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Abstract

This paper proposes a concept of uncertain random graph in which some edges exist with some degrees
in probability measure and others exist with some degrees in uncertain measure, and discusses the connec-
tivity index of an uncertain random graph. In addition, this paper presents a concept uncertain random
network in which some weights are random variables and others are uncertain variables, and obtains the
shortest path distribution of an uncertain random network.
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1 Introduction

We are usually in the state of indeterminacy. For dealing with indeterminacy phenomena, probability theory
was developed by Kolmogorov [13] in 1933 for modeling frequencies, while uncertainty theory was founded by
Liu [14] in 2007 for modeling belief degrees.

In many cases, uncertainty and randomness simultaneously appear in a complex system. In order to
describe this phenomenon, chance theory was pioneered by Liu [21] in 2013 with the concepts of uncertain
random variable, chance measure and chance distribution. Liu [21] also proposed the concepts of expected
value and variance of uncertain random variables. As an important contribution to chance theory, Liu [22] pre-
sented an operational law of uncertain random variables. In addition, Yao and Gao [27] verified a law of large
numbers for uncertain random variables, and Hou [11] investigated the distance between uncertain random
variables. In order to model optimization problems with not only uncertainty but also randomness, uncertain
random programming was founded by Liu [22] in 2013. As extensions, Zhou, Yang and Wang [30] proposed
uncertain random multiobjective programming, Qin [25] proposed uncertain random goal programming, and
Ke [12] proposed uncertain random multilevel programming. In order to deal with uncertain random systems,
Liu and Ralescu [23] invented the tool of uncertain random risk analysis, and Wen and Kang [26] presented
the tool of uncertain random reliability analysis.

Random graph was defined by Erdős and Rényi [3] in 1959 and independently by Gilbert [8] at nearly
the same time. As an alternative, uncertain graph was proposed by Gao and Gao [5] via uncertainty theory.
After that, the Euler index was discussed by Zhang and Peng [29], and the diameter was investigated by Gao,
Yang and Li [7] for an uncertain graph.

Random network was first investigated by Frank and Hakimi [4] in 1965 for modeling communication
network with random capacities. From then on, the random network was well developed and widely applied.
As a breakthrough approach, uncertain network was first explored by Liu [16] for modeling project scheduling
problem with uncertain duration times. Besides, the shortest path problem was investigated by Gao [6],
the maximum flow problem was discussed by Han, Peng and Wang [9], the uncertain minimum cost flow
problem was dealt with by Ding [2], and Chinese postman problem was explored by Zhang and Peng [28] for
an uncertain random network.

This paper will assume that in a graph some edges exist with some degrees in probability measure and
others exist with some degrees in uncertain measure, and define the concept of uncertain random graph. This
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paper will also assume some weights are random variables and others are uncertain variables, and initialize
the concept of uncertain random network.

2 Preliminaries

This section will introduce some preliminary knowledge about uncertainty theory and chance theory, the
former is a branch of mathematics for modeling belief degrees, and the latter is a methodology for modeling
complex systems with not only uncertainty but also randomness.

2.1 Uncertainty Theory

Let Γ be a nonempty set, and L a σ-algebra over Γ. Each element Λ in L is called an event. Liu [14] defined
an uncertain measure by the following axioms:

Axiom 1. (Normality Axiom) M{Γ} = 1 for the universal set Γ;

Axiom 2. (Duality Axiom) M{Λ}+ M{Λc} = 1 for any event Λ;

Axiom 3. (Subadditivity Axiom) For every countable sequence of events Λ1,Λ2, . . ., we have

M

{ ∞⋃
i=1

Λi

}
≤
∞∑
i=1

M{Λi}. (1)

The triplet (Γ,L,M) is called an uncertainty space. Furthermore, Liu [15] defined a product uncertain
measure by the fourth axiom:

Axiom 4. (Product Axiom) Let (Γk,Lk,Mk) be uncertainty spaces for k = 1, 2, . . .. The product uncertain
measure M is an uncertain measure satisfying

M

{ ∞∏
k=1

Λk

}
=

∞∧
k=1

Mk{Λk} (2)

where Λk are arbitrarily chosen events from Lk for k = 1, 2, . . ., respectively.
An uncertain variable was defined by Liu [14] as a function ξ from an uncertainty space (Γ,L,M) to the

set of real numbers such that {ξ ∈ B} is an event for any Borel set B. In order to describe an uncertain
variable in practice, the concept of uncertainty distribution was defined by Liu [14] as

Φ(x) = M {ξ ≤ x} , ∀x ∈ <. (3)

Peng and Iwamura [24] verified that a function Φ : < → [0, 1] is an uncertainty distribution if and only if it
is a monotone increasing function except Φ(x) ≡ 0 and Φ(x) ≡ 1. An uncertainty distribution Φ(x) is said to
be regular if it is a continuous and strictly increasing function with respect to x at which 0 < Φ(x) < 1, and

lim
x→−∞

Φ(x) = 0, lim
x→+∞

Φ(x) = 1. (4)

Let ξ be an uncertain variable with regular uncertainty distribution Φ(x). Then the inverse function Φ−1(α)
is called the inverse uncertainty distribution of ξ [16]. It was also verified by Liu [18] that a function Φ−1(α) :
(0, 1)→ < is an inverse uncertainty distribution if and only if it is a continuous and strictly increasing function
with respect to α.

The expected value of an uncertain variable ξ was defined by Liu [14] as the following form,

E[ξ] =

∫ +∞

0

M{ξ ≥ x}dx−
∫ 0

−∞
M{ξ ≤ x}dx (5)

provided that at least one of the two integrals is finite. If ξ has an uncertainty distribution Φ, then the
expected value may be calculated by

E[ξ] =

∫ +∞

0

(1− Φ(x))dx−
∫ 0

−∞
Φ(x)dx, (6)
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or equivalently,

E[ξ] =

∫ +∞

−∞
xdΦ(x). (7)

If Φ is also regular, then

E[ξ] =

∫ 1

0

Φ−1(α)dα. (8)

The independence of uncertain variables was defined by Liu [15]. The uncertain variables ξ1, ξ2, . . . , ξn are
said to be independent if

M

{
n⋂

i=1

(ξi ∈ Bi)

}
=

n∧
i=1

M {ξi ∈ Bi} (9)

for any Borel sets B1, B2, . . . , Bn. More generally, the independence of uncertain vectors was given by Liu
[19].

Let ξ1, ξ2, . . . , ξn be independent uncertain variables with uncertainty distributions Φ1,Φ2, . . . ,Φn, respec-
tively. Assume the function f(x1, x2, · · · , xn) is strictly increasing with respect to x1, x2, . . ., xm and strictly
decreasing with respect to xm+1, xm+2, . . . , xn. Liu [16] showed that ξ = f(ξ1, ξ2, · · · , ξn) has an inverse
uncertainty distribution

Ψ−1(α) = f(Φ−11 (α), · · · ,Φ−1m (α),Φ−1m+1(1− α), · · · ,Φ−1n (1− α)). (10)

In addition, Liu and Ha [20] proved that the uncertain variable ξ has an expected value

E[ξ] =

∫ 1

0

f(Φ−11 (α), · · · ,Φ−1m (α),Φ−1m+1(1− α), · · · ,Φ−1n (1− α))dα. (11)

2.2 Chance Theory

Let (Γ,L,M) be an uncertainty space and let (Ω,A,Pr) be a probability space. Then the product (Γ,L,M)×
(Ω,A,Pr) is called a chance space. Essentially, it is another triplet,

(Γ× Ω,L×A,M× Pr) (12)

where Γ× Ω is the universal set, L×A is the product σ-algebra, and M× Pr is the product measure.
The universal set Γ× Ω is clearly the set of all ordered pairs of the form (γ, ω), where γ ∈ Γ and ω ∈ Ω.

That is,

Γ× Ω = {(γ, ω) | γ ∈ Γ, ω ∈ Ω} . (13)

The product σ-algebra L× A is the smallest σ-algebra containing measurable rectangles of the form Λ × A,
where Λ ∈ L and A ∈ A. Any element Θ in L × A is called an event in the chance space. Then the chance
measure of Θ was defined by Liu [21] as

Ch{Θ} =

∫ 1

0

Pr{ω ∈ Ω |M{γ ∈ Γ | (γ, ω) ∈ Θ} ≥ x}dx. (14)

Liu [21] proved that the chance measure Ch{Θ} is a monotone increasing function of Θ and

Ch{Λ×A} = M{Λ} × Pr{A} (15)

for any Λ ∈ L and any A ∈ A. Especially, it holds that

Ch{∅} = 0, Ch{Γ× Ω} = 1. (16)

Liu [21] also proved that the chance measure is self-dual. That is, for any event Θ, we have

Ch{Θ}+ Ch{Θc} = 1. (17)
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In addition, Hou [10] verified that the chance measure is subadditive. That is, for any countable sequence of
events Θ1,Θ2, . . ., we have

Ch

{ ∞⋃
i=1

Θi

}
≤
∞∑
i=1

Ch{Θi}. (18)

An uncertain random variable was defined by Liu [21] as a function ξ from a chance space (Γ,L,M) ×
(Ω,A,Pr) to the set of real numbers such that {ξ ∈ B} is an event in L×A for any Borel set B.

Let ξ be an uncertain random variable on the chance space (Γ,L,M) × (Ω,A,Pr), and let B be a Borel
set. Liu [21] showed that {ξ ∈ B} is an uncertain random event with chance measure

Ch{ξ ∈ B} =

∫ 1

0

Pr {ω ∈ Ω |M{γ ∈ Γ | ξ(γ, ω) ∈ B} ≥ x} dx. (19)

Liu [21] also proved that Ch{ξ ∈ B} is a monotone increasing function of B and

Ch{ξ ∈ ∅} = 0, Ch{ξ ∈ <} = 1. (20)

Furthermore, for any Borel set B, we have

Ch{ξ ∈ B}+ Ch{ξ ∈ Bc} = 1. (21)

The chance distribution of an uncertain random variable ξ was defined by Liu [21] as

Φ(x) = Ch{ξ ≤ x} (22)

for any x ∈ <. A sufficient and necessary condition for chance distribution was verified by Liu [21]. That is,
a function Φ : < → [0, 1] is a chance distribution if and only if it is a monotone increasing function except
Φ(x) ≡ 0 and Φ(x) ≡ 1. The chance inversion theorem [21] says that if ξ is an uncertain random variable
with continuous chance distribution Φ, then for any real number x, we have

Ch{ξ ≤ x} = Φ(x), Ch{ξ ≥ x} = 1− Φ(x). (23)

Assume η1, η2, · · · , ηm are independent random variables with probability distributions Ψ1,Ψ2, . . . ,Ψm,
and τ1, τ2, . . . , τn are independent uncertain variables with uncertainty distributions Υ1,Υ2, . . .,Υn, respec-
tively. Liu [22] proved that the uncertain random variable

ξ = f(η1, · · · , ηm, τ1, · · · , τn) (24)

has a chance distribution

Φ(x) =

∫
<m

F (x; y1, · · ·, ym)dΨ1(y1) · · · dΨm(ym) (25)

where F (x; y1, · · · , ym) is the uncertainty distribution of uncertain variable f(y1, · · · , ym, τ1, · · · , τn) for any
real numbers y1, . . . , ym.

Assume η1, η2, . . . , ηm are independent Boolean random variables, i.e.,

ηi =

{
1 with probability measure ai

0 with probability measure 1− ai
(26)

for i = 1, 2, . . . ,m, and τ1, τ2, . . . , τn are independent Boolean uncertain variables, i.e.,

τj =

{
1 with uncertain measure bj

0 with uncertain measure 1− bj
(27)

for j = 1, 2, . . . , n. When f is a Boolean function (not necessarily monotone), Liu [22] showed that

ξ = f(η1, · · · , ηm, τ1, · · · , τn) (28)
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is a Boolean uncertain random variable such that

Ch{ξ = 1} =
∑

(x1,...,xm)∈{0,1}m

(
m∏
i=1

µi(xi)

)
f∗(x1, · · · , xm) (29)

where

f∗(x1, · · · , xm) =



sup
f(x1,··· ,xm,y1,··· ,yn)=1

min
1≤j≤n

νj(yj),

if sup
f(x1,··· ,xm,y1,··· ,yn)=1

min
1≤j≤n

νj(yj) < 0.5

1− sup
f(x1,··· ,xm,y1,··· ,yn)=0

min
1≤j≤n

νj(yj),

if sup
f(x1,··· ,xm,y1,··· ,yn)=1

min
1≤j≤n

νj(yj) ≥ 0.5,

(30)

µi(xi) =

{
ai, if xi = 1

1− ai, if xi = 0
(i = 1, 2, . . . ,m), (31)

νj(yj) =

{
bj , if yj = 1

1− bj , if yj = 0
(j = 1, 2, . . . , n). (32)

In order to measure the size of an uncertain random variable ξ, an expected value was defined by Liu [21]
as

E[ξ] =

∫ +∞

0

Ch{ξ ≥ x}dx−
∫ 0

−∞
Ch{ξ ≤ x}dx (33)

provided that at least one of the two integrals is finite. When ξ is an uncertain random variable with chance
distribution Φ, Liu [21] showed that

E[ξ] =

∫ +∞

0

(1− Φ(x))dx−
∫ 0

−∞
Φ(x)dx, (34)

E[ξ] =

∫ +∞

−∞
xdΦ(x). (35)

If the chance distribution Φ is regular, then

E[ξ] =

∫ 1

0

Φ−1(α)dα. (36)

Let η1, η2, . . . , ηm be independent random variables with probability distributions Ψ1,Ψ2, . . . ,Ψm, and let
τ1, τ2, . . . , τn be independent uncertain variables with uncertainty distributions Υ1,Υ2, . . .,Υn, respectively.
When f(η1, · · · , ηm, τ1, · · · , τn) is a strictly increasing function or a strictly decreasing function with respect
to τ1, . . . , τn, Liu [22] proved that the uncertain random variable

ξ = f(η1, · · · , ηm, τ1, · · · , τn) (37)

has an expected value

E[ξ] =

∫
<m

∫ 1

0

f(y1, · · · , ym,Υ−11 (α), · · · ,Υ−1n (α))dαdΨ1(y1) · · · dΨm(ym).

3 Uncertain Random Graph

In classic graph theory, the edges and vertices are all deterministic, either exist or not. However, in practical
applications, some indeterminacy factors will no doubt appear in graphs. Thus it is reasonable to assume that
in a graph some edges exist with some degrees in probability measure and others exist with some degrees in
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uncertain measure. In order to model this problem, let us introduce the concept of uncertain random graph
by using chance theory.

We say a graph is of order n if it has n vertices labeled by 1, 2, . . . , n. In this section, we assume the graph
is always of order n, and has a collection of vertices,

V = {1, 2, . . . , n}. (38)

Let us define two collections of edges,

U = {(i, j) | 1 ≤ i < j ≤ n and (i, j) are uncertain edges}, (39)

R = {(i, j) | 1 ≤ i < j ≤ n and (i, j) are random edges}. (40)

Note that all deterministic edges are regarded as special uncertain ones. Then U∪R = {(i, j) | 1 ≤ i < j ≤ n}
that contains n(n− 1)/2 edges. We will call

T =


α11 α12 . . . α1n

α21 α22 . . . α2n

...
...

. . .
...

αn1 αn2 . . . αnn

 (41)

an uncertain random adjacency matrix if αij represent the truth values in uncertain measure or probability
measure that the edges between vertices i and j exist, i, j = 1, 2, . . . , n, respectively. Note that αii = 0 for
i = 1, 2, . . . , n, and T is a symmetric matrix, i.e., αij = αji for i, j = 1, 2, . . . , n. See Figure 1.

...............
........................................................................................
.....3...............

........................................................................................
.....2

...............
........................................................................................
.....4...............

........................................................................................
.....1.......................................................................................................

.......................................................................................................

...................................................................................................................................................................

...................................................................................................................................................................


0 0.8 0 0.5

0.8 0 1 0

0 1 0 0.3

0.5 0 0.3 0



Figure 1: An uncertain random graph

Definition 1 Assume V is the collection of vertices, U is the collection of uncertain edges, R is the collection
of random edges, and T is the uncertain random adjacency matrix. Then the quartette (V,U,R,T) is said to
be an uncertain random graph.

Please note that the uncertain random graph becomes a random graph [3, 8] if the collection U of uncertain
edges vanishes; and becomes an uncertain graph [5] if the collection R of random edges vanishes.

In order to deal with uncertain random graph, let us introduce some symbols. Write

X =


x11 x12 . . . x1n

x21 x22 . . . x2n
...

...
. . .

...

xn1 xn2 . . . xnn

 (42)

and

X =

X |
xij = 0 or 1, if (i, j) ∈ R

xij = 0, if (i, j) ∈ U

xij = xji, i, j = 1, 2, . . . , n

xii = 0, i = 1, 2, . . . , n

 . (43)
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For each given matrix

Y =


y11 y12 . . . y1n

y21 y22 . . . y2n
...

...
. . .

...

yn1 yn2 . . . ynn

 , (44)

the extension class of Y is defined by

Y ∗ =

X |
xij = yij , if (i, j) ∈ R

xij = 0 or 1, if (i, j) ∈ U

xij = xji, i, j = 1, 2, . . . , n

xii = 0, i = 1, 2, . . . , n

 . (45)

Connectivity Index of Uncertain Random Graph

An uncertain random graph is connected for some realizations of uncertain and random edges, and discon-
nected for some other realizations. In order to show how likely an uncertain random graph is connected, a
connectivity index of an uncertain random graph is defined as the chance measure that the uncertain random
graph is connected. Let (V,U,R,T) be an uncertain random graph. It is easy to prove that the connectivity
index is

ρ =
∑
Y ∈X

 ∏
(i,j)∈R

νij(Y )

 f∗(Y ) (46)

where

f∗(Y ) =


sup

X∈Y∗, f(X)=1

min
(i,j)∈U

νij(X), if sup
X∈Y∗, f(X)=1

min
(i,j)∈U

νij(X) < 0.5

1− sup
X∈Y∗, f(X)=0

min
(i,j)∈U

νij(X), if sup
X∈Y∗, f(X)=1

min
(i,j)∈U

νij(X) ≥ 0.5,

νij(X) =

{
αij , if xij = 1

1− αij , if xij = 0
(i, j) ∈ U, (47)

f(X) =

{
1, if I +X +X2 + · · ·+Xn−1 > 0

0, otherwise,
(48)

X is the class of matrixes satisfying (43), and Y ∗ is the extension class of Y satisfying (45).

Remark 1: If the uncertain random graph becomes a random graph, then the connectivity index is

ρ =
∑
X∈X

 ∏
1≤i<j≤n

νij(X)

 f(X) (49)

where

X =

X |
xij = 0 or 1, i, j = 1, 2, . . . , n

xij = xji, i, j = 1, 2, . . . , n

xii = 0, i = 1, 2, . . . , n

 . (50)

Remark 2: ([5]) If the uncertain random graph becomes an uncertain graph, then the connectivity index is

ρ =


sup

X∈X,f(X)=1

min
1≤i<j≤n

νij(X), if sup
X∈X,f(X)=1

min
1≤i<j≤n

νij(X) < 0.5

1− sup
X∈X,f(X)=0

min
1≤i<j≤n

νij(X), if sup
X∈X,f(X)=1

min
1≤i<j≤n

νij(X) ≥ 0.5
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where X becomes

X =

X |
xij = 0 or 1, i, j = 1, 2, . . . , n

xij = xji, i, j = 1, 2, . . . , n

xii = 0, i = 1, 2, . . . , n

 . (51)

4 Uncertain Random Network

The term network is a synonym for a weighted graph, where the weights may be understood as cost, distance
or time consumed. In this section, we assume the uncertain random network is always of order n, and has a
collection of nodes,

N = {1, 2, . . . , n} (52)

where “1” is always the source node, and “n” is always the destination node. Let us define two collections of
arcs,

U = {(i, j) | (i, j) are uncertain arcs}, (53)

R = {(i, j) | (i, j) are random arcs}. (54)

Note that all deterministic arcs are regarded as special uncertain ones. Let wij denote the weights of arcs
(i, j), (i, j) ∈ U ∪ R, respectively. Then wij are uncertain variables if (i, j) ∈ U, and random variables if
(i, j) ∈ R. Write

W = {wij | (i, j) ∈ U ∪ R}. (55)

Definition 2 Assume N is the collection of nodes, U is the collection of uncertain arcs, R is the collection
of random arcs, and W is the collection of uncertain and random weights. Then the quartette (N,U,R,W) is
said to be an uncertain random network.

Please note that the uncertain random network becomes a random network [4] if all weights are random
variables; and becomes an uncertain network [16] if all weights are uncertain variables.

..........................................................
.............
...............

................................................. 1
........................

........................
........................

........................
........................

........................
.............................. ...............

.............................................................................................................................................................................. ...............

..........................................................
.............
...............

................................................. 2 ...................................................................................................................................................................................................................................................... ..............
.

................................................................................................................................................ ...............

..........................................................
.............
...............

................................................. 3

................
................
................
................
................
................
................
................
................
................
................
................
................
................
......................
...............

................................................................................................................................................ ...............

..........................................................
.............
...............

................................................. 4 .............................................................................................................................................................................. ...............

..........................................................
.............
...............

................................................. 5
........................

........................
........................

........................
........................

........................
.............................. ...............
..........................................................

.............

...............
................................................. 6

Figure 2: An uncertain random network

Figure 2 shows an uncertain random network (N,U,R,W) of order 6 in which

N = {1, 2, 3, 4, 5, 6}, (56)

U = {(1, 2), (1, 3), (2, 4), (2, 5), (3, 4), (3, 5)}, (57)

R = {(4, 6), (5, 6)}, (58)

W = {w12, w13, w24, w25, w34, w35, w46, w56}. (59)
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Shortest Path Distribution of Uncertain Random Network

Consider an uncertain random network (N,U,R,W). Assume the uncertain weights wij have uncertainty
distributions Υij for (i, j) ∈ U, and the random weights wij have probability distributions Ψij for (i, j) ∈ R,
respectively. Then the shortest path length from a source node to a destination node has a chance distribution

Φ(x) =

∫ +∞

0

· · ·
∫ +∞

0

F (x; yij , (i, j) ∈ R)
∏

(i,j)∈R

dΨij(yij) (60)

where F (x; yij , (i, j) ∈ R) is determined by its inverse uncertainty distribution

F−1(α; yij , (i, j) ∈ R) = f(cij , (i, j) ∈ U ∪ R), (61)

cij =

{
Υ−1ij (α), if (i, j) ∈ U

yij , if (i, j) ∈ R,
(62)

and f may be calculated by the Dijkstra algorithm [1] for each given α.

Remark 3: If the uncertain random network becomes a random network, then the probability distribution
of shortest path length is

Φ(x) =

∫
f(yij ,(i,j)∈R)≤x

∏
(i,j)∈R

dΨij(yij). (63)

Remark 4: ([6]) If the uncertain random network becomes an uncertain network, then the inverse uncertainty
distribution of shortest path length is

Φ−1(α) = f(Υ−1ij (α), (i, j) ∈ U). (64)

5 Conclusion

This paper proposed a concept of uncertain random graph in which some edges exist with some degrees in
probability measure and others exist with some degrees in uncertain measure, and discussed the connectivity
index of an uncertain random graph. In addition, this paper presented a concept uncertain random network
in which some weights are random variables and others are uncertain variables, and obtained the shortest
path distribution of an uncertain random network.

Acknowledgments

This work was supported by National Natural Science Foundation of China Grants No.61273044 and
No.91224008.

References

[1] Dijkstra, E.W., A note on two problems in connection with graphs, Numerical Mathematics, vol.1, no.1, pp.269–
271, 1959.

[2] Ding, S.B., Uncertain minimum cost flow problem, Soft Computing, to be published.

[3] Erdős, P., and A. Rényi, On random graphs, Publicationes Mathematicae, vol.6, pp.290–297, 1959.

[4] Frank, H., and S.L. Hakimi, Probabilistic flows through a communication network, IEEE Transactions on Circuit
Theory, vol.12, pp.413–414, 1965.

[5] Gao, X.L., and Y. Gao, Connectedness index of uncertain graphs, International Journal of Uncertainty, Fuzziness
& Knowledge-Based Systems, vol.21, no.1, pp.127–137, 2013.

[6] Gao, Y., Shortest path problem with uncertain arc lengths, Computers and Mathematics with Applications, vol.62,
no.6, pp.2591–2600, 2011.



12 B. Liu: Uncertain Random Graph and Uncertain Random Network

[7] Gao, Y., Yang, L.X., and S.K. Li, On distribution functions of the diameter in uncertain graphs,
http://orsc.edu.cn/ online/131014.pdf.

[8] Gilbert, E.N., Random graphs, Annals of Mathematical Statistics, vol.30, no.4, pp.1141–1144, 1959.

[9] Han, S.W., Peng, Z.X., and S.Q. Wang, The maximum flow problem of uncertain network, Information Sciences,
to be published.

[10] Hou, Y.C., Subadditivity of chance measure, http://orsc.edu.cn/online/130602.pdf.

[11] Hou, Y.C., Distance between uncertain random variables, http://orsc.edu.cn/online/130510.pdf.

[12] Ke, H., Uncertain random multilevel programming with application to product control problem,
http://orsc.edu.cn/ online/121027.pdf.

[13] Kolmogorov, A.N., Grundbegriffe der Wahrscheinlichkeitsrechnung, Julius Springer, Berlin, 1933.

[14] Liu, B., Uncertainty Theory, 2nd Edition, Springer-Verlag, Berlin, 2007.

[15] Liu, B., Some research problems in uncertainty theory, Journal of Uncertain Systems, vol.3, no.1, pp.3–10, 2009.

[16] Liu, B., Uncertainty Theory: A Branch of Mathematics for Modeling Human Uncertainty, Springer-Verlag, Berlin,
2010.

[17] Liu, B., Why is there a need for uncertainty theory? Journal of Uncertain Systems, vol.6, no.1, pp.3–10, 2012.

[18] Liu, B., Toward uncertain finance theory, Journal of Uncertainty Analysis and Applications, vol.1, article 1, 2013.

[19] Liu, B., Polyrectangular theorem and independence of uncertain vectors, Journal of Uncertainty Analysis and
Applications, vol.1, article 9, 2013.

[20] Liu, Y.H., and M.H. Ha, Expected value of function of uncertain variables, Journal of Uncertain Systems, vol.4,
no.3, pp.181–186, 2010.

[21] Liu, Y.H., Uncertain random variables: a mixture of uncertainty and randomness, Soft Computing, vol.17, no.4,
pp.625–634, 2013.

[22] Liu, Y.H., Uncertain random programming with applications, Fuzzy Optimization and Decision Making, vol.12,
no.2, pp.153–169, 2013.

[23] Liu, Y.H., and D.A. Ralescu, Risk index in uncertain random risk analysis, http://orsc.edu.cn/online/130403.pdf.

[24] Peng, Z.X., and K. Iwamura, A sufficient and necessary condition of uncertainty distribution, Journal of Inter-
disciplinary Mathematics, vol.13, no.3, pp.277–285, 2010.

[25] Qin, Z.F., Uncertain random goal programming, http://orsc.edu.cn/online/130323.pdf.

[26] Wen, M.L., and R. Kang, Reliability analysis in uncertain random system, http://orsc.edu.cn/online/120419.pdf.

[27] Yao, K., and J. Gao, Law of large numbers for uncertain random variables, http://orsc.edu.cn/online/120401.pdf.

[28] Zhang, B., and J. Peng, Uncertain programming model for Chinese postman problem with uncertain weights,
Industrial Engineering & Management Systems, vol.11, no.1, pp.18–25, 2012.

[29] Zhang, B., and J. Peng, Euler index in uncertain graph, Applied Mathematics and Computation, vol.218, no.20,
pp.10279–10288, 2012.

[30] Zhou, J., Yang, F., and K. Wang, Multi-objective optimization in uncertain random environments,
http://orsc.edu.cn/ online/130322.pdf.


	JUS-8-1-1.pdf
	Introduction
	Preliminaries
	Uncertainty Theory
	Chance Theory

	Uncertain Random Graph
	Uncertain Random Network
	Conclusion

	JUS-8-1-2.pdf
	Introduction
	Preliminaries
	The Core
	Uncertainty Theory

	Two Uncertain Cores
	The Expected Core
	The -Optimistic Core

	An Example
	Conclusion

	JUS-8-1-3.pdf
	Introduction
	Preliminaries
	Fuzzy Dot Subalgebras of B-algebras
	Fuzzy Normal Dot Subalgebras of B-algebras
	Fuzzy -product Relation of B-algebra
	Fuzzy Dot Ideals of B-algebras
	Conclusions

	JUS-8-1-5.pdf
	Introduction
	 Mathematical Formulation 
	Preliminaries
	 North-West Corner Rule
	 Optimality Test:
	2-Vehicle Cost Varying Transportation Problem
	Solution Procedure of 2-Vehicle Cost Varying Transportation Problem
	Determination of cij
	Algorithm (TP1)
	Algorithm (TP2)
	Algorithm (TP3)
	Bi-level Mathematical Programming for 2-Vehicle Cost Varying Transportation Problem


	Numerical Example
	Conclusion

	JUS-8-1-6.pdf
	Introduction
	L�S Integral of Function of Fuzzy Variables
	Formulation of Global Production Planning Problem
	Theoretical Results and Solution Method
	Theoretical Results
	Solution Method

	Numerical Experiments
	Problem Description
	Computational Results

	Conclusions

	JUS-8-1-7.pdf
	Introduction
	Preliminaries
	Fuzzy Numbers
	Fuzzy Random Variables

	Fuzzy Likelihood Ratio and Fuzzy Proportional Likelihood Ratio Orders
	Fuzzy Reversed Hazard Rate and Fuzzy Mean Inactivity Time Orders
	Fuzzy Reversed Hazard Rate Order
	Fuzzy Mean Inactivity Time Order

	A Comparison Study 
	Comparison with Piriyakumar and Renganathan's Approach
	Comparison with Aiche and Dubois's Approach

	Conclusion

	JUS-8-1-8.pdf
	Introduction
	Sum of T2 Fuzzy Variables




