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Abstract

This study attempts to develop a least-absolutes fuzzy regression model for crisp input-fuzzy output
data. To estimate the parameters in the proposed model, the generalized Hausdorff-metric on the space of
LR-fuzzy numbers is used. The problem of estimation of the interested parameters relies on a non-linear
optimization problem, which is also translated to a linear optimization problem, making the computations
of the proposed method very simple. For evaluating the performance of the model, three goodness-of-fit
criteria are employed. Numerical comparative studies, based on four data sets including a real agricultural
data set, indicate that the proposed model could be a rational substituted model of some common ones,
especially for large sample data set.
c©2013 World Academic Press, UK. All rights reserved.
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1 Introduction

Regression analysis has been the most frequently used technique in various areas of applied Statistics. There
are situations in practice, however, in which the classical regression methods are confronted with imprecise
data. Moreover, we encounter many situations where necessary assumptions for statistical regression analysis
can not be met because they are not based on random uncertainty. Fuzzy regression methods were proposed to
model the relationships between variables, when the available data are fuzzy, the relationships are imprecise,
or the underlying statistical assumptions are not fulfilled.

Fuzzy regression methods have been previously treated in the literature considering different sources of
uncertainty (i.e. possibilistic uncertainty and probabilistic uncertainty) as well as considering different kinds of
input/output data (i.e. crisp data and fuzzy data). They also have wide applications in many areas including
engineering, biology, business, and economics. In the following we briefly review some studies on this topic.

Tanaka et al. [40, 41] formulated the fuzzy linear regression problem for crisp explanatory variables and
crisp/fuzzy response variables as linear programming problems. To estimate the parameters of the regression
model, they minimize the fuzziness of model by minimizing the total spreads of its fuzzy coefficients, subject
to including the data points of each sample within a specified feasible interval. Celminš [4] and Diamond [10],
using certain distances between fuzzy numbers, proposed some fuzzy least-squares approaches to the problem
of fuzzy regression modeling. Chang and Lee [6] proposed a modification of the fuzzy linear regression model
based on the approach of Tanaka, by allowing the spreads of the parameters to be unrestricted in sign. Kim
and Bishu [26] proposed an approach based on the criterion of minimizing the difference of membership
values between the observed and estimated fuzzy dependent variable. Xu and Li [45] discussed the problem
of multidimensional least-squares fitting, and proposed a fuzzy linear regression model as an analogue of the
traditional linear least-squares method. Kao and Chyu [23] proposed a two-stage methodology to construct the
fuzzy regression model. In the first stage, the crisp coefficients of the model are estimated, and in the second
stage, the fuzzy error term is determined. They also investigated a least-squares method in fuzzy regression
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analysis for crisp/fuzzy input-fuzzy output data [24]. D’Urso [12] developed a certain adaptive least-squares
estimation procedure for regression models with crisp/fuzzy inputs and crisp/fuzzy output. Nasrabadi and
Nasrabadi [34] defined new arithmetic operations for symmetric fuzzy numbers and employed them in fuzzy
regression analysis. Using the new arithmetic operations, their model could avoid the spreads increasing
problem. Kim et al. [27] proposed a two-stage method to construct the fuzzy linear regression model. In the
first stage, fuzzy observations were defuzzified to crisp values and the least-absolutes estimators were derived
as the crisp regression coefficients. In the second stage, the fuzzy error term was calculated. Coppi et al. [9]
investigated a linear regression model for studying the dependence of a LR-fuzzy response variable on a set
of crisp explanatory variables, along with a suitable iterative least-squares estimation procedure. Arabpour
and Tata [1], by using normal equations corresponding to some least-squares models, calculated the fuzzy
regression coefficients for crisp/fuzzy input-fuzzy output data. Chen and Dang [7] investigated a variable
spread fuzzy linear regression model, based on a three-phase method. In the first phase, regression coefficients
were treated as fuzzy numbers and the membership functions of the least-squares estimates of the regression
coefficients were constructed. In the second phase, the fuzzy regression coefficients were defuzzified to obtain
the crisp regression coefficients. Finally, in the third phase, for each instance, the fuzzy error term was
determined by a mathematical programming method. Guo et al. [18] proposed a scalar variable formation of
fuzzy regression model based on the axiomatic credibility measure foundation. Lu and Wang [28] proposed an
enhanced fuzzy linear regression model, in which the spreads of the estimated dependent variables are able to
fit the spreads of the observed dependent variables, no matter the spreads of the observed dependent variables
are increased, decreased, or unchanged as the magnitudes and spreads of the independent variables change.
A revisited approach for possibilistic fuzzy regression methods is investigated by Bisserier et al. [3], in which
a new modified fuzzy linear model form is introduced where the identified model output can envelop all the
observed data and ensure a total inclusion property. Ferraro et al. [15] proposed a linear regression model for
imprecise response, based on a least-squares method. They also analyzed limit distribution and asymptotic
properties of the estimators and applied them to the determination of the confidence regions and hypothesis
testing procedures (see also [14]). To handle the large variation issues in fuzzy input-output data, Yu and
Lee [46] proposed a quadratic programming method to construct a piecewise regression model. Hassanpour
et al. [19] used a least-absolutes approach to calculate the crisp regression coefficients of a fuzzy regression
model for fuzzy input-output data. They also proposed a goal programming approach to determine the
coefficients of fuzzy linear regression [20]. Using tabu search and harmony search methods, Mashinchi et al.
[29] proposed a metaheuristic unconstrained global continuous optimization approach to the fuzzy regression
problem. Under the considerations of fuzzy parameters and fuzzy arithmetic operations, Wu [44] proposed a
fuzzy linear regression model which has the similar form as that of conventional one. He conducted the h-level
(conventional) linear regression models of fuzzy linear regression model for the sake of invoking the statistical
techniques in (conventional) linear regression analysis for real-valued data. Two fuzzy logistic regression
models for the case when the explanatory variables are crisp and the value of the binary response variable is
reported as a number between zero and one, or by some linguistic terms, are investigated by Pourahmad et
al. [36, 37]. By introducing and applying new metrics on the space of fuzzy numbers, Taheri and Kelkinnama
[25, 38, 39] developed least-absolutes deviations approaches to fuzzy regression analysis. D’Urso et al. [13]
proposed a robust fuzzy linear regression model based on the so-called least median squares-weighted least
squares estimation procedure to deal with data contaminated by outliers. Chachi et al. [5], by using the α-cuts
of fuzzy input-fuzzy output observations, proposed a least-squares method to estimate the crisp parameters
of a fuzzy regression model. Guo et al. [17] proposed uncertainty copula linked multivariate uncertainty
distributional theory for developing an uncertainty distributional structure for uncertainty linear regression
models. Tutmez [43] investigated a weighted fuzzy regression analysis based on spatial dependence measure
of the memberships.

As the reader could find from the above literature review, there have been a few works on the fuzzy
regression modeling by robust methods (e.g. least absolutes methods). In this research, we introduce and
develop a new robust approach to regression analysis in fuzzy environment. Several numerical investigations
show the efficiency and performances of the robust proposed method. The results of comparative studies
show that the proposed method is able to determine the regression coefficients with a good explanatory
power, especially for the case with several input variables and large size sample data set.

The rest of this paper is organized as follows: In the next section, the concepts of Hausdorff-metric and
its generalization, which are essential for the proposed method in this paper, are reviewed. Section 3 provides
the formalization of the proposed multiple fuzzy least-absolutes regression model for studying the functional
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dependence of a LR-fuzzy response variable on a set of crisp explanatory variables. Afterwards, in Section 4,
some indices are provided to evaluate the goodness-of-fit of the proposed model. In Section 5, by using
the results of four numerical examples, we provide some comparative studies. Also the proposed method is
illustrated in details, with reference to an application to a real data set in the framework of an environmental
study. Finally, in Section 6, we make some concluding remarks.

Through this paper, it is assumed that the reader is familiar with elementary fuzzy sets and fuzzy arith-
metics. A brief review of the necessary concepts and results are given in Appendix.

2 The Hausdorff-metric and Its Generalization

One of the most important aspects of the analysis of imprecise data, especially those related with formalization
the parameter estimation methods of a regression model, is the usage of a convenient distance on the family
of fuzzy numbers, which is easy to handle and interpret and which reflects the intuitive meaning of difference
between fuzzy numbers.

Several metrics on the family of fuzzy numbers have been defined by authors (see, for example, [2, 11, 42]).
But the generalized Hausdorff-metric, which is used in this paper, not only fulfills many good properties but
is also easy to calculate and handle for statistical purposes, and is therefore useful from the practical point of
view. More detailed discussions on this topic can be found in [16, 22, 33, 35].

Definition 2.1. Let Kc(Rd) be the family of all d-dimensional non-empty compact convex sets on Rd. The
Hausdorff-metric between sets A,B ∈ Kc(Rd) is defined by

dH(A,B) = max{sup
b∈B

inf
a∈A
‖a− b‖, sup

a∈A
inf
b∈B
‖a− b‖},

where ‖ · ‖ denotes the Euclidean norm.

Proposition 2.1. Let I1 = [a1, a2] and I2 = [b1, b2] be two intervals on R. Then, the Hausdorff-metric
between I1 and I2 is given by

dH(I1, I2) = max{|a1 − b1|, |a2 − b2|}
= |midI1 −midI2|+ |sprI1 − sprI2|,

where midI1 = (a1 + a2)/2 and sprI1 = (a2 − a1)/2.

Definition 2.2. The generalized Hausdorff-metric between fuzzy numbers Ã and B̃ is defined by

Dp(Ã, B̃) =


(∫ 1

0
[dH(Aα, Bα)]pdα

) 1
p

if p ∈ [1,∞)

supα∈[0,1] dH(Aα, Bα) if p =∞,

where Aα and Bα are the α-cuts of the fuzzy numbers Ã and B̃, respectively.

Specially, for symmetric LR-fuzzy numbers M̃ = (m,λm)L and Ñ = (n, λn)L, by Proposition 2.1, we have

dH(Mα, Nα) = |m− n|+ L−1(α)|λm − λn|,

and, therefore,

D1(M̃, Ñ) = |m− n|+ L1|λm − λn|; L1 =

∫ 1

0

L−1(α)dα,

D∞(M̃, Ñ) = |m− n|+ L∞|λm − λn|; L∞ = sup
α∈[0,1]

L−1(α).

Moreover, for symmetric triangular fuzzy numbers M̃ = (m,λm)T and Ñ = (n, λn)T , we obtain

D1(M̃, Ñ) = |m− n|+ 0.5|λm − λn|,
D∞(M̃, Ñ) = |m− n|+ |λm − λn|.
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3 The Proposed Model

In this section, using metric D1 on the set of all symmetric LR-fuzzy numbers, we introduce a least-absolutes
method to multiple fuzzy regression analysis. A Similar method can be developed by using D∞ instead of D1.

Assume that the observed data on n statistical units are denoted as (ỹ1,x1), . . . , (ỹn,xn), where ỹn×1 =
[ỹ1, . . . , ỹn]t is the vector of symmetric LR-fuzzy numbers, i.e. ỹi = (yi, si)L (i = 1, . . . , n), which determines
the fuzzy observed of the dependent variable, and xi = [x0i, x1i, . . . , xki] ∈ Rk+1 (i = 1, . . . , n; k < n;x0i = 1),
forms the (k + 1)-dimensional vector of crisp observed independent variables. Without loss of generality, we
can assume that xji > 0, by a simple translation of all data if necessary. Based on the aforementioned data
set, we will consider the following functional dependence between ỹn×1 and Xn×(k+1)

ỹn×1 = Xn×(k+1) ⊗ β̃(k+1)×1, ỹ1
...
ỹn

 =

 x1

...
xn

⊗
 (β0, σ0)L

...
(βk, σk)L

 =


(
∑k
j=0 xj1βj ,

∑k
j=0 xj1σj)L

...

(
∑k
j=0 xjnβj ,

∑k
j=0 xjnσj)L

 .
The procedure for estimating the parameter β̃(k+1)×1 is based on choosing the best candidate

̂̃
β(k+1)×1 instead

of β̃(k+1)×1, consisting of minimizing the total difference between the observed values of the response variable,

ỹn×1, and its theoretical counterpart, ̂̃yn×1, defined by

̂̃yn×1 = Xn×(k+1) ⊗
̂̃
β(k+1)×1,

with respect to the distance D1. Thus, we consider the least-absolutes optimization problem as follows

min
β̃
D1(ỹ,X⊗ β̃)

s.t. σ ∈ R+k+1
,β ∈ Rk+1,

or, equivalently

min
β̃

n∑
i=1

∣∣∣∣∣∣yi −
k∑
j=0

xjiβj

∣∣∣∣∣∣+ L1

n∑
i=1

∣∣∣∣∣∣si −
k∑
j=0

xjiσj

∣∣∣∣∣∣
s.t. σj ∈ R+, βj ∈ R, j = 0, 1, . . . , k,

which is a constrained non-linear programming problem. The minimization of D1 over Rk+1 × R+k+1
can

separately be solved: once for all possible candidates for β = [β0, β1, . . . , βk] ∈ Rk+1, and then for all possible

candidates for σ = [σ0, σ1, . . . , σk] ∈ R+k+1
, which are the center values and the spread values of the fuzzy

coefficients β̃, respectively. Thus, the above optimization problem can be rewritten as the following two
sub-optimization non-linear programming problems

min
β̃
D1(ỹ,X⊗ β̃) ≡

 (A) minβ

∑n
i=1

∣∣∣yi −∑k
j=0 xjiβj

∣∣∣ , s.t. βj ∈ R

(B) L1 minσ

∑n
i=1

∣∣∣si −∑k
j=0 xjiσj

∣∣∣ , s.t. σj ∈ R+.

In order to simplify the above optimization problems, we show how by introducing additional variables, two
linear programming problems can handle the optimization problems (A) and (B).

First, we consider the sub-optimization problem (A). Let ε+i and ε−i , i = 1, . . . , n, represent two nonneg-
ative variables such that∣∣∣∣∣∣yi −

k∑
j=0

xjiβj

∣∣∣∣∣∣ = ε+i + ε−i , yi −
k∑
j=0

xjiβj = ε+i − ε
−
i .
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Let us consider the following matrix notations

ε+n×1 = [ε+1 , . . . , ε
+
n ]t,

ε−n×1 = [ε−1 , . . . , ε
−
n ]t,

e(k+1+2n)×1 = [β1×(k+1) (ε+n×1)t (ε−n×1)t]t,

Hn×(k+1+2n) = [Xn×(k+1) In×n −In×n],

h(k+1+2n)×1 = [01×(k+1) J1×2n]t,

where In×n is an identity matrix of order n, 01×(k+1) denotes the (1× (k+1))-vector of 0’s and J1×2n denotes
the (1× 2n)-vector of 1’s. Now, the non-linear optimization problem (A) becomes equivalent to the following
linear optimization problem

min
e(k+1+2n)×1

ht(k+1+2n)×1e(k+1+2n)×1

s.t. Hn×(k+1+2n)e(k+1+2n)×1 = yn×1,

ε+n×1 ∈ R+n, ε−n×1 ∈ R+n, β1×(k+1) ∈ Rk+1.

This problem can be solved by the common softwares. In the present article, we used the software MATLAB
[30] for numerical studies given in this paper.

The same method may be easily used to solve the optimization problem (B). In this case, we replace

β1×(k+1) ∈ Rk+1 with σ1×(k+1) ∈ R+k+1
in the above optimization problem, which means that all the

variables are assumed to be nonnegative.

4 Goodness-of-Fit Criteria

Several goodness-of-fit criteria have been introduced by authors to evaluate the performance of a fuzzy re-
gression model. Here, we employ three criteria which have been proposed for evaluation a fuzzy regression
model with fuzzy response data.

I) The relative error of estimation: This criteria, which is introduced by Kim and Bishu [26], is
defined as follows

E1(i) =

∫
|ỹi(x)− ̂̃yi(x)|∫

ỹi(x) dx
dx.

The E1(i) is the ratio of the total difference between the estimated and observed membership values of
response variable to the total observed membership values of the response variable. This criteria was also
used in [7, 28].

II) The error of estimation: A variation of E1(i), which is used in [7, 23, 24, 28], is proposed as follows

E2(i) =

∫
|ỹi(x)− ̂̃yi(x)| dx.

This index measures the difference between the estimated and observed membership values of response vari-
able.

III) The similarity measure: This index is defined based on the similarity of fuzzy numbers as follows

S(i) =
Card(ỹi ∩ ̂̃yi)
Card(ỹi ∪ ̂̃yi) =

∫
min{ỹi(x), ̂̃yi(x)} dx∫
max{ỹi(x), ̂̃yi(x)} dx

.

Such a similarity measure have been used for evaluating the performance of a fuzzy regression model in
[21, 28, 38, 39].

The ranges of E1 and E2 are [0,∞), while that of S is [0, 1]. Thus, in order to compare the indices, we
modify the ranges of E1 and E2 by taking into account G1(i) = 1/(1 + E1(i)) and G2(i) = 1/(1 + E2(i)). In
practice, we use G1 =

∑n
i=1G1(i)/n, G2 =

∑n
i=1G2(i)/n, and S =

∑n
i=1 S(i)/n to evaluate the goodness-

of-fit of the models. The model with higher values of G1, G2, and S provides a better goodness-of-fit to the
data.
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Table 1: Comparison between various models in Example 5.1

The model(s) proposed by S G1 G2

Ferraro et al. [15] 0.4079(9) 0.3620(6) 0.5534(6)̂̃y = (4.95 + 1.71x, exp(0.6098 + 0.0742x))T

Choi and Buckley [8] 0.4889(2) 0.4702(1) 0.6194(2)̂̃y = (5.5211 + 1.4958x, 2.0060 + 0.0788x, 2.2369 + 0.0326x)T

Modarres et al. [31] 0.4670(3) 0.4387(3) 0.6034(3)̂̃y = (4.82 + 1.66x, 1.84 + 0.16x)T

Nasrabadi and Nasrabadi [34] 0.4408(5) 0.3958(5) 0.5765(5)̂̃y = (4.6812 + 1.7306x, 2.3221)T

Kao and Chyu [24] 0.4095(7) 0.3596(8) 0.5511(8)̂̃y = (4.926 + 1.718x, 2.32)T

Kao and Chyu [23] 0.4663(4) 0.4273(4) 0.5947(4)̂̃y = (4.95 + 1.71x, 3.01, 1.8)T

Tanaka et al. [40] 0.4313(6) 0.2971(9) 0.4898(9)̂̃y = (3.85 + 2.1x, 3.85)T

Xu and Li [45],
Kim and Bishu [26], and 0.4087(8) 0.3619(7) 0.5533(7)

Diamond [10]̂̃y = (4.95 + 1.71x, 1.84 + 0.16x)T

The new least-absolutes model 0.5008(1) 0.4480(2) 0.6209(1)̂̃y = (6.444 + 1.3112x, 1.8 + 0.2x)T

5 Illustrative Examples and Competitive Studies

In this section four numerical examples, based on some well-known data sets, are investigated to illustrate
the efficiency of the proposed fuzzy linear regression model with respect to some other methods.

Example 5.1. [40] Consider the following crisp input-fuzzy output data given in [40]

(ỹ;x) = ((8.0, 1.8)T ; 1), ((6.4, 2.2)T ; 2), ((9.5, 2.6)T ; 3), ((13.5, 2.6)T ; 4), ((13.0, 2.4)T ; 5).

By applying the new proposed approach described in Section 3, the fuzzy regression model is derived as

̂̃y = (6.4440, 1.8)T ⊕ (1.3112, 0.2)Tx.

A summary of the results of various models as well as their performances are given in Table 1. From
Table 1, one can see that with regard to the criteria S and G2, the least-absolutes model proposed in this paper
performs the best model among all investigated models. Moreover, it is better than the other ones in terms of
G1, except the model proposed by Choi and Buckley [8].

Example 5.2. [15] In this example we are interested in analyzing the dependence relationship of the Retail
Trade Sales of the U.S. in 2002 by kind of business on the number of employees. The Retail Trade Sales has
been in the period January 2002 through December 2002 (see the data set in Table 2, given in [15]). The
results of fitting the new proposed model and for some common models are presented in Table 3. The results
show that, while the index S for some models are close to that of the proposed model, the proposed model has
better performance concerning G1 and G2. It is noticeable that, the amount of G1 for the proposed model is
three times better than that of the model with the second order (i.e. Modarres et al.’s model [31]).
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Table 2: The retail trade sales and the number of employees of 22 kinds of business in the U.S. in 2002.

Kind of business Retail trade sales Number of employees

Automotive parts, acc., and tire stores 4638-5795 453,468
Furniture stores 4054-4685 249,807
Home furnishings stores 2983-5032 285,222
Household appliance stores 1035-1387 69,168
Computer and software stores 1301-1860 73,935
Building mat. and supplies dealers 14508-20727 988,707
Hardware stores 1097-1691 142,881
Beer, wine, and liquor stores 2121-3507 133,035
Pharmacies and drug stores 11964-14741 783,392
Gasoline stations 16763-23122 926,792
Mens clothing stores 532-1120 62,223
Family clothing stores 3596-9391 522,164
Shoe stores 1464-2485 205,067
Jewelry stores 1304-5810 148,752
Sporting goods stores 1748-3404 188,091
Book stores 968-1973 133,484
Discount dept. stores 9226-17001 762,309
Department stores 5310-14057 668,459
Warehouse clubs and superstores 13162-22089 830,845
All other gen. merchandize stores 2376-4435 263,116
Miscellaneous store retailers 7862-10975 792,361
Fuel dealers 1306-3145 98,574

Table 3: Performance of various models in Example 5.2

The model(s) proposed by S G1 G2

Ferraro et al. [15] 0.2135(7) 0.0010(3) 0.4386(2)̂̃y = (−672.731 + 0.0181x, exp{5.9244 + 0.000002482x})T
Choi and Buckley [8] 0.2578(1) 0.0010(3) 0.4236(5)̂̃y = (−254.7958 + 0.01737x, 361.8300 + 0.00446x, 0.00385x)T

Modarres et al. [31] 0.2435(2) 0.0012(2) 0.4305(4)̂̃y = (−188.8609 + 0.01605x, 194.6657 + 0.00348x)T

Nasrabadi and Nasrabadi [34] 0.1834(8) 0.0005(7) 0.3546(7)̂̃y = (−1714.8222 + 0.01813x, 1675.4064)T

Kao and Chyu [24] 0.2253(6) 0.0006(6) 0.3807(6)̂̃y = (−1137.961 + 0.019234x, 1570.7727)T

Tanaka et al. [40] 0.2428(4) 0.0005(7) 0.2865(8)̂̃y = (1162.6583 + 0.015314x, 1097.1898 + 0.008552x)T

Xu and Li [45],
Kim and Bishu [26], and 0.2431(3) 0.0010(3) 0.4357(3)

Diamond [10]̂̃y = (−672.731 + 0.01807x, 185.7144 + 0.00347x)T

The new least-absolutes model 0.2352(5) 0.0032(1) 0.4518(1)̂̃y = (−254.7958 + 0.01737x, 66.4543 + 0.00336x)
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Table 4: Data set in Example 5.3

No. ỹ x1 x2 x3
1 (5.83, 3.56)T 2.00 0.00 15.25
2 (0.85, 0.52)T 0.00 5.00 14.13
3 (13.93, 8.50)T 1.13 1.50 14.13
4 (4.00, 2.44)T 2.00 1.25 13.63
5 (1.65, 1.01)T 2.19 3.75 14.75
6 (1.58, 0.96)T 0.25 3.50 13.75
7 (8.18, 4.99)T 0.75 5.25 15.25
8 (1.85, 1.13)T 4.25 2.00 13.50

Example 5.3. The data set given in Table 4 is used in [26], where the observations of independent variables
are crisp and the observations of the dependent variable are presented as symmetric triangular fuzzy numbers.
Choi and Buckley [8] claimed that the third observation in the data set is fuzzy outlier and for modeling this
data set they proposed a least-absolutes fuzzy regression method.

The fuzzy regression models based on the various methods are given in Table 5. As can be seen, our proposed
model has more mean of similarity measure than the other models and ranks the second when compared with
G1 and G2 indices.

Example 5.4. (An application in soil science [32]) One of the classical problems in soil sciences is the
measurement of physical, chemical, and biological soil properties. The problem results from the difficulty,
time and cost of direct measurements. Pedomodels, which have become a popular topic in soil science and
environmental research, are predictive functions of certain soil properties based on other easily or cheaply
measured properties. The common method for fitting pedomodels is to use classical regression analysis, based
on the assumption of data crispness. In modeling natural systems such as soil system, however, we may come
across the imprecise observations. Here, we consider such a case in which the observations of the response
variable are imprecise.

Based on a study in a part of Silakhor plain (situated in the province of Lorestan, west of Iran), different
soil physical and chemical properties were measured using standard procedures. But, due to some impreciseness
in experimental environment, the observed data were reported as fuzzy numbers given in Table 6. The data set
show soils saturated by water (SP)(ỹ), as symmetric triangular fuzzy observations of the dependent variable,
organic matter content (OM) (x1), sand content percentage (SAND) (x2), and silt (SILT) (x3) as the crisp
observations of the independent variables. Based on such data set, we wish to model the relationship between
the response variable SP and explanatory variables OM, SAND, and SILT by the fuzzy regression model.

The various models as well as their performances are summarized in Table 7. As can be seen, among
the various models, our proposed model has more mean of similarity measures than the other models. The
proposed model has also better performances than the other ones, considering the criteria G1 and G2.

6 Concluding Remarks

A least-absolutes fuzzy multiple linear regression model is proposed by using the generalized Hausdorff-metric
on the space of fuzzy numbers. Using this model we can deal with multiple linear regression problem with crisp
input-fuzzy output observations. The solution of the proposed methodology relies on a non-linear optimization
problem, which is also translated to a linear optimization problem, making the computations of the proposed
method very simple. The computations of the proposed method are rather simple and can be easily used in
practical studies.

Three indices, based on the error of estimation and the similarity measure, are proposed to evaluate the
goodness-of-fit of the models. By using such criteria, the efficiency of the proposed model is investigated
by four well-known data sets. The results of comparative studies and numerical examples show that the
proposed least-absolutes method is able to determine the regression coefficients with a good explanatory
power, especially for the case with several input variables and large size sample data set.
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Table 5: Performance of various models in Example 5.3

The model(s) proposed by S G1 G2

Ferraro et al. [15] 0.1674(5) 0.2786(4) 0.4076(4)

ŷ = −16.7957− 1.0989x1 − 1.1798x2 + 1.8559x3

l̂ = exp(−6.4974− 0.1362x1 − 0.2904x2 + 0.5726x3)

Choi and Buckley [8] 0.3544(2) 0.3768(1) 0.5038(1)

ŷ = −2.8273− 0.3878x1 − 1.0125x2 + 0.6185x3

l̂ = 0.2133x1 + 0.0368x3

r̂ = 0.2111x3

Modarres et al. [31] 0.1679(4) 0.2489(5) 0.3731(5)

ŷ = −23.1596− 1.0758x1 − 1.6443x2 + 2.3866x3

l̂ = −10.2245− 0.6825x1 − 0.7282x2 + 1.1353x3

Nasrabadi-Nasrabadi [34] 0.1014(7) 0.1946(6) 0.3201(6)

ŷ = −7.9334− 0.4020x1 − 1.3553x2 + 1.2199x3

l̂ = 2.9182

Kao and Chyu [23] 0.0615(8) 0.3229(3) 0.4571(3)

ŷ = −16.7957− 1.0989x1 − 1.1798x2 + 1.8559x3

l̂ = 0.52

Tanaka et al. [40] 0.1896(3) 0.1162(7) 0.2412(7)

ŷ = 37.9577− 2.5418x1 − 2.3226x2 − 1.3538x3

l̂ = 9.9581

Mohammadi and Taheri [32], 0.1440(6) 0.0653(8) 0.1563(8)

Xu and Li [45],
Kim and Bishu [26], and
Diamond [10]
ŷ = −16.7957− 1.0989x1 − 1.1798x2 + 1.8559x3

l̂ = 1.1588x3

The new least-absolutes model 0.3632(1) 0.3534(2) 0.4776(2)

ŷ = −2.8273− 0.3878x1 − 1.0125x2 + 0.6185x3

l̂ = 0.1790x3

Table 6: Soil data in Example 5.4

No. OM SAND SILT SP No. OM SAND SILT SP

1 0.88 35 45 (38, 3.8)T 14 2.33 31 42 (52, 5.2)T
2 1.13 37 42 (41, 4.1)T 15 1.71 17 50 (52, 5.2)T
3 1.31 27 43 (47.5, 4.75)T 16 1.14 14 53 (49, 4.9)T
4 1.98 29 41 (51, 5.1)T 17 0.99 19 44 (49, 4.9)T
5 1.02 38 39 (35, 3.5)T 18 1.14 28 43 (44, 4.4)T
6 1.29 32 39 (43, 4.3)T 19 1.46 26 44 (49, 4.9)T
7 1.52 29 37 (54, 5.4)T 20 1.18 32 42 (50.3, 5.03)T
8 1.33 18 45 (52, 5.2)T 21 1.38 10 49 (52, 5.2)T
9 1.17 40 38 (45, 4.5)T 22 0.84 38 43 (42, 4.2)T
10 2.00 28 46 (50, 5.0)T 23 1.48 49 35 (40, 4.0)T
11 1.68 13 40 (58.6, 5.86)T 24 1.08 42 44 (37, 3.7)T
12 2.15 19 41 (62, 6.2)T 25 0.36 79 14 (21.2, 2.12)T
13 3.52 31 41 (60, 6.0)T
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Table 7: Performance of various models in Example 5.4

The model(s) proposed by S G1 G2

Ferraro et al. [15] 0.5830(3) 0.4043(3) 0.6826(3)

ŷ = 70.5873 + 6.9253x1 − 0.5628x2 − 0.3958x3

l̂ = exp(1.7897 + 0.1538x1 − 0.0120x2 − 0.0028x3)

Choi and Buckley [8] 0.6002(2) 0.4360(2) 0.6990(2)

ŷ = 72.0466 + 6.4557x1 − 0.5523x2 − 0.4278x3

l̂ = 3.8955 + 0.5599x1

r̂ = 0.3901 + 0.8664x1 + 0.0665x3

Modarres et al. [31] 0.4412(5) 0.2814(5) 0.5838(5)

ŷ = 69.3354 + 9.5098x1 − 0.6193x2 − 0.3972x3

l̂ = 7.0587 + 0.6925x1 − 0.0563x2 − 0.0396x3

Nasrabadi-Nasrabadi [34] 0.3663(7) 0.2161(6) 0.5283(6)

ŷ = 74.0638 + 9.0493x1 − 0.6855x2 − 0.4406x3

l̂ = 4.7053

Tanaka et al. [40] 0.4030(6) 0.1440(7) 0.4321(7)

ŷ = 61.3916 + 7.6673x1 − 0.5015x2 − 0.2188x3

l̂ = 0.0870x2 + 0.1749x3

Mohammadi and Taheri [32],
Xu and Li [45],
Kim and Bishu [26], and 0.5727(4) 0.3707(4) 0.6696(4)

Diamond [10]
ŷ = 70.5873 + 6.9253x1 − 0.5628x2 − 0.3958x3

l̂ = 3.19688 + 1.0407x1

The new least-absolutes model 0.6014(1) 0.4462(1) 0.7031(1)

ŷ = 72.0466 + 6.4557x1 − 0.5523x2 − 0.4278x3

l̂ = 1.0240 + 0.7163x1 + 0.0599x3

Further research would be centered on modeling fuzzy input-output data based on the proposed approach.
Moreover, the sensitivity analysis with respect to outliers is a potential subject for further research.

Appendix: Fuzzy Sets and Fuzzy Arithmetic

A fuzzy set Ã on the universal set X is described by its membership function Ã(x) : X→ [0, 1]. In this paper

we assume that X = R, the set of real numbers. The crisp set Aα = {x ∈ R : Ã(x) ≥ α}, α ∈ (0, 1], is called

the α-cut of Ã, and for α = 0 we assume A0 = cl{x ∈ R : Ã(x) > 0}, where cl is the closure operator.
A specific class of fuzzy sets on R, which is rich and flexible enough to cover most of the applications,

is the so-called LR-fuzzy numbers Ñ = (n, l, r)LR with central value n ∈ R, left and right spreads l ∈ R+,
r ∈ R+, decreasing left and right shape functions L : R+ → [0, 1], R : R+ → [0, 1], with L(0) = R(0) = 1.

Typically, the LR-fuzzy number Ñ has the following membership function [47]

Ñ(x) =

{
L(n−xl ) if x ≤ n,
R(x−nr ) if x ≥ n.

We can easily obtain the α-cut of Ñ as follows

Nα = [n− L−1(α)l, n+R−1(α)r], α ∈ [0, 1].

An LR-fuzzy number Ñ = (n, l, r)LR with L = R and l = r = λ is called symmetric and is abbreviated by

Ñ = (n, λ)L. In practice, it is usually preferred to use simple shapes for functions L and R such as triangular,
i.e. L(x) = R(x) = max{1− x, 0}, or normal, i.e. L(x) = R(x) = exp{−x2}.
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For the algebraic operations of LR-fuzzy numbers, we have the following result on the basis of Zadeh’s
extension principle (for more details, see [47]).

Let M̃ = (m, lm, rm)LR and Ñ = (n, ln, rn)LR be two LR-fuzzy numbers and λ be a real number. Then

λ⊗ M̃ =

 (λm, λlm, λrm)LR if λ > 0
I{0} if λ = 0
(λm, |λ|rm, |λ|lm)RL if λ < 0,

M̃ ⊕ Ñ = (m+ n, lm + ln, rm + rn)LR.

where I{0} stands for the indicator function of the crisp zero.
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