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Abstract 

 

Transfer point location problem in which demand points are weighted and their coordinates are uniformly 
distributed for the case of minimax objective and planar topology has been introduced recently. In the real problems, 
such as disaster cases, different points of an area might be demand locations with different possibility degrees. Thus, 
developing a more applicable model is critical for these problems. In this paper, a new transfer point location problem 
is proposed in which demands are weighted in fuzzy form and have possibilistic coordinates. To formulate the problem, 
a new possibilistic model is developed which leads to construct the general model based on experts’ viewpoints. The 
proposed model is formulated as a fuzzy unconstrained nonlinear programming in which decision variables are 
obtained as fuzzy numbers. Subject to the complexity of the developed model, a new Fuzzy Logic Controller (FLC) is 
designed based on the derived fuzzy decision variables to infer the optimum or near optimum values for all decision 
variables. Finally, a numerical example is applied to demonstrate the efficiency and efficacy of the developed FLC. 
© 2014 World Academic Press, UK. All rights reserved.  

Keywords: Transfer Point Location Problem, Fuzzy Inference System, fuzzy decision making in fuzzy environment, 
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1 Introduction 
 
The concept of Transfer Point Location Problem (TPLP) was first introduced by the pioneering works of Berman et 
al. [1]. The TPLP can be defined as follow: “serving   demand points by selecting a location for a new facility”. 
This new location called “Transfer Point” can combine services as a hub center. Many applications of the TPLP can 
be found in the real world. Berman et al. [9] introduced the classic application of TPLP in which a hospital accepts 
the injured persons via a helicopter in transfer point. Other applications of TPLP are as follows: location of the 
transfer point for postal shipments collection or distribution, location of the transfer point in military logistic 
systems, location of the transfer point in disaster relief Logistic systems, location of the transfer point for 
agricultural and bestial crops collection, location of the transfer point in industrial product distribution systems and 
everywhere we concern with goods collection or distribution. 
 
2 Related Works 
 
In the literature, many problems are related to TPLP. The most relevant one are the hub and spoke location 
problems. Although, the network hub location problem was first addressed by Goldman [24], this was introduced 
by pioneering works of O'Kelly [15, 29, 30]. According to Campbell and O'Kelly [15] hub is a central facility that 
connects some interacting points like a switching point in network. Continuous hub location problem is related to 
locating hub facilities on a plane rather than on the network. For other studies, one can refer to Fernandes et al. [ 21], 
Ishfaq and Sox [26], Alumur [3], Contrerasp [18], O'Kelly [31], Cera et al. [16], Aykin and Brown [5], and 
Campbell [14]. Round-trip location problem is another relevant location problem to TPLP [19, 39] in which a 
facility is the start point of a service trip, the first customer is visited, trip continues by visiting other customer and 
then service trip returns to the start point. For more information one can refer to references [13, 23, 27, 32, 33]. 
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Chien-Chang [17] proposed a Fuzzy Multiple Criteria Decision Making Method (FMCDM) to solve transshipment 
container port selection problem in fuzzy environment.  

The collection depots location problem, introduced by Drezner and Wesolowsky [20], is another type of 
problem related to the TPLP. Berman et al. [7] investigated the properties of minimax and minisum versions of the 
collection depots location problem on network. As extensions of this problem, Berman and Huang [11] and Tamir 
and Halman [38] proposed the multiple facilities location problem on network.  

The research on the one-center problem started with pioneering works of Sylvester [37]. A nondeterministic 
extension of this problem using random demand point weights was first studied by Frank [22] on the network 
topology. The same problem with probabilistic weights was addressed by Wesolowsky [40]. Berman et al. [12] 
investigated a minimax stochastic location problem in the plane topology. Averbakh and Bereg [4] studied interval 
data minimax regret one-center location problems in the plane topology. In their models and for the case of 
rectilinear distances, uncertainty was incorporated in the both weights and location coordinates of customers, while 
for the case of Euclidean distances, uncertainty was only considered in the weights. Foul [1] considered a one-
center problem on the plane topology in which demand points were assumed to have a bivariate uniform 
distribution in a given rectangle. 

Nowadays, an independent look to TPLP exists in location problems literature. Berman et al. [10] first 
generalized the TPLP and introduced the Multiple Transfer Points Location Problem (MTPLP). Also, in this model 
the single facility location was known. By network versions of minisum and minimax MTPLP, they proved that 
above models can be considered as a p+1-median problem and a p+1-center problem respectively, or as a p+q-
median problem and a p+q-center problem, with a given facility. Also, two extended models were presented by 
Berman et al. [8] called Facility and Transfer Points Location Problem (FTPLP) and also Multiple Location of 
Transfer Points (MLTP). The problem is formulated on the network and in the plane with both minisum and 
minimax objectives. Instead of one facility location, the FTPLP models will lead to select the multiple facility 
locations. In MLTP, the facility location is proposed to be known and demand points are classified into some 
subsets such that each subset is served by a single transfer point. Recently, a flow-based formulation of minisum 
and minimax MLTP as a p-median and a p-center problem are presented by Sasaki et al. [35]. Hosseinijou and 
Bashiri [25] considered a situation in which demand points’ location are stochastic variables with uniform 
distributions.  

In this paper, we propose a new TPLP in which not only demand points are weighted, but also weights have 
possibilistic distributions. Also, possibilistic coordinates have been considered in this model. The problem is 
formulated as an unconstrained nonlinear programming. By solving the developed possibilistic model, optimum 
values of decision variables will be obtained in the form of fuzzy numbers. This means that based on the problem 
state (parameters realization) several points could be optimum location for the transfer point with different 
possibility degrees of occurrence.  

Due to the complexity of the proposed model, especially for executives, a new type of Decision Support 
Systems (DSS) called Fuzzy Logic Controller (FLC) is designed. Since the FLCs are structured using the linguistic 
variables and If-then rules, they can be used conveniently by the executives. Therefore, this type of DSS is used to 
reach the optimum or near optimum values of the decision variables without solving of the original nonlinear 
programming problem directly. Other applications of this approach is investigated by Sadjadi et al. [34], and Abiri 
and Yousefli [2] in the pricing problem and the fuzzy location-allocation problems and Kalantari et al. [28], 
respectively. Table 1 compares the contributions of this paper with the related works on the TPLP.  

Table 1: Comparison among novelties of this paper and the related works in the literature 

Papers 

Objective 
function 

Solution 
approach Topology Parameters 

U
ncertain 

decision 
variables 

D
ecision aid 
system

 

D
ecision 

Support System
 

Uncertain 

C
ertain 

M
inim

ax 

M
inisum

 

Exact 

H
euristic 

Plane 

N
etw

ork 

Stochastic 

Fuzzy 

Berman et al. [9]             
Berman et al. [10]             
Berman et al. [8]             
Sasaki et al. [35]             

Hosseinijou and Bashiri [25]             
Kalantari et al. [28]             

This paper             
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Based on Table 1, unique novelties of this paper are as follows: 
 The transfer point location problem is developed in the fuzzy environment. 
 The transfer point location coordinates (decision variables of the TPLP) are considered in the form of fuzzy 

numbers. In other words, fuzzy decision making in the fuzzy environment concept is applied to the TPLP. 
 All possible optimum values of the transfer point location coordinates, gathered in the form of fuzzy number, 

will be provided for the decision maker.  It can give a wide vision of the possible situations and solutions to 
the decision maker and improve his/her knowledge over the problem.  

 A new approach is developed using fuzzy rule based DSS to infer the optimum or near optimum values of 
the decision variables without solving the mathematical model of the TPLP directly.  

 A new implication method is developed for fuzzy rule based inference system which is used to infer transfer 
point location. 

The paper is organized as follows: Section 3 presents modeling and analysis of fuzzy transfer point location 
problem. Section 4 introduces the developed FLC. Section 5 demonstrates the proposed model implementation by 
using numerical example. Finally, section 6 discusses conclusion remarks and outlines some future research 
opportunities. 
 
3 Fuzzy Transfer Point Location Problem 
 

In this model, each demand point has a certain regional possibility distribution  ̃    ̃ . Also, assigned weight to each 
demand is defined with linguistic variables  ̃ . Since the demands' coordinates   ̃   ̃   are supposed to be fuzzy 
numbers, subsequently the location of transfer point will be obtained in the form fuzzy number. The geometric 
representation of the developed model is shown in Figure 1. 
 

 
Figure 1: Geometric representation of fuzzy minisum TPLP model 

A fuzzy TPLP model for the case of minisum objective is developed under following notations and assumptions: 

Notations 
n: number of demand points. 
   factor multiplying by the travel to the transfer point. 
(x0, y0) : location of the facility. 
 ̃ : possibilistic weight associated with demand point i. 
  ̃  ̃ : fuzzy location of the transfer point.  
  ̃   ̃    possibilistic coordinates of the demand point i ( ̃ ). 
        distance between the transfer point and the facility. 
    distance between the demand point i and the facility. 
         distance between the demand point i and the transfer point. 
     distance between the demand points i and j. 
Assumptions 
I: Demand points Coordinates are uncertain and represented in the form of the triangular fuzzy 

numbers   ̃   ̃    (   
    

    
      

    
    

  ); 

II: The weights of demand points are uncertain and represented in the form of triangular fuzzy 
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numbers        
    

    
  ; 

III: Distance measure between demand point and transfer point and between transfer point and the 
facility, are measured as           ̃   ̃     ̃   ̃   and          ̃     

    ̃     
  

respectively. 
Since the coordinates of the demand points are fuzzy in nature, subsequently the location of transfer point will be 

obtained in the form of fuzzy numbers. In fact, the aim is to obtain the possibility distributions of the decision 
variables   ̃  ̃  by (1). Thus, the minimum value of the objective function is derived.   

                                            { ∑  ̃        
 

   
          }  

         {∑  ̃ [  ̃   ̃     ̃   ̃  ]    [  ̃     
    ̃     

 ] 
   }   

All the distances of above model are convex and also the sum of convex functions set is convex. So, (1) is 
convex and if one point is a locally optimal point, it will be globally optimal too.  

Now, to give a clarification for the applicability and develop a conceptual explanation of the model, it is 
essential to define the weight of demand point i (wi) and the facility weight       

Weight of demand point i, wi is defined as a function of three factors:  
 The speed of transportation from demand area i to the transfer point, Si. 
 The unit cost of traveling from the demand area i to the transfer point, Ci. 
 Preference of the demand point i, Pi. 
Si and Ci are the factors which can be changed by transportation vehicle and route specifications in movement 

between demand area i and the transfer point. Also, the factor of Pi can be a function of population number and 
potential of occurrence of emergency need in the demand area i. So, there is wi =   (Si, Ci, Pi) which will increase by 
growing in Pi and Ci but will decrease by growing in Si. 

Let define the weight of the facility ( ) as a function of three factors:  
 Travel speed of from the transfer point to the facility, TSc. 
 The unit cost of transportation from transfer point to the facility, Cc. 
 Service level risk, SLc. 
TSc and Cc are the factors which can be changed by transportation vehicle and route specifications in movement 

between the transfer point and the facility. Also, the factor of SLc can be defined as a function of frequency of 
occurrence of emergency need in demand areas and availability of service vehicle which travels between transfer 
point and the facility. It is obvious when it is busy any other emergency service not will be performed. Hence, there is 
   (Cc, TSc, SLc) which will increase by growing in Cc and SLc but will decrease by growing in TSc. Growing in   
value, attract transfer point to reduce vehicle's travel time and cost for increasing its availability which can be 
achieved by locating transfer point near the facility.  The optimal location for transfer point with respect to different   
levels when         =(35,18), are shown in Figure 2. 

 
Figure 2: The optimal location for transfer point with different   levels  

The optimal location of transfer point (x, y) is placed among the demand areas, depends on their weights. Also, 
the value of the objective function increases by increasing in the   value. Figure 3 shows the trend of the objective 
function.  
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Figure 3: Trend of the objective value with different   values 

According to whatever said before, the novel TPLP model is considered as an unconstrained nonlinear 
optimization problem which has a complexity in solving it by appling standard mathematical programming [2]. Thus, 
a new FLC with developed implication method for solving the model is designed to achieve the optimum or near 
optimum value of decision variables. Next section describes the new designed FLC.   
 
4 A New Heuristic Model 

 
Fuzzy logic controller is one type of decision support system that helps decision maker to make optimum or near 
optimum decision. In the FLCs, rules are constructed to model processes in a simple way [6]. There are two common 
implemented methods for fuzzy modeling in which experts’ knowledge and historical data of system’s behavior is 
applied, respectively. In the first one called direct approach, knowledge is achieved as If-Then rules with fuzzy 
predictions that create relations between relevant system variables [41]. Making a proper prediction of relations 
between antecedents and consequents is the most significant problem in this approach. However, availability of 
experts and reliability of their opinions are not permanent assumptions. By use of the presented method, we can 
overcome this problem and also provide a new approach for solving optimization problems based on fuzzy rule base. 
Mamdani’s controller is developed to determine the values of the decision variables. The steps of designed FLC are 
as follows:  
I. Assign linguistic terms to the fuzzy input parameters. In the developed Fuzzy TPLP, both of the coordinates  ̃  

and  ̃  and also weights can be described with three linguistic variables as Figure 4.  

 
Figure 4: Fuzzy values for one set of input parameters  ̃ ,  ̃  and  ̃  

II. Consequents calculation. As mentioned above, in conventional fuzzy controllers a decision maker defined 
consequents in terms of linguistic variables identical with the antecedents. Thus, there was not any contribution 
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in the consequents calculation. Hence, in this paper, a new method based on the optimum knowledge is 
developed to calculate the consequents. The following steps describe the calculation of the consequents:  

Step 1: Rule base simulation. In this step, in order to calculate the consequent of each rule, all compositions of 
the linguistic variables of the antecedents must be built. Then, for each rule, the bellow steps must be 
applied.  

Step 2: Define  -levels for the antecedents. Let define the  -level of the antecedents   ̃  ,  ̃  and  ̃  as follows:  

   
 [   

     
 ]   [   {     ̃    ̃     }    {     ̃    ̃     }] 

   
 [   

     
 ]   [   {     ̃    ̃     }    {     ̃    ̃     }] 

   
 [   

     
 ]   [   {     ̃    ̃     }    {     ̃    ̃     }]

Step 3: Calculate the decision variables (  
     

  ) and the objective function (   
 ) at different  -levels by (5), 

(6) and (7). It is essential to know that, the more  -levels are considered, the better possibility 
distributions of the consequents will be obtained. In this step,      is the state, i.e., the “Lower” or the 
“Upper” bound, of the antecedents and the consequents at the  -level. To construct the consequents, let 
define the conditions as follows:  
 If     be the “Lower” bound of the antecedents, then solve (5), (6) and (7) by the antecedents (   

     
 ) 

and    
  to obtain the decision variables (  

     
  ) and the objective function   

   at  -level.  
 If     be the “Upper” bound of the antecedents, put antecedents (   

     
 ) and    

  in (5), (6) and (7) to 
obtain the decision variables (  

     
  ) and the objective function    

  at  -level.  

  
   

    ∑    
    

  
   

  ∑    
  

  

 

  
   

    ∑    
    

  
   

  ∑    
  

   

    
   ∑   

 *(   
    

  )
 
 (   

    
  )

 
+    *(  

     )
 
 (  

     )
 
+

 

   

For the particular  -level, the resulted objective function    
  and the decision variables (  

     
  ) have 

the possibility degree   for the occurrence, when all of the parameters  ̃ ,  ̃  and  ̃  in (5), (6) and (7) 
occur in the “Lower” or the “Upper” bounds of the  -level. 

Step 4: Collecting the “Lower” and “Upper” bounds of the decision variables (  
     

  ) and the objective 
function    

  for all values of the  -level derived from step 3. Now, the possibility distributions of the 
consequents are derived.  

III. Rule base construction. According to Step 2, to obtain the consequents the possibilistic TPLP must be solved 
initially. Now, the fuzzy rule base must be designed using fuzzy parameters as the antecedents and the fuzzy 
decision variables as the consequents.  

IV. Implication. So far, Mamdani’s controller has used triangular norms as implication method. But, in this paper, a 
new implication method is developed named Correlation Coefficient – based Implication (CCI) method. The 
steps of proposed method are as follows: 
Step 1: Randomly generate               and               and             , then derive optimum 

location (x*
, y

*) of the decision variables for N times in which N is a sufficient large number.  
Step 2: Using values obtained through previous step, calculate   

             as the correlation coefficient 
between the antecedents                    and the consequent x, respectively. Also, calculate 
  

           as the correlation coefficient between each antecedent                    and the 
consequent y, respectively like    

 . Then, put    
      |  

 | and   
       |  

 |  as the candidate 
antecedents named   ̃  and  ̃ , respectively.  

Step 2: If    and    be the inputs of the candidate antecedents  ̃  and   ̃ , then put      ̃ 
     and    

    ̃ 
    .  

Step 3: Calculate     and    as the upper and lower bounds of   ̃
       respectively and also    and     

respectively as the upper and lower bounds of   ̃
      .  

Step 4: Based on the sign (negative or positive) of the correlation between the antecedent  ̃  and the consequent 
 , one of the cases 1 or 2 will be fired to derive  , and also   will be obtained through the cases 3 or 4, 
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subject to the sign of the correlation between the antecedent  ̃  and consequent   , according to the 
following algorithm: 
 Case1:               ̃   ̃     

 If       
   then     , Else       

 Case2:                ̃   ̃     

 If       
   then     , Else       

 Case3:                ̃   ̃     

 If       
   then     , Else       

 Case4:               ̃   ̃     

 If       
   then     , Else       

Developed CCI algorithm is shown in Figure 5. This figure shows the function of the CCI method for a 
typical rule. In part “a” the typical rule is depicted, and in part “b” the candidate antecedent   ̃  and its related 
consequent   are prepared for implementing CCI method. Putting the random value of the   ̃ , the membership 
function of it will be derived as    . This     value is the fulfillment degree of the consequent   which make 
two crisp value for consequent named    and   . Finally, based on the correlation coefficient sign of the   ̃  
and  , one of these two values will be chosen.  

 
Figure 5: a: Representation of a rule from the fuzzy rule base; b: CCI method 

It must be mentioned that the above algorithm in the rule base must be applied for all rules in the rule base. 
As a result, only one value for each rule will be obtained. Now, it is time to aggregate the derived values into 
one value for each consequent.  

V. Aggregation. The aggregated outputs  ̂ and  ̂ (decision variables in Fuzzy TPLP) are calculated by use of the 
weighted average as (8) and (9).  

 ̂  
∑     

 
   

∑   
 
   

 

 ̂  
∑     

 
   

∑   
 
   

In the above, k indicates the number of rules in the rule base and    and    are activation degrees of the  th 
rule which obtained from above algorithm. Meanwhile, xi and yi are the values derived from pervious stage of the 
algorithm for  th rule.  
It is essential to mention that no defuzzification method has been used in the above algorithm. The implication of 

the developed FLC model is demonstrated by use of a numerical example in the next section. 
 

5 Numerical Example 
 

In this section, the Fuzzy Minisum TPLP problem is designed to demonstrate the applicability of the proposed model 
and also the efficiency of the designed FLC with three fuzzy demand areas as follow: 

     
   

{∑ ̃   
      

 

   

           }  
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As said, each demand coordinates have a possibility distribution ( ̃   ̃ ) and weights  ̃  are in form of linguistic 
terms created by the fuzzy numbers. Consider the location of the facility is         =(35,18) and other parameters are 
as Table 2.  

Table 2: Parameters of the example 
    ̃   ̃   ̃  
1 (5, 8, 10) (15, 18, 20) (0.01, 0.25, 0.5) 
2 (5, 10, 15) (5, 9, 12) (0.6, 0.8, 1) 
3 (20, 25, 30) (10, 12, 15) (0.3, 0.5, 0.7) 

The optimum possibility distributions of the transfer point coordinates will be derived by solving the (10). Using 
(5), (6) and (7), the transfer points’ coordinates are achieved as   ̃  ̃   ((18.24, 17.03, 21.42), (10.48, 13.44, 15.32)) 
and the objective function value is calculated as (266.22, 272.59, 278).  

Based on the fuzzy parameters and the decision variables  ̃      ̃ and also the objective function  ̃, following If-
Then rule could be structured: 

If  ̃   ((5, 10, 10), (5, 8, 10)) and  ̃   (5, 5, 15), (5, 10, 15)) and  ̃   ((20, 20, 30), (20, 30, 30)) and  ̃   
(0.01, 0.25, 0.5) and  ̃   (0.6, 0.6, 1) and  ̃   (0.3, 0.3, 0.7) Then  ̃   ((18.24, 17.03, 21.42), (10.48, 13.44, 
15.32)) and  ̃   (266.22, 272.59, 278).  

In order to construct the fuzzy rule base as a DSS for this model, uncertain parameters must be described in the 
terms of linguistic variables. For this purpose,   ̃   ̃   ̃  and their weights,   ̃   ̃   ̃   are described with three 
linguistic variables Low, Medium and High and also are quantified in the form of triangular fuzzy numbers as exposed 
in Table 3.  

Table 3: Triangular fuzzy numbers of the coordinates  ̃  and the weights  ̃  

 ̃  
 ̃   ̃   ̃  

Low Medium High Low Medium High Low Medium High 

 ̃  (5,5,10) (5,8,10) (5,10,10) (15,15,20) (15,18,20) (15,20,20) (0.01,0.01,0.5) (0.01,0.25,0.5) (0.01,0.5,0.5) 

 ̃  (5,5,15) (5,10,15) (5,15,15) (5,5,12) (5,9,12) (5,12,12) (0.6,0.6,1) (0.6,0.8,1) (0.6,1,1) 

 ̃  (20,6,30) (20,25,30) (20,30,30) (10,10,15) (10,12,15) (10,15,15) (0.3,0.3,0.7) (0.3,0.5,0.7) (0.3,0.7,0.7) 

As an example, fuzzy values of the uncertain coordinates of the first demand area ( ̃   ̃   are shown in Figure 6.  
A Decision Support System in the form of fuzzy rule based on the several values of uncertain parameters and 

related values of decision variables is designed. A part of the resulted FLC construction is shown in Table 4. In this 
table, five rules are designed and the possibility distribution of the objective value ( ̃) and the decision variable ( ̃, ̃) 
are derived consequently.   

 
Figure 6: Fuzzy values of the uncertain coordinates of the first demand area 
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Table 4: Fuzzy control rule base 

 ̃   ̃   ̃   ̃   ̃   ̃   ̃   ̃   ̃  ( ̃,  ̃)  ̃ 
L L L L L L L L L ((18.24,18.21,21.421),(10.48,10.56,15.32)) (266.22,277.63,278) 
H L L M M H M L L ((                 ),(                 )) (266.22,272.59,278) 
M L L L L L L L L ((18.24,18.25,21.42),(10.48,10.56,15.32)) (266.22,276.2755,278) 
H L L L M H M L L ((18.24,17.08,21.42),(10.489,13.62,15.32)) (266.22,268.51,278) 
L L L L L M L L L ((18.24,18.21,21.42),(10.48,10.91,15.32)) (266.22,277.3402,278) 
  

Now, it is time to describe how the possibility distributions of the objective value ( ̃) and the decision variable 
( ̃, ̃) are derived in detail. Using (5), (6) and (7), the upper and the lower bounds of the objective function ( ̃) and the 
decision variable ( ̃, ̃) will be obtained at 101 different   levels (   0, 0.01, 0.02, …, 0.99, 1).   is the possibility 
degree and with decrease of the   value, the degree of possibility is reduced and vice versa. In other words, when   
 , uncertain parameters are placed in their upper or lower bounds. This fact shows the inexpertness of a person who 
estimates the parameters. On the other hand, when    , the uncertain parameters are in their mean values. This 
condition, points to the expertness of the parameters estimator. The possibility distributions of the objective value ( ̃) 
and the decision variable ( ̃ , ̃) at 11 different    levels, when   ̃   ̃  ,   ̃   ̃  ,   ̃   ̃   and weights,  ̃   ̃       
  ̃   are (Medium, Low), (Low, Low), (Low, Low), Low, Low and Low, respectively, are shown in Table 5.  

Generation of ( ̃) and ( ̃, ̃) when       

  levels                   

0.01 18.23 21.413 10.478 15.321 266.221 278.004 
0.1 18.237 20.972 10.478 14.853 260.913 277.933 
0.2 18.239 20.501 10.478 14.336 256.972 277.856 
0.3 18.241 20.055 10.478 13.826 254.930 277.781 
0.4 18.243 19.639 10.478 13.321 254.614 277.708 
0.5 18.246 19.260 10.478 12.824 255.836 277.636 
0.6 18.248 18.923 10.478 12.335 258.392 277.567 
0.7 18.251 18.639 10.478 11.857 262.053 277.499 
0.8 18.253 18.421 10.478 11.393 266.558 277.432 
0.9 18.255 18.284 10.478 10.945 271.596 277.368 
1 18.257 18.253 10.478 10.519 276.789 277.305 

Also, the possibility distributions of  ̃ and  ̃ are shown in Figure 7.  

  
Optimum fuzzy coordinate   ̃  Optimum fuzzy coordinate   ̃  

Figure 7: The generation of possibility distributions of  ̃ and  ̃ using FLC 
 

The developed FLC will be able to solve the problem proficiently in the form of (10) with deterministic 
parameters. 100 samples of the demand weights and coordinates exist in three demand areas are generated randomly 
and solved by the developed FLC (F(x*, y*)). Then, outputs are compared with the optimum solutions (F*(x, y)).  
Table 6 presents some of these examples.  

The results of the comparison between values of developed FLC and optimum solution for 100 randomly 
generated examples are shown in Table 7. 
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As a result of this table, average deviation of x, y and F(x, y) are 6.02%, 3.86% and 9.84%, respectively. To 
demonstrate the robustness of the value of the average deviation for 100 different samples and also to show the 
pattern of the deviations dispersion, the cdf curve of the F(x, y) deviations for 100 samples are provided as Figure 8.  

Table 6: Some examples when          = (10.34, 14.07) and       

E.g.   ̃   ̃     ̃   ̃     ̃   ̃    ̃   ̃   ̃  F(x*,y*) F*(x, y) Error 

1 (5.26,17.76) (9.42,7.2) (23.86,10.54) 0.07 0.91 0.49 259.56 246.23 13.34 
2 (5.26,15.72) (14.08,11.72) (22.24,12.3) 0.25 0.68 0.5 214.21 182.51 31.69 
3 (7.42,20) (5.76,8.5) (25.38,14.32) 0.39 0.71 0.57 314.76 337.04 22.29 
4 (7.86,18.68) (6.74,10.72) (27.3,13.94) 0.36 0.6 0.46 293.60 288.05 5.54 
5 (6.8,17.82) (14.38,5.42) (25.34,13.48) 0.26 0.77 0.65 209.42 234.70 25.29 
6 (9.58,15.66) (9,9.72) (28.64,11.06) 0.16 0.91 0.47 262.47 272.80 10.33 
7 (8.68,17.7) (7.6,10.18) (20.42,12.54) 0.18 0.76 0.6 278.46 236.09 42.37 
8 (5.78,19.4) (8.76,9.26) (29.84,11.92) 0.04 0.64 0.4 264.19 235.32 28.87 
9 (6.8,17.36) (8.88,5.38) (24.12,14.64) 0.25 0.65 0.47 263.30 271.20 7.90 

10 (5.02,17.56) (14.14,7.74) (22.66,13.76) 0.33 0.78 0.54 213.81 231.29 17.47 
11 (8.02,19.62) (10.02,8.9) (21.24,14.2) 0.28 0.78 0.33 256.58 231.12 25.45 
12 (5.4,19.32) (5.86,5.4) (24.18,14.82) 0.13 0.84 0.34 312.23 327.76 15.53 
13 (8.44,15.38) (10.5,8.94) (22.52,13.1) 0.42 0.93 0.6 253.10 245.12 7.98 
14 (5.56,16.4) (14.24,9.1) (23.94,12.8) 0.24 0.87 0.42 212.23 200.88 11.36 
15 (6.12,15.6) (14.94,5.1) (28.6,11.56) 0.24 0.64 0.67 200.01 235.39 35.38 
 

Table 7: Results of comparison between values of the developed FLC and optimum solution 

Deviation from optimum solution (%) x y F(x, y) 

Minimum deviation 0.056 0.038 0.231 
Maximum deviation 19.043 12.11 25.275 
Average deviation 6.200 3.859 9.842 

 

  

 
Figure 8: Cdf curve of the x, y and F(x, y) deviations obtained from the developed FLC  

 



Journal of Uncertain Systems, Vol.8, No.1, pp.31-43, 2014                                                                                                           
 

 
 

41 

This figure depicts that about 90% of the errors are less than 20% and over 60% are less than 12% which 
demonstrates the effectiveness of the developed FLC. Also, contour lines of the 100 samples when        are 
plotted in Figure 9. In this figure, the output of the developed FLC (model solution) is pictured by a white star shape 
and the actual solution is shown by a black star shape. 

 
Figure 9: Contour lines for validation of example when       

It can be observed that the developed FLC contour is extremely close to actual solution contour. Hence, the 
developed FLC result is near optimal with respect to fuzzy nature of the problem.  

It is so clear from the above issues that the developed model is so reliable and can be used as a powerful DSS by 
decision makers. It must be considered that a lot of scenarios were studied for getting these results. 
 

6 Conclusion Remarks and Future Research 
 

In this paper, a new transfer point location problem has been proposed in which demands have fuzzy coordinates and 
also demand weights are fuzzy in nature. A possibilistic unconstrained nonlinear programming was used to formulate 
the model. Our contributions of this paper are summarized as bellow: To give a clarification for the applicability of 
the model, conceptual justifications are designed in this paper. Due to complexity in solving the model, a new Fuzzy 
Logic Controller has been designed to reach the optimum or near optimum values of decision variables. In this new 
Fuzzy Logic Controller, consequents were derived based on optimum knowledge where in Mamdani’s inference 
system they were presented by Decision Maker. Also, a new implication method was developed named Correlation 
Coefficient – based Implication function in order to implement the consequents in the Inference System. The 
implication of the developed FLC model is demonstrated the numerical example and providing validation tests 
considering fuzzy nature of the problem. The results demonstrated that the proposed model with developed FLC is so 
reliable and could be used as a powerful Decision Support System by decision makers. More studies on the problem 
with probability distributions of the demand coordinates, network version of fuzzy minisum TPLP or fuzzy version of 
the MTPLP can be mentioned as future researches.  
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