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Abstract

The treewidth of the graph is to extend G to be a chordal supergraph H(G ⊆ H) such that the
cardinality of maximum cliques is minimized. It is an important parameter in theory of graph minors
and VLSI layout designs, data structure, etc. The treewidth problem of general graph is shown to be
NP-complete. As to the special structure graph, if its upper bound and lower bound are determined, the
treewidth of the graph can be determined. With this method, this paper studies the treewidth formula of
the product of 2-tree and a partial k-tree.
c©2013 World Academic Press, UK. All rights reserved.
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1 Introduction

The notion of treewidth was introduced by Robertson and Seymour in theory of graph minors in the 1980’s
[9, 10]. The same parameter was rose from different application backgrounds such as VLSI layout designs, data
structure, sparse matrix computation, coding theory, mathematical model in molecular biology, numerical
analysis and interconnection networks, etc.[11, 2]. In a word, the treewidth has many interpretations and
applications. From graph-theoretic perspective, the treewidth problem of the graph is to extend G to be a
chordal supergraph H(G ⊆ H) such that the cardinality of maximum cliques is minimized. From algebra-
theoretic perspective, the treewidth problem corresponds to the wavefront of matrix in sloving a system of
liner equations by the Gauss elimination. The treewidth problem was studied from the following aspects: the
algorithmic theory and the computational complexity, the results of special graphs etc. In 1987, S. Arnborg,
D. Corneil and A. Proskurowski proved that the treewidth problem of general graph was NP-complete [1]. In
1995, T.Klocks and D. Kratsch proved the treewidth of chordal bipartite graphs was solvable in polynomial
[5], so the researchers began to study the results of special structure graphs. As to the special structure
graph, the workers have got some studying results in Reference [13, 6, 12, 7, 14, 8, 4, 16, 15], these results
are still fewer than the other labeling problems. For some of the known special structure graphs, we can use
to decompose and reduce theorem for its treewidth, and if its upper bound and lower bound are known, the
treewidth of the graph can be determined. In Reference [14], J. Yuan studied treewidth of the product of
a tree and a partial k-tree under some given conditions. In Reference [4], A. Feng studied treewidth of the
product of K3 and a partial k-tree under some conditions. K3 is the simple 2-tree. In this paper, we extend
this result and determine the formula of treewidth of the product of 2-tree and partial k-tree.

The paper is organized as follows. In Section 2, we give some definitions and lemmas of the treewidth,
which play important roles in studying the treewidth of special graphs. In Section 3, we discuss the upper and
lower bound for the treewidth of the product graph of 2-tree and partial k-tree. Finally, we determined the
important result of this paper. Graphs considered in this paper are finite and simple [3], for a graph G,V (G)
and E(G) denote the sets of its vertices and edges respectively.

2 Preliminaries

Treewidth has many interpretations in the literature, we prefer the following three definitions [9, 10, 11, 2]:
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A simple definition of treewidth is the one in terms of K-tree, which can be recursively defined as follows:

(1) the complete graph Kk+1 is a k-tree;

(2) If G is a k-tree, then the graph obtained from G by joining a new vertex to all vertices of a subgraph
Kk in G is also k-tree.

Based on the definition, we can construct 2-tree: the complete graph K3 is the simplest 2-tree; the graph
obtained from K3 by joining a new vertex to all vertices of a subgraph K2 in K3 is also 2-tree.

Definition 1 The treewidth of graph G, denoted by TW (G), is the minimum integer k such that G is a
subgraph of a k-tree. That is

TW (G) = min{k : G ⊆ H,H is a k − tree}.

A graph is called a chordal graph if every cycle of length greater than three has a chord. Clearly, a k-tree
is a connected chordal graph such that its clique number (i.e., the maximum size of a clique) is k+1.

If G is a graph such that TW (G) = k, we call G a partial k-tree.
By Reference [10] the treewidth of a graph can be defined equivalently by the following way.

Definition 2 A tree-decomposition of a graph G is a pair (T,X) where T is a tree and X = {Xi : i ∈ I} is
a family of subsets of V (G), with the following properties:

(i) ∪Xi = V (G);

(ii) For uv ∈ E(G), there exists i ∈ I such that {u, v} ⊆ Xi;

(iii) For i, j, k ∈ I, if j is on the path of T between i and k, then Xi ∩Xk ⊆ Xj.
The treewidth of G is defined by

TW (G) = min
(T,X)

max
i
|Xi| − 1.

It is easy to see the following equivalent version of treewidth:

TW (G) = min{ω(H)− 1 : G ⊆ H,V (G) = V (H), H is a chordal graph},

where ω(H) is the cardinality of a maximum clique of G.

So the treewidth problem turns into choral expansion problem. Reference [2] defines forward bandwidth
based on the frontier branch viewpoint, and proved that the forward bandwidth is equal to the treewidth.
Another equivalent version of treewidth is as follows:

Definition 3 Let G be a simple graph, S ⊆ V (G). Let

NG(S) = {u ∈ V (G) \ S : ∃V ∈ S, such that uv ∈ E(G)}

is a neighbor set of G. A labeling of G is a bijection f : V (G)→ {1, 2, · · · , n}, which n = |V (G)|. For a given
labeling f of G, and for 1 ≤ k ≤ n, set

Sk(G, f) = {u ∈ V (G) : 1 ≤ f(u) ≤ k}.

Ŝk(G, f) is defined as the vertex set of the frontier branch of the induced subgraph G[Sk(G, f)] which contains
f−1(k) branch. In this labeling f , the forward bandwidth of graph G is defined as

B∗1(G, f) = max |N(Ŝk(G, f))|.

The forward bandwidth of graph is defined as

B∗(G, f) = min{B∗1(G, f) : f is the lableing} = min
k∈f

max
1≤i≤n

|N(Ŝk(G, f))|.

These definitions play different roles in studying the treewidth of special graph.
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Definition 4 Let G and H be two graphs. The product G×H of G and H is defined as follows:

(1) V (G×H) = {(x, y) : x ∈ V (G), y ∈ V (H))};

(2) (x1, y1) and (x2, y2) are adjacent in G ×H if and only if x1 = x2 and y1y2 ∈ E(H) or y1 = y2 and
x1x2 ∈ E(G).

In order to study the treewidth of the product of 2-tree and partial tree, we need the following lemmas.

Lemma 1 ([11]) Let (T,X) with |V (T )| ≥ 2 be G a tree-decomposition. For each t ∈ V (T ), let Gt be a
connected subgraph of G with V (Gt)∩Xt = φ. Then there exist t, t′ ∈ V (T ), adjacent in T, such that Xt∩Xt′

separates V (Gt) and V (Gt′) in G.

Lemma 2 ([11]) Let G and H be two graphs, if H is isomorphic to a minor of G, then

TW (H) ≤ TW (G).

Lemma 3 ([6]) Suppose that G1 and G2 are two graphs, then

TW (G1 ×G2) ≤ min{|V (G1)| × TW (G2), |V (G2)| × TW (G1)}.

Lemma 4 ([14]) Suppose TW (G) ≤ k. Let (T,X) is a tree decomposition of G such that TW (G,T,X) ≤ k,
and for t, t′ ∈ V (T ), then if t 6= t′, |Xt ∩Xt′ | < min{|Xt)|, |Xt′ |}.

Lemma 5 (Menger’s Theorem [3]) Let G be a graph, let s and t be two vertices, and k ∈ N , then there are
k edge-disjoint s− t− paths if only if after deleting any k − 1 edges t is still reachable from s.

3 Main Results

In this section, we first study the upper and lower bound for the treewidth of the product graph of 2-tree and
partial k-tree.

Lemma 6 Suppose that G is 2-tree with |V (G)| = m ≥ 4, H is a k-connected partial k-tree with |V (H)| =
n ≥ 4. If there is S ⊆ V (H) such that |S| = k, and both S and V (H) \ S are vertex cuts of H, then

TW (G×H) ≤ min{2n,mk}.

Proof: It follows from Lemma 3 immediately.

This Lemma gives the upper bound for the treewidth of the product graph of 2-tree and partial k-tree.

Note that G is 2-tree with |V (G)| = m ≥ 4, H is a k-connected partial k-tree with |V (H)| = n ≥ 4, there
is S ⊆ V (H) such that |S| = k, and both S and V (H) \ S are vertex cuts of H, the following proposition is
true.

Lemma 7 Let (T,X) be a tree decomposition of G×H such that TW (G×H;T,X) = TW (G×H). If there
is a certain t ∈ V (T ) such that Xt ∩ V (Gvt) 6= φ for every v ∈ V (H), |Xt| = 2n ≤ mk, then there is a branch
in (G×H) \Xt such that every x ∈ Xt is contained in a triangle.

Proof: Let (T,X) be a tree decomposition of G×H such that

TW (G×H;T,X) = TW (G×H).

By Lemma 4, there exist t, t′ ∈ V (T ) with

t 6= t′, |Xt ∩Xt′ | < min{|Xt)|, |Xt′ |}.

This is possible.
Now suppose that there is a certain t ∈ V (T ) such that Xt ∩ V (Gvt) 6= φ for every v ∈ V (H). Because it

is 2-tree, then |Xt| ≥ 2n.
We suppose |Xt| = 2n ≤ mk, then for any v ∈ V (H), |Xt ∩ V (Gvt | ≥ 2.
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If, for each v ∈ V (T ), there is a certain vt ∈ V (H), then Hu
∼= H for every u ∈ V (G). The two cases exist

as follows:

(i) There exists u0 ∈ V (G) such that |Xt ∩ V (Hu0)| ≤ k− 1 or |Xt ∩ V (Hu0)| = k, and Hu0 \Xt ∩ V (Hu0)
is connected.

In this case, because H is k-connected, Hu0
\Xt ∩ V (Hu0

) is connected.
Let C0 be a component of G ×H \Xt such that V (Hu0) \Xt ∈ V (C0), and for every x ∈ Xt ∩ V (Hu0

),
there must be a certain vertex x′ ∈ V (Hu0) \Xt such that xx′ ∈ E(Hu0) ⊆ E(G×H).

For two vertices (u1, v1), (u2, v2) ∈ Xt\V (Hu0) are only two points inXt∩V (Gv), So (u1, v), (u2, v), (u0, v) ∈
V (Hu0

) \Xt, they form a triangle. In a word, every x ∈ Xt is contained in a triangle xyz.

(ii) For every u ∈ V (G), |Xt ∩ V (Hu)| ≥ k and Hu \Xt ∩ V (Hu) are not connected.

In this case, because |Xt| = 2n ≤ mk, |Xt ∩V (Hu0)| = k for u ∈ V (G). This also implies that Xt ∩V (Hu)
is the minimum vertex cut of Hu for u ∈ V (G).

By the condition m ≥ 4, let u ∈ V (G) is a vertex of degree 2 in G, u1, u2 ∈ V (G)\u, and uu1, uu2 ∈ E(G).
If St = {v ∈ V (H) : (ui, v) ∈ Xt, i = 1, 2}, then |S1| = |S2| = k, and both S1 and S2 are minimum vertex

cut for H. So there exist v1 ∈ S1, v2 ∈ V (H) \ S1 ∪ S2 such that v1, v2 ∈ V (H).
If v1, v2 ∈ V (H), then Q = {(u1, v1), (u2, v1), (v1, v2)} is a triangle in G×H \Xt.
Lemma 7 has been proved.

The following Lemma will give the lower bound for the treewidth of the product graph of 2-tree and partial
k-tree.

Lemma 8 Suppose that G is 2-tree with |V (G)| = m ≥ 4, H is a k-connected partial k-tree with |V (H)| =
n ≥ 4. If there is S ⊆ V (H) such that |S| = k, and both S and V (H) \ S are vertex cuts of H, then

TW (G×H) ≥ min{2n,mk}.

Proof: Let (T,X) be a tree decomposition of G×H such that

TW (G×H;T,X) = TW (G×H).

By Lemma 4, there exist t, t′ ∈ V (T ) with

t 6= t′, |Xt ∩Xt′ | < min{|Xt)|, |Xt′ |}.

This is possible.
For v ∈ V (H), let Gv be the induced subgraph of G×H with V (Gv) = {(u, v)|u ∈ V (G)}.
If, for each v ∈ V (T ), there is a certain vt ∈ V (H) such that Xt ∩ V (Gvt) = φ, by Lemma 1, then there

exist t, t′ ∈ V (T ) and Vt, Vt′ ∈ V (H), such that Xt ∩Xt′ separates V (Gvt) and V (Gv′
t
) in G×H. Note that

V (Gvt)
∼= V (Gv′

t
) ∼= G

and H is k-connected, there are at least mk internally vertex-disjoint paths of G × H between V (Gvt) and
V (Gvt′). By Menger’s theorem, also note that

(Xt ∪Xt′) ∩ (V (Gvt) ∪ V (Gv′
t
)) = φ.

We must have |Xt ∩Xt′ | ≥ mk. Hence we have

TW (G×H;T,X) ≥ |Xt| − 1 ≥ |Xt ∩Xt′ | ≥ mk.

The result holds.
Now suppose that there is a certain t ∈ V (T ) such that |Xt ∩ V (Gvt) 6= φ for every v ∈ V (H).
Because it is 2-tree, then |Xt| ≥ 2n. If |Xt| ≥ 2n+ 1 or mk + 1, the result clearly holds.
Without loss of generality, we suppose |Xt| = 2n ≤ mk, then |Xt ∩ V (Gvt| ≥ 2, for any v ∈ V (H).
For u ∈ V (G), let Hu be the induced subgraph of G×H, and V (Hu) = {(u, v)|v ∈ V (H)}.
If, for each v ∈ V (T ), there is a certain vt ∈ V (H), then Hu

∼= H for every u ∈ V (G). By Lemma 7, there
is a branch in (G×H) \Xt to make every x ∈ Xt are contained in a triangle.
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Denote E(Xt) = {xy 6∈ E(G ×H) : x, y ∈ Xt, x 6= y}, let F = G ×H + E(Xt), then Xt is a clique of F ,
and (T,X) is a tree decomposition for F , so TW (G×H) = TW (F ).

K2n+1 is isomorphism for F , by Lemma 2, so TW (F ) = TW (G×H) ≥ 2n.
Thus we complete the proof.

To summarize Lemma 6 and Lemma 8, the following result is clear immediately.
Theorem Suppose that G is 2-tree with |V (G)| = m ≥ 4, H is a k-connected partial k-tree with |V (H)| = n ≥
4, and S ⊆ V (H), |S| = k, both S and V (H) \ S are vertex cuts of H, then

TW (G×H) = min{2n,mk}.

The same method can be applied to more families of special graphs such as the product graph of circle
and a patrial k-tree. Because the treewidth problem is NP-complete, our study has to be concentrated on
some typically special cases, the lower and upper bounds, etc. Furthermore, in combinatorial optimization
problem, the objective functions usually have two types, one is the minimum sum, another is minimum in
the maximal value. The treewidth problem belongs to the latter type. Exchanging a form can generate new
problem, and this new problem is waiting to be studied and discussed. Most results are expected.
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