination of cij
	Algorithm (TP1)
	Algorithm (TP2)
	Algorithm (TP3)
	Bi-level Mathematical Programming for 2-Vehicle Cost Varying Transportation Problem


	Numerical Example
	Conclusion

	JUS-8-1-6.pdf
	Introduction
	L�S Integral of Function of Fuzzy Variables
	Formulation of Global Production Planning Problem
	Theoretical Results and Solution Method
	Theoretical Results
	Solution Method

	Numerical Experiments
	Problem Description
	Computational Results

	Conclusions

	JUS-8-1-7.pdf
	Introduction
	Preliminaries
	Fuzzy Numbers
	Fuzzy Random Variables

	Fuzzy Likelihood Ratio and Fuzzy Proportional Likelihood Ratio Orders
	Fuzzy Reversed Hazard Rate and Fuzzy Mean Inactivity Time Orders
	Fuzzy Reversed Hazard Rate Order
	Fuzzy Mean Inactivity Time Order

	A Comparison Study 
	Comparison with Piriyakumar and Renganathan's Approach
	Comparison with Aiche and Dubois's Approach

	Conclusion

	JUS-8-1-8.pdf
	Introduction
	Sum of T2 Fuzzy Variables




