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Abstract

In this paper, we proposed a solution procedure of a two-stage stochastic programming problem where
the right hand side parameters follow either uniform or exponential or normal or log-normal distribution
with known mean and variance. To establish the solution of the stated problem, we first convert the
problem into an equivalent deterministic model. Then a standard linear/non-linear programming technique
is applied to solve the transformed deterministic model. Illustrative numerical examples are provided to
demonstrate the solution procedure of the developed methodology.
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1 Introduction

Stochastic programming (SP) is an optimization framework for modelling problems that involve uncertainty.
This implies that some of the parameters in the model coefficients are random variables with known probability
distribution. Generally, SP is often used in several real-world decision making problems of management
science, engineering, and technology. During the last five decades, SP has been applied in many areas such as,
energy, finance, telecommunications, transportation, production control and scheduling, agriculture, military,
environmental planning, etc.

When the optimal decision is not specified to the realization of future events, a static stochastic pro-
gramming model is formulated, although in many contexts the decision maker has to make a decision before
observing random events which influence the system he/she wants to control. Further, the optimum solution
can be obtained after observation of the random events. For this case a special class of dynamic programming
model has to be formulated known as two-stage stochastic programming problem, which is also known as the
stochastic programming problem with recourse.

The formulation of two-stage stochastic programming problems was first introduced by Dantzig [7]. This
model was further developed by Beale [4] and Dantzig and Madansky [8]. Subsequently, Wets [23] presented
an equivalent convex program of a two stage stochastic programming under uncertainty, while Maarten [21]
presented an additional bibliographical study of stochastic programming based on the study of nearly 351
research papers, from 1996-2007. Quite successfully, Maqsood et al. [19] proposed an interval-parameter
fuzzy two-stage stochastic programming method for the planning of water-resources-management systems
under uncertainty. This study was braced by Li et al. [13] who proposed an interval-parameter two-stage
stochastic mixed integer programming technique for waste management under uncertainty.

Many studies have reinforced investigations of problem under uncertainty. For example, Huang et al.
[10] proposed an inexact two-stage stochastic quadratic programming model for water resources management
under uncertainty. Khor et al. [12] proposed a two-stage stochastic programming model with fixed recourse
via scenario analysis with incorporation of risk management for an optimal midterm refinery planning that
addresses three factors of uncertainties: prices of crude oil and saleable products (in the objective function),
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product demands (in the RHS coefficients), and product yields (in the LHS coefficients). Lu et al. [17] de-
veloped an inexact two-stage fuzzy-stochastic programming method for water resources management under
uncertainty. Beraldi et al. [5] proposed a two-stage stochastic integer programming model for the integrated
optimization of power production and trading which include a specific measure accounting for risk manage-
ment. An interval-fuzzy two-stage stochastic linear programming method has developed by Li et al. [14]
for planning waste-management systems under uncertainty. Guo and Huang [9] presented a two-stage fuzzy
chance-constrained programming approach for water resources management under dual uncertainties Lu et
al. [18] developed an inexact programming method based on two-stage stochastic programming and interval-
parameter programming is developed to obtain optimal water-allocation strategies for agricultural irrigation
systems. Li et al. [15] presented a two-stage stochastic programming model for chemical production plan-
ning optimization with management of purchase and inventory under economic uncertainties including prices
of raw materials, product prices and demands, employing Monte Carlo sampling method. Chen et.al. [6]
developed a two-stage inexact-stochastic programming method for planning carbon dioxide (CO2) emission
trading under uncertainty. Lin and Huang [16] presented an interval-parameter two-stage stochastic municipal
energy systems planning model for supporting decisions of energy systems planning and GHG (greenhouse
gases) emission management at a municipal level. Barik et al. [1] established a solution procedure for solving
the two-stage stochastic linear programming problem considering both randomness and interval parameters
in the problem formulation. They [2] also developed a solution procedure for the multiobjective two-stage
stochastic linear programming problem considering some parameters of the linear constraints as interval type
discrete random variables with known probability distribution. Bashiri and Rezaei [3] proposed an extended
relocation model for warehouses configuration in a supply chain network, in which uncertainty is associated
to operational costs, production capacity and demands.

After going through the above literatures studied by various researchers, which motivate us to introduce a
new solution procedure for solving the two-stage stochastic programming problem where the right hand side
parameters follow either uniform or exponential or normal or log-normal distribution with known mean and
variance. The solution procedure has been illustrated with suitable numerical examples.

2 Stochastic Programming Problem

Optimization problems involving some random parameters in the model coefficients can be modelled as
stochastic programming problems. Mathematically, a stochastic programming problem can be stated as:

min : z =

n∑
j=1

cjxj (2.1)

subject to
n∑
j=1

aijxj ≤ bi, i = 1, 2, . . . ,m (2.2)

n∑
j=1

rsjxj ≥ hs, s = 1, 2, . . . , l (2.3)

xj ≥ 0, j = 1, 2, . . . , n (2.4)

where xj , j = 1, 2, . . . , n are the decision variables, aij , i = 1, 2, . . . ,m, j = 1, 2, . . . , n are the coefficients of the
technological matrix, cj , j = 1, 2, . . . , n are the coefficients associated with the objective function. Only the
right hand side parameters bi, i = 1, 2, . . . ,m are considered as random variables which follow either uniform,
or exponential, or normal or log-normal distribution with finite mean and variance.

2.1 Two-Stage Stochastic Programming Problem and Its Deterministic Model

Basically, two-stage stochastic programming problems are formulated to optimize the decisions which are
made in two different stages. The first-stage decisions are made before the realization of the random events
and the second-stage decisions are made after they have been realized. Mathematically, two-stage stochastic
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programming [22, 11] problem with simple recourse can be stated as:

min : z̄ =

n∑
j=1

cjxj + E(

m∑
i=1

pi|yi|) (2.5)

subject to

yi = bi −
n∑
j=1

aijxj , i = 1, 2, . . . ,m (2.6)

n∑
j=1

rsjxj ≥ hs, s = 1, 2, . . . , l (2.7)

yi ≥ 0, xj ≥ 0, i = 1, 2, . . . ,m, j = 1, 2, . . . , n (2.8)

where it is assumed that the first stage decision variables xj , j = 1, 2, . . . , n and second stage decision variables
yi, i = 1, 2, . . . ,m are deterministic in the problem, pi , i = 1, 2, . . . ,m are the penalty cost associated with
the discrepancy between

∑n
j=1 aij and bi and E is used to represent the expected value associated with the

random variables bi, i = 1, 2, . . . ,m.
The deterministic models of the two-stage stochastic programming problem when the right hand side

parameter bi follows some continuous distribution can be established as follows:

2.1.1 Case-I: bi Follows Uniform Distribution

It is assumed that bi, i = 1, 2, . . . ,m are independent uniform random variables with

µbi = E(bi) =
Li + Ui

2
, i = 1, 2, 3, . . . ,m, (2.9)

σ2
bi = V ar(bi) =

(Ui − Li)2

12
, i = 1, 2, 3, . . . ,m. (2.10)

The probability density function(pdf) of the i-th uniform random variable bi is given by

f(bi) =

{
1

Ui−Li , Li ≤ bi ≤ Ui
0, bi < Li, bi > Ui

(2.11)

where Li and Ui are the minimum and maximum values of the i-th uniform random variable bi.
We compute E(pi|yi|) = piE(|bi − gi|), i = 1, 2, . . . ,m by using the pdf (2.11) of the i-th uniform random

variable bi, where gi =
∑n
j=1 aijxj , i = 1, 2, . . . ,m and gi ≥ 0

E(|bi − gi|) =

∫ Ui

Li

|bi − gi|
1

Ui − Li
dbi, i = 1, 2, . . . ,m. (2.12)

Integrating (2.12), we obtain

E(|bi − gi|) =
1

Ui − Li
[
U2
i + L2

i − gi(Ui + Li)
]
, i = 1, 2, . . . ,m. (2.13)

Hence,

E(

m∑
i=1

pi|yi|) =

m∑
i=1

pi
1

Ui − Li
[
U2
i + L2

i − gi(Ui + Li)
]
. (2.14)

Using (2.14) in the two-stage stochastic programming model (2.5)-(2.8), we establish the deterministic model
as:

min : z̄ =

n∑
j=1

cjxj +

m∑
i=1

pi
1

Ui − Li
[
U2
i + L2

i − gi(Ui + Li)
]

(2.15)

subject to

n∑
j=1

rsjxj ≥ hs, s = 1, 2, . . . , l (2.16)

xj ≥ 0, j = 1, 2, . . . , n (2.17)

where gi =
∑n
j=1 aijxj , i = 1, 2, . . . ,m.
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2.1.2 Case-II: bi Follows Exponential Distribution

It is assumed that bi, i = 1, 2, . . . ,m are independent exponential random variables with

µbi = E(bi) =
1

λi
, i = 1, 2, 3, . . . ,m, (2.18)

σ2
bi = V ar(bi) =

1

λ2i
, i = 1, 2, 3, . . . ,m. (2.19)

The probability density function(pdf) of the i-th normal random variable bi is given by

f(bi) =

{
λie
−λibi , 0 ≤ bi <∞

0, bi < 0
(2.20)

where λi > 0 is the parameter of the distribution, often called the rate parameter.
We compute E(pi|yi|) = piE(|bi − gi|), i = 1, 2, . . . ,m by using the pdf (2.20) of the i-th normal random

variable bi, where gi =
∑n
j=1 aijxj , i = 1, 2, . . . ,m and gi ≥ 0

E(|bi − gi|) =

∫ ∞
0

|bi − gi|λie−λibidbi, i = 1, 2, . . . ,m. (2.21)

Integrating (2.21), we obtain

E(|bi − gi|) =

(
2

λi

)
e−λigi + gi −

1

λi
, i = 1, 2, . . . ,m. (2.22)

Hence,

E(

m∑
i=1

pi|yi|) =

m∑
i=1

pi

[(
2

λi

)
e−λigi + gi −

1

λi

]
. (2.23)

Using (3.84) in the two-stage stochastic programming model (2.5)-(2.8), we establish the deterministic model
as:

min : z̄ =

n∑
j=1

cjxj +

m∑
i=1

pi

[(
2

λi

)
e−λigi + gi −

1

λi

]
(2.24)

subject to

n∑
j=1

rsjxj ≥ hs, s = 1, 2, . . . , l (2.25)

xj ≥ 0, j = 1, 2, . . . , n (2.26)

where gi =
∑n
j=1 aijxj , i = 1, 2, . . . ,m.

2.1.3 Case-III: bi Follows Normal Distribution

It is assumed that bi, i = 1, 2, . . . ,m are independent normal random variables with
E(bi) = µi and V ar(bi) = σ2

i , i = 1, 2, . . . ,m.
Let the probability density function(pdf) of the i-th normal random variable bi is given by

f(bi) =
1√

2πσ2
i

e
− 1

2

(
bi−µi
σi

)2

, −∞ < bi <∞, σi > 0 (2.27)

where E(bi) = µi and V ar(bi) = σ2
i be the mean and variance of the i-th normal random variable bi.

We compute E(pi|yi|) = piE(|bi − gi|), i = 1, 2, . . . ,m by using the pdf (2.27) of the i-th normal random
variable bi, where gi =

∑n
j=1 aijxj , i = 1, 2, . . . ,m and gi ≥ 0

E(|bi − gi|) =

∫ ∞
−∞
|bi − gi|

1√
2πσ2

i

e
− 1

2

(
bi−µi
σi

)2

dbi, i = 1, 2, . . . ,m. (2.28)
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Integrating (2.28), we obtain

E(|bi − gi|) = µi − gi + 2(gi − µi)Φ
(
gi − µi
σi

)
+

2σi√
2π
e
− 1

2

(
gi−µi
σi

)2

, i = 1, 2, . . . ,m. (2.29)

Hence,

E(

m∑
i=1

pi|yi|) =

m∑
i=1

pi

[
µi − gi + 2(gi − µi)Φ

(
gi − µi
σi

)]
+

m∑
i=1

pi

[
2σi√

2π
e
− 1

2

(
gi−µi
σi

)2
]
. (2.30)

Using (2.30) in the two-stage stochastic programming model (2.5)-(2.8), we establish the deterministic
model as:

min : z̄ =

n∑
j=1

cjxj +

m∑
i=1

pi

[
µi − gi + 2(gi − µi)Φ

(
gi − µi
σi

)]
+

m∑
i=1

pi

[
2σi√

2π
e
− 1

2

(
gi−µi
σi

)2
]

(2.31)

subject to
n∑
j=1

rsjxj ≥ hs, s = 1, 2, . . . , l (2.32)

xj ≥ 0, j = 1, 2, . . . , n (2.33)

where gi =
∑n
j=1 aijxj , i = 1, 2, . . . ,m.

2.1.4 Case-IV: bi Follows Log-Normal Distribution

It is assumed that bi, i = 1, 2, . . . ,m are independent log-normal random variables with mean and variance
as given by

Mi = E(bi) = eµi+
σ2i
2 , i = 1, 2, 3, . . . ,m, (2.34)

S2
i = V ar(bi) = (eσ

2
i − 1)e2µi+σ

2
i , i = 1, 2, 3, . . . ,m (2.35)

where µi and σi, i = 1, 2, . . . ,mare the expected value and standard deviation of the variables natural
logarithm (i.e. ln bi is normally distributed).

Using (2.34) and (2.35), the parameter µi and σi can be calculated as:

µi = ln(Mi)− 0.5 ln(1 +
S2
i

M2
i

), i = 1, 2, 3, . . . ,m, (2.36)

σ2
i = ln(1 +

S2
i

M2
i

), i = 1, 2, 3, . . . ,m. (2.37)

The probability density function(pdf) of the i-th log-normal random variable bi is given by

f(bi) =
1

bi
√

2πσ2
i

e
− 1

2

(
ln bi−µi

σi

)2

, 0 < bi <∞, σi > 0. (2.38)

We compute E(pi|yi|) = piE(|bi − gi|), i = 1, 2, . . . ,m by using the pdf (2.38) of the i-th normal random
variable bi, where gi =

∑n
j=1 aijxj , i = 1, 2, . . . ,m and gi ≥ 0.

E(|bi − gi|) =

∫ ∞
0

|bi − gi|
1

bi
√

2πσ2
i

e
− 1

2

(
ln bi−µi

σi

)2

dbi, i = 1, 2, . . . ,m. (2.39)

Integrating (2.39), we get

E(|bi − gi|) = e

(
µi+

σ2i
2

)
− gi + 2giΦ

(
ln gi − µi

σi

)
−2e

(
µi+

σ2i
2

)
Φ

(
ln gi − µi − σ2

i

σi

)
, i = 1, 2, . . . ,m. (2.40)
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Hence,

E(

m∑
i=1

pi|yi|) =

m∑
i=1

pi

[
e

(
µi+

σ2i
2

)
+ 2giΦ

(
ln gi − µi

σi

)]

−
m∑
i=1

pi

[
gi + 2e

(
µi+

σ2i
2

)
Φ

(
ln gi − µi − σ2

i

σi

)]
. (2.41)

Using (2.41) in the two-stage stochastic programming model (2.5)-(2.8), we establish the deterministic model
as:

min : z̄ =

n∑
j=1

cjxj +

m∑
i=1

pi

[
e

(
µi+

σ2i
2

)
+ 2giΦ

(
ln gi − µi

σi

)]

−
m∑
i=1

pi

[
gi + 2e

(
µi+

σ2i
2

)
Φ

(
ln gi − µi − σ2

i

σi

)]
(2.42)

subject to
n∑
j=1

rsjxj ≥ hs, s = 1, 2, . . . , l (2.43)

xj ≥ 0, j = 1, 2, . . . , n (2.44)

where gi =
∑n
j=1 aijxj , i = 1, 2, . . . ,m.

3 Numerical Examples

In this Section, we have considered two numerical examples to verify the solution procedure of the above
two-stage stochastic programming (TSP) models as follows:

3.1 Example 1:

Formulating the four two-stage stochastic programming (TSP) models with simple unit recourse cost consid-
ering only the right hand side parameter bi as uniform, exponential, normal, and log-normal random variables
can be formulated as follows:

Case 1: Uniform Random Variables

min : z̄ = 20x1 + 60x2 + 40x3 + E(|y1|) + E(|y2|) + E(|y3|) (3.1)

subject to
y1 = b1 − (4x1 + 6x2 + 4x3) (3.2)

y2 = b2 − (10x1 + 3x2 + 3x3) (3.3)

y3 = b3 − (5x1 + 2x2 + 5x3) (3.4)

16x1 + 22x2 + 20x3 ≥ 56 (3.5)

80x1 + 60x2 + 75x3 ≥ 210 (3.6)

80x1 + 60x2 + 75x3 ≤ 250 (3.7)

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, y1 ≥ 0, y2 ≥ 0, y3 ≥ 0 (3.8)

where it is assume that b1, b2, and b3 are independent uniform random variables with given means and
variances as:

E(b1) = 15, E(b2) = 20, E(b3) = 14
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and
V ar(b1) = 25, V ar(b2) = 36, V ar(b3) = 16.

The above model (3.1)-(3.8) can be simplified to:

min : z̄ = 20x1 + 60x2 + 40x3 + E(|b1 − g1|) + E(|b2 − g2|) + E(|b3 − g3|) (3.9)

subject to
16x1 + 22x2 + 20x3 ≥ 56 (3.10)

80x1 + 60x2 + 75x3 ≥ 210 (3.11)

80x1 + 60x2 + 75x3 ≤ 250 (3.12)

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0 (3.13)

where g1 = 4x1 + 6x2 + 4x3, g2 = 10x1 + 3x2 + 3x3, g3 = 5x1 + 2x2 + 5x3.
Using the equation (2.9) and (2.10), the minimum and maximum values of bi, i = 1, 2, 3 are calculated as:

L1 = 6.34, U1 = 23.66, L2 = 9.6, U2 = 30.4, L3 = 7.07, U3 = 20.93.

Thus using the minimum and maximum values of bi, i = 1, 2, 3, the desired equivalent deterministic model
can be established as:

min : z̄ = 20x1 + 60x2 + 40x3 − 2.117647g1 − 0.923077g2 − 1.010101g3 + 36.328409 (3.14)

subject to
16x1 + 22x2 + 20x3 ≥ 56 (3.15)

80x1 + 60x2 + 75x3 ≥ 210 (3.16)

80x1 + 60x2 + 75x3 ≤ 250 (3.17)

xj ≥ 0, j = 1, 2, 3 (3.18)

where g1 = 4x1 + 6x2 + 4x3, g2 = 10x1 + 3x2 + 3x3, g3 = 5x1 + 2x2 + 5x3

Case 2: Exponential Random Variables

min : z̄ = 20x1 + 60x2 + 40x3 + E(|y1|) + E(|y2|) + E(|y3|) (3.19)

subject to
y1 = b1 − (4x1 + 6x2 + 4x3) (3.20)

y2 = b2 − (10x1 + 3x2 + 3x3) (3.21)

y3 = b3 − (5x1 + 2x2 + 5x3) (3.22)

16x1 + 22x2 + 20x3 ≥ 56 (3.23)

80x1 + 60x2 + 75x3 ≥ 210 (3.24)

80x1 + 60x2 + 75x3 ≤ 250 (3.25)

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, y1 ≥ 0, y2 ≥ 0, y3 ≥ 0 (3.26)

where it is assume that b1, b2, and b3 are independent exponential random variables with

E(b1) = 15, E(b2) = 20, E(b3) = 14, V ar(b1) = 25, V ar(b2) = 36, V ar(b3) = 16.

Then the above model (3.19)-(3.26) can be simplified as:

min : z̄ = 20x1 + 60x2 + 40x3 + E(|b1 − g1|) + E(|b2 − g2|) + E(|b3 − g3|) (3.27)

subject to
16x1 + 22x2 + 20x3 ≥ 56 (3.28)
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80x1 + 60x2 + 75x3 ≥ 210 (3.29)

80x1 + 60x2 + 75x3 ≤ 250 (3.30)

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0 (3.31)

where g1 = 4x1 + 6x2 + 4x3, g2 = 10x1 + 3x2 + 3x3, g3 = 5x1 + 2x2 + 5x3.
Using the equation (2.18) and (2.19), the parameter values of bi, i = 1, 2, 3 are calculated as:

λ1 = 0.111, λ2 = 0.167, λ3 = 0.143.

Thus using the parameter values of bi, i = 1, 2, 3, the desired equivalent deterministic model can be
established as:

min : z̄ = 20x1 + 60x2 + 40x3 + 30e−0.066667g1 + 40e−0.0.05g2

+28e−0.071429g3 + g1 + g2 + g3 − 49 (3.32)

subject to
16x1 + 22x2 + 20x3 ≥ 56 (3.33)

80x1 + 60x2 + 75x3 ≥ 210 (3.34)

80x1 + 60x2 + 75x3 ≤ 250 (3.35)

xj ≥ 0, j = 1, 2, 3 (3.36)

where g1 = 4x1 + 6x2 + 4x3, g2 = 10x1 + 3x2 + 3x3, g3 = 5x1 + 2x2 + 5x3.

Case 3: Normal Random Variables

min : z̄ = 20x1 + 60x2 + 40x3 + E(|y1|) + E(|y2|) + E(|y3|) (3.37)

subject to
y1 = b1 − (4x1 + 6x2 + 4x3) (3.38)

y2 = b2 − (10x1 + 3x2 + 3x3) (3.39)

y3 = b3 − (5x1 + 2x2 + 5x3) (3.40)

16x1 + 22x2 + 20x3 ≥ 56 (3.41)

80x1 + 60x2 + 75x3 ≥ 210 (3.42)

80x1 + 60x2 + 75x3 ≤ 250 (3.43)

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, y1 ≥ 0, y2 ≥ 0, y3 ≥ 0 (3.44)

where it is assume that b1, b2, and b3 are independent normal random variables with

E(b1) = µ1 = 15, E(b2) = µ2 = 20, E(b3) = µ3 = 14

and
V ar(b1) = σ2

1 = 25, V ar(b2) = σ2
2 = 36, V ar(b3) = σ2

3 = 16.

Then the above model (3.37)-(3.44) can be simplified as:

min : z̄ = 20x1 + 60x2 + 40x3 + E(|b1 − g1|) + E(|b2 − g2|) + E(|b3 − g3|) (3.45)

subject to
16x1 + 22x2 + 20x3 ≥ 56 (3.46)

80x1 + 60x2 + 75x3 ≥ 210 (3.47)

80x1 + 60x2 + 75x3 ≤ 250 (3.48)

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0 (3.49)

where g1 = 4x1 + 6x2 + 4x3, g2 = 10x1 + 3x2 + 3x3, g3 = 5x1 + 2x2 + 5x3.
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Using the given mean and variance values of the normal random variables bi, i = 1, 2, 3, the desired
equivalent deterministic model can be established as:

min : z̄ = 20x1 + 60x2 + 40x3 − g1 − g2 − g3

+(2g1 − 30)Φ

(
g1 − 15

5

)
+ (2g2 − 40)Φ

(
g2 − 20

6

)
+(2g3 − 28)Φ

(
g3 − 14

4

)
+

10√
2π
e−

1
2 ( g1−15

5 )
2

+
12√
2π
e−

1
2 ( g2−20

6 )
2

+
8√
2π
e−

1
2 ( g3−14

4 )
2

+ 49 (3.50)

subject to
16x1 + 22x2 + 20x3 ≥ 56 (3.51)

80x1 + 60x2 + 75x3 ≥ 210 (3.52)

80x1 + 60x2 + 75x3 ≤ 250 (3.53)

xj ≥ 0, j = 1, 2, 3 (3.54)

where g1 = 4x1 + 6x2 + 4x3, g2 = 10x1 + 3x2 + 3x3, g3 = 5x1 + 2x2 + 5x3.

Case 4: Log-Normal Random Variables

min : z̄ = 20x1 + 60x2 + 40x3 + E(|y1|) + E(|y2|) + E(|y3|) (3.55)

subject to
y1 = b1 − (4x1 + 6x2 + 4x3) (3.56)

y2 = b2 − (10x1 + 3x2 + 3x3) (3.57)

y3 = b3 − (5x1 + 2x2 + 5x3) (3.58)

16x1 + 22x2 + 20x3 ≥ 56 (3.59)

80x1 + 60x2 + 75x3 ≥ 210 (3.60)

80x1 + 60x2 + 75x3 ≤ 250 (3.61)

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, y1 ≥ 0, y2 ≥ 0, y3 ≥ 0 (3.62)

where it is assume that b1, b2, and b3 are independent log-normal random variables with

E(b1) = M1 = 15, E(b2) = M2 = 20, E(b3) = M3 = 14

and
V ar(b1) = S2

1 = 25, V ar(b2) = S2
2 = 36, V ar(b3) = S2

3 = 16.

Using (2.36) and (2.37), we calculate the values of µi and σi, i = 1, 2, 3 as:

µ1 = 2.65537, µ2 = 2.952643, µ3 = 2.599821

and
σ2
1 = 0.105361, σ2

2 = 0.086178, σ2
3 = 0.078472.

Then the above model (3.55)-(3.62) can be simplified as:

min : z̄ = 20x1 + 60x2 + 40x3 + E(|b1 − g1|) + E(|b2 − g2|) + E(|b3 − g3|) (3.63)

subject to
16x1 + 22x2 + 20x3 ≥ 56 (3.64)

80x1 + 60x2 + 75x3 ≥ 210 (3.65)

80x1 + 60x2 + 75x3 ≤ 250 (3.66)
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x1 ≥ 0, x2 ≥ 0, x3 ≥ 0 (3.67)

where g1 = 4x1 + 6x2 + 4x3, g2 = 10x1 + 3x2 + 3x3, g3 = 5x1 + 2x2 + 5x3.
Now, the desired equivalent deterministic model can be established as:

min : z̄ = 20x1 + 60x2 + 40x3 − g1 − g2 − g3

+2g1Φ

(
ln g1 − 2.65537

0.324592

)
+ 2g2Φ

(
ln g2 − 2.952643

0.293561

)
+2g3Φ

(
ln g3 − 2.599821

0.280129

)
− 30.000008Φ

(
ln g1 − 2.760731

0.324592

)
−39.99999Φ

(
ln g2 − 3.038821

0.293561

)
− 27.99999

(
ln g3 − 2.678293

0.280129

)
+ 48.999994 (3.68)

subject to
16x1 + 22x2 + 20x3 ≥ 56 (3.69)

80x1 + 60x2 + 75x3 ≥ 210 (3.70)

80x1 + 60x2 + 75x3 ≤ 250 (3.71)

xj ≥ 0, j = 1, 2, 3 (3.72)

where g1 = 4x1 + 6x2 + 4x3, g2 = 10x1 + 3x2 + 3x3, g3 = 5x1 + 2x2 + 5x3.
The above linear programming model (3.14)-(3.18) and non-linear programming models (3.32)-(3.36),

(3.50)-(3.54), and (3.68)-(3.72) are solved by using MAPLE 12.0 and LINGO 11.0[20] package and the optimal
solutions are given in Table 1 as follows:

Table 1: Optimal solutions of the model

Problem Types Optimal decision variables Value of the objective function

Uniform Distribution x∗1 = 2.675, x∗2 = 0.6, x∗3 = 0.0 z̄∗ = 99.09854
Exponential Distribution x∗1 = 2.0, x∗2 = 0.0, x∗3 = 1.2 z̄∗ = 125.4002

Normal Distribution x∗1 = 2.0, x∗2 = 0.0, x∗3 = 1.2 z̄∗ = 101.5759
Log-normal Distribution x∗1 = 2.0, x∗2 = 0.0, x∗3 = 1.2 z̄∗ = 101.5782

3.2 Example 2:

Further, we formulate a two-stage stochastic programming (TSP) model with simple unit recourse cost consid-
ering only the right hand side parameter bi as uniform, exponential and normal random variables as follows:

min : z̄ = 165x1 + 130x2 + 140x3 + E(|y1|) + E(|y2|) + E(|y3|) (3.73)

subject to

y1 = b1 − (10x1 + 7x2 + 8x3) (3.74)

y2 = b2 − (x1 + 10x2 + 15x3) (3.75)

y3 = b3 − (7x1 + 8x2 + 5x3) (3.76)

15x1 + 20x2 + 18x3 ≥ 87 (3.77)

43x1 + 80x2 + 90x3 ≤ 250 (3.78)

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, y1 ≥ 0, y2 ≥ 0, y3 ≥ 0 (3.79)

where it is assume that b1 is an uniform random variable with known mean and variance

E(b1) = 15, V ar(b1) = 3.
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Similarly, the mean of an exponential random variable b2 is given by:

E(b2) = 18.

Further, the mean and variance of the normal random variable b3 is given by:

E(b3) = µ = 20, V ar(b3) = σ2 = 4.

The above model (3.73)-(3.79) can be simplified to:

min : z̄ = 165x1 + 130x2 + 140x3 + E(|b1 − g1|) + E(|b2 − g2|) + E(|b3 − g3|) (3.80)

subject to
15x1 + 20x2 + 18x3 ≥ 87 (3.81)

43x1 + 80x2 + 90x3 ≤ 250 (3.82)

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0 (3.83)

where g1 = 10x1 + 7x2 + 8x3, g2 = x1 + 10x2 + 15x3, g3 = 7x1 + 8x2 + 5x3.
Using the equation (2.9) and (2.10), the minimum and maximum values of b1 are calculated as:

L = 12, U = 18.

Similarly, using equation (2.18), the parameter value of b2 is calculated as: λ = 0.05556.
Thus using the minimum and maximum values of b1, the parameter value of b2, and the mean and variance

of b3, the required equivalent deterministic model can be established as:

min : z̄ = 165x1 + 130x2 + 140x3 + 5g1 − g2 + g3 − 36e0.05556g2

−2(g3 − 20)Φ
(g3 − 20

2

)
− 4√

2π
e
0.5

(
g3−20

2

)2

− 80 (3.84)

subject to
15x1 + 20x2 + 18x3 ≥ 87 (3.85)

43x1 + 80x2 + 90x3 ≤ 250 (3.86)

xj ≥ 0, j = 1, 2, 3 (3.87)

where g1 = 10x1 + 7x2 + 8x3, g2 = x1 + 10x2 + 15x3, g3 = 7x1 + 8x2 + 5x3.
The above non-linear programming model (3.84)-(3.87) is solved by using MAPLE 12.0 and LINGO

11.0[20] package and the optimal solutions are given in Table 2 as follows:

Table 2: Optimal solutions of the model

Problem Types Optimal decision variables Value of the objective function

Mixed Type x∗1 = 5.764706, x∗2 = 0.02647059, x∗3 = 0.0 z̄∗ = 131.1472

4 Conclusion

In this paper, we proposed a solution procedure of a two-stage stochastic programming problem by considering
only the right hand side parameter as either uniform, or exponential, or normal or log-normal random variable
with finite mean and variance. All other parameters in the model are assumed to be deterministic. We have
considered two numerical examples, in the first example, we have established four different deterministic
models for four random variables. Among the four deterministic models, first one is linear model associated
with uniform random variable and other three are non-linear programming models which are associated with
exponential, normal, and log-normal random variables. A standard linear/non-linear programming technique
is used to solve these models and the result shown in Table 1.
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In the second example, we have stated one two-stage stochastic programming problem with right hand
side parameter as mixed type of random variables. This leads to a non-linear programming problem and is
solved and the result shown in Table 2. From the two different types of numerical examples, we noticed that
our method has verified successfully.
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