
Journal of Uncertain Systems
Vol.7, No.3, pp.238-240, 2013

Online at: www.jus.org.uk

A New Analog Optical Processing Scheme for

Solving NP-Hard Problems

Michael Zakharevich1, Vladik Kreinovich2,∗

1Aligh Technology Inc.
2Department of Computer Science, University of Texas at El Paso, El Paso, Texas 79968, USA

Received 2 April 2012; Revised 25 August 2012

Abstract

Many real-life problems are, in general, NP-hard, i.e., informally speaking, are difficult to solve. To
be more precise, a problem P0 is NP-hard means that every problem from the class NP can be reduced
to this problem P0. Thus, if we have an efficient algorithm for solving one NP-hard problem, we can
use this reduction to get a more efficient way of solving all the problems from the class NP. To speed up
computations, it is reasonable to base them on the fastest possible physical process – i.e., on light. It is
known that analog optical processing indeed speeds up computation of several NP-hard problems. Each of
the corresponding speed-up schemes has its success cases and limitations. The more schemes we know, the
higher the possibility that for a given problem, one of these schemes will prove to be effective. Motivated
by this argument, we propose a new analog optical processing scheme for solving NP-hard problems.
c©2013 World Academic Press, UK. All rights reserved.

Keywords: NP-hard problems, optical computing, analog computing

1 Introduction

Solving NP-hard problems is important. In practice, we often to find a solution that satisfies a given set
of constraints. Once we have a candidate for the solution, we can feasibly check whether this candidate indeed
satisfies all the constraints. In theoretical computer science, “feasibly” is usually interpreted as computable
in polynomial time, i.e., in time bounded by a polynomial of the length of the input. The class of all problems
for which we can check, in polynomial time, whether a given candidate is a solution, is known as the class
NP; see, e.g., [3].

Examples of such problem includes coloring a given graph, finding the values of propositional variables
x1, . . . , xn that satisfy a given propositional formula, i.e., formula of the type

(x1 ∨ ¬x2 ∨ x3) & (x4 ∨ ¬x2 ∨ ¬x5) & · · · , etc.

Each problem from the class NP can be algorithmically solved by trying all possible candidates. For
example, we can find a graph coloring by trying all possible assignments of colors to different vertices of a
graph, and we can find a satisfying propositional vector by trying all 2n possible combinations of true and
false values x1, . . . , xn. Such exhaustive search algorithms require computation time like 2n, time that grows
exponentially with n. For medium-size inputs, e.g., for n ≈ 300, the resulting time is larger than the lifetime
of the Universe. So, these exhaustive search algorithms are not practically feasible.

It is not known whether problems from the class NP can be solved feasibly (i.e., in polynomial time): this

is a famous open problem P
?
=NP. It is known, however, there are problems which are NP-hard in the sense

that every problem from the class NP can be reduced to this problem. Reduction means that if we can find
a way to efficiently solve one NP-hard problem, then, by reducing other problems from the class NP to this
problem, we can thus efficiently solve all the problems from the class NP.

So, it is very important to be able to efficiently solve even one NP-hard problem – no matter how exotic
and unusual this problem may look. (By the way, both above example of NP problems – coloring a graph
and finding the values of propositional variables – are NP-hard.)

∗Corresponding author. Email: vladik@utep.edu (V. Kreinovich).



Journal of Uncertain Systems, Vol.7, No.3, pp.238-240, 2013 239

Comment. Several possible techniques for solving NP-hard problems are described in [1]; see also [4].

Analog optical processing as a natural way to speed up solution of NP-hard problems. A
natural way to speed up computations is based on the fact that computations do involve actually moving data
from one location to another. To speed up computations, it is therefore reasonable to move data as fast as
possible. According to modern physics, the fastest possible process is light. So, to speed up computations, it
is reasonable to use light, i.e., to perform actual optical processing.

Another natural way to speed up data processing is to parallelize computations. The more processors are
available to work in parallel, the faster they can solve the original problem. Thus, instead of using a single
ray of light, we can use numerous photons going in parallel, i.e., in effect, use a transmitted image.

Analog optical processing can indeed solve NP-hard problems. It is known that analog optical
processing can indeed solve NP-hard problems; see, e.g., [5, 6] and references therein. This does not mean,
of course, that we can actually solve NP-hard problems in polynomial time: polynomial time corresponds to
the ideal case when all analog operations are performed perfectly well, with no errors or noise, and in reality,
there is always noise. However, while we may not achieve polynomial time, we often do achieve a significant
speed-up due to natural parallelism of optical data processing [5, 6].

New schemes are always welcome. The experience of the existing schemes of analog optical processing
shows that each successful schemes has a niche in which it is practically helpful, and it has its limitations –
i.e., problems for which it does not perform that well. From this viewpoint, the more schemes we propose,
the larger the chances that one of these schemes will help to solve a future challenging problem.

What we do in this paper. Motivated by the above argument, in this paper, we propose a new analog
optical scheme for solving NP-hard problems.

2 Proposal

Selecting an NP-hard problem. Out of many NP-hard problems described, e.g., in [2], we selected the
one whose implementation seems to be the closest to optical computing. Namely, we selected the following
cosine product integration problem: given a sequence of integers a1, . . . , an, check whether the integral∫ 2π

0

(
n∏
i=1

cos(ai · θ)

)
dθ

is equal to 0.

How this problem can be implemented in analog optical processing. To implement the above
problem in terms of optical computing, we need to be able to do the following:

• implement cos(ai · θ) for a given integer ai,

• implement the product of two functions, and

• implement the integration.

In all these implementations, we will use ideas described in [5, 6].
Let us start by implementing cosines. We will represent each intermediate function f(θ) of θ as either a

planar beam of width proportional to 2π or as a filter through which this beam passes. For the light beam,
the value f(θ) represents the intensity of this beam at location θ.

The intensity of the usual (non-polarized) light is a non-negative number. Since the value cos(ai · θ)
can be negative, we thus need (laser-generated) coherent polarized light, i.e., light that depends on time as
A · cos(ω · t+ϕ). In coherent optics, coherent light is usually described by a complex function I · exp(i ·ω · t),
where I

def
= A · exp(i · ϕ). The value I is positive when ϕ = 0 and negative when ϕ = π.

We start with light for which I(θ) = 1 for all all spatial locations θ.



240 M. Zakharevich and V. Kreinovich: A New Analog Optical Processing Scheme for Solving NP-Hard Problems

From the physical viewpoint, light is an electromagnetic wave, i.e., an electromagnetic field traveling
through space. The directions of the corresponding electric field ~E and magnetic field ~H are orthogonal to
each other and to the direction of the light’s propagation. Different polarizations mean different ways for the
vectors ~E and ~H to change with time.

If we select the direction of the light propagation as the z-direction of the orthogonal coordinate system
(x, y, z), then the vectors ~E and ~H belong to the (x, y)-plane. Let us start with the linearly polarized light,

for which ~E is always parallel to the x-axis, i.e., has the form (E, 0, 0), and ~H is, therefore, always parallel to
the y-axis.

There are physical processes that change the polarization, i.e., that rotate the vector ~E in the (x, y)-
plane. It is possible to generate a spatial signal that will lead to a rotation angle proportional to θ, namely,
equal to ai · θ. After the corresponding rotation, the light (E(θ), 0, 0) at a spatial location θ changes to
(E(θ) ·cos(ai ·θ), E(θ) · sin(ai ·θ), 0). We can now place a polarization filter that only passes the the x-oriented
light. Then, we get the light beam (E(θ) · cos(ai · θ), 0, 0).

This scheme enables us to transform an x-oriented beam with intensity E(θ) into an x-oriented beam with
intensity E(θ) · cos(ai · θ). In other words, this scheme enables us to multiply the function representing the
beam by cos(ai · θ). So, if we start with a uniform beam for which E(θ) = 1, and apply the above procedure
n times, with i = 1, . . . , n, we get a light beam with intensity

I(θ) =

n∏
i=1

cos(ai · θ).

Integration is also easy: all we have to do is collect all the light beam into a single point by using a focusing
lens. The intensity of the resulting light is exactly∫ 2π

0

(
n∏
i=1

cos(ai · θ)

)
dθ.

So, by comparing the resulting intensity with 0, we can solve the original NP-hard integration problem.

Acknowledgments

This work was supported in part by the National Science Foundation grants HRD-0734825 (Cyber-ShARE
Center of Excellence) and DUE-0926721, by Grant 1 T36 GM078000-01 from the National Institutes of Health,
and by a grant on F-transforms from the Office of Naval Research.

References

[1] Aaronson, S., NP-complete problems and physical reality, SIGACT New, vol.36, pp.30–52, 2005.

[2] Garey, M.R., and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W.H.
Freeman and Company, New York, 1979.

[3] Papadimitriou, C., Computational Complexity, Addison Welsey, Reading, Massachusetts, 1994.

[4] Srikanth, R., The quantum measurement problem and physical reality: a computation theoretic perspective, AIP
Conference Proceedings, vol.864, pp.178–193, 2006.

[5] Woods, D., and T.J. Naughton, An optical model of computation, Theoretical Computer Science, vol.334, pp.227–
258, 2005.

[6] Woods, D., and T.J. Naughton, Optical computing, Applied Mathematics and Computation, vol.215, no.4,
pp.1417–1430, 2009.


	jus-7-3-2.pdf
	Introduction
	Basic Result: the Value of the Derivative at Minima and Maxima
	How to Find Minima and Maxima
	Mean Value Theorem: Reminder
	Usefulness of the Mean Value Theorem

	jus-7-3-4.pdf
	Background on Fuzzy Logic
	New Result About Polynomial Fuzzy Negation Operations

	jus-7-3-5.pdf
	Formulation of the Problem
	Main Idea
	Towards an Algorithm
	Resulting Algorithm for Estimating Standard Deviation of Random Error

	jus-7-3-6.pdf
	Formulation of the Problem
	First Result: Reconstructing P(S) from f(S)=g(P(S),M(S))
	Second Result: For Strictly Monotonic Combination Operations, We Can Also Reconstruct M(S) from f(S)=g(P(S),M(S))

	jus-7-3-7.pdf
	To Properly Fuse Geophysical Models, It is Important to Estimate Accuracy of Different Models
	Traditional Methods of Estimating Accuracy Cannot be Directly Used in Geophysics
	How to Estimate Model Accuracy: Proposed Idea
	Derivation of the Corresponding Formulas
	Resulting Algorithm

	jus-7-3-8.pdf
	Formulation of the Problem
	Our Explanation of Hill's Equation
	Conclusions

	jus-7-3-9.pdf
	Formulation of the Problem
	Geometric Justification of 1-Norm

	jus-7-3-10.pdf
	Introduction
	Possible and Necessary Orders
	Possible and Necessary Strict Orders
	Possible and Necessary Linear Orders
	Possible and Necessary Equivalence Relations
	Auxiliary Results: Possibly and Necessarily Reflexive Relations
	Auxiliary Results: Possible and Necessary Anti-Reflexive Relations
	Auxiliary Results: Possible and Necessary Reflexive-and-Symme-tric Relations
	Graphical Representation of the Results

	jus-7-3-11.pdf
	Introduction
	Background
	Software Quality Assessment
	Multicriteria Decision Making (MCDM)
	Fuzzy Measures and Integrals
	Determining Fuzzy Measures

	Fuzzy Measure Extraction (FME) and Optimization
	FME and Optimization
	Optimization Techniques for FME: A Brief Review

	Fuzzy Measures Extraction for Software Quality Assessment
	Our Hybrid Approach to Fuzzy Measure Extraction
	Experiments Results on Toy Examples
	Testing Methodology
	Quality of Solutions

	Experiments and Results on SQA
	Testing Methodology
	Experimental Results
	Discussion of Quality Assessment

	Conclusion and Future Work

	jus-7-3-12.pdf
	Introduction
	Proposal




