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Abstract

In biochemistry, the amount of the ligand that gets attached to macromolecule is often well described
by an empirical formula with an empirical parameter n; this formula is called Hill’s equation. In this
paper, we provide a theoretical derivation of this formula from the generalized equations of chemical
kinetics. In the traditional chemical kinetics equations, the reaction rate is proportional to the product of
the concentrations [c] of all reactants ¢. For example, for the reaction A+ B — C, the rate is proportional
to the product [A] - [B]; for the reaction 2A + B — C, the rate is proportional to [A] - [4] - [B], etc.
These formulas explain specific cases of Hill’s equation, corresponding to the case when n is an integer. To
describe the general case, we assume a more general dependence f([A],[B]) of the rate on the component
concentrations. The numerical description of this dependence depends on the units that we use to describe
the concentrations [A] and [B]. We make a natural assumption that this dependence is scale-invariant, in
the sense that if we change units for measuring the concentrations [A] and [B], the formula remains the
same if we appropriately change the unit for measuring the rate. We show that this assumption leads to an
explicit formula for the generalized chemical kinetics which, in turn, leads to an expression for the amount
of the bound macromolecule, an expression that includes the Hill’'s equation as an important specific case.
Thus, we get the desired theoretical derivation of the empirical Hill’s equation.
©2013 World Academic Press, UK. All rights reserved.
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1 Formulation of the Problem

Molecular binding in biochemistry. Many biochemical reactions involve binding of a smaller molecule L
(called ligand) to a large macromolecule P; see, e.g., [1]:

L+ P+ LP.
Let us give a few examples:
e oxygen binds to haemoglobin: this is one of the most important biochemical reactions;
e acid content in the stomach regulated by histamine binding to histamine H2 receptor (special protein);
e human serum albumin, protein in human blood plasma, carries nutrients as ligands.

Since these reactions are important, it is desirable to predict the proportion of the bound macromolecules.
This proportion can be determined as a ratio between the concentration [LP] of the bound macromolecule
and the total concentration [P] + [LP] of free (P) and bound (LP) macromolecules:

g def [LP]
[P+ [LP)

We want to find out how this proportion depends on the concentration [L] of the ligand.

Hill’s equation: description. In many cases, the desired proportion 6 is described by a formula (called
Hill’s equation)
[L]"

R
Kq+[L]™
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In this formula, K; and n are empirical parameters.
The value n is different for different reactions. In some cases, we have n = 1. In many other cases, the
value n is not an integer. For example, for the binding of oxygen to haemoglobin, we have n ~ 2.8.

Chemical kinetics and the n = 1 case of Hill’s equation. The quantitative results of chemical reactions
are usually described by equations of chemical kinetics. In chemical kinetics, the reaction rate is proportional
to the product of the concentrations [¢] of all reactants c¢. For example, for the reaction A + B — C, the
reaction rate is proportional to the product [4] - [B]:
d[A] dBl _ _de] _
D= k418 T =k S =k 1418

For the reaction 2A + B — C, the reaction rate is proportional to [4] - [4] - [B].

These formulas explain specific cases of Hill’'s equation, corresponding to the case when n is an integer.

Indeed, in this case, we have two reactions: L + P ko pand LP ¥ [, + P. Thus, equilibrium is attained
when

d|L
A ko (1) P+ ke (LR =0,
So, at the equilibrium, we have k, - [L] - [P] = kq - [LP], and thus,
kq
P =" . p)
d

Here L
P+ 0P = (14 2101 1P
d
hence the desired ratio takes the form

ka
Qe o
7 B i
ke '
P+ LA~ R g
ka
Multiplying both numerator and denominator by Ky def kaq/ka, we get
o m
Kq+[L]

This is exactly Hill’s equation for n = 1.

Comment. A reaction 2L + P — Lo P can explain n = 2. Indeed, in this case, the chemical kinetics leads to
the following formula for the equilibrium: k, - [L]? - [P] = kg - [L2P], hence

_ Fa
=
Here, the ratio 6 between the concentration [LoP] of the bound macromolecule and the total concentration
[P] + [LoP] of free (P) and bound (L2 P) macromolecules is equal to

kq

[L2P] [L]? - [P).

R B T
PP py o 2
Dividing both numerator and denominator by [P] - k,/kq, and denoting Ky = kq/k., we get
L]
T Ka+ (L]

i.e., Hill’s equation for n = 2.
Similarly, Hill’s formula for an arbitrary integer value of n can be explained if we apply chemical kinetics
to the reaction nL + P — L, P.

Remaining challenge. In practice, we often observe non-integer values n. Such values are difficult to explain
by chemical kinetics. As a result, since its invention in 1910, Hill’s equation remains a semi-empirical formula.
It is desirable to provide a theoretical explanation for this formula.
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2 Our Explanation of Hill’s Equation

Towards generalization of chemical kinetics. In the traditional chemical kinetics, the rate r of the
reaction A+ B — C'is r = const - [4] - [B]. This formula, as we have mentioned, only explains the n = 1,2,...
cases.

To explain the general case of Hill’s equation, we need to consider a more general formula r = f([A], [B]).

Scale invariance. Which formulas r = f([A], [B]) should we consider? To answer this question, let us take
into account that the numerical value of a quantity depends on the choice of a measuring unit. For example,
2 m is equal to 200 cm.

In particular, if we replace a unit for measuring the concentration [A] by a A4 times smaller unit, we get
a new numerical value [A)' = A4 - [A]. Similarly, for B, we get [B) = Ap - [B]. It makes sense to require that
the dependence of the reaction rate is the same in the new unit — if we appropriately re-scale the reaction
rate r.

In more precise terms, we assume that for every A4 > 0 and Ag > 0, there exists a p s.t. if r = f([4], [B]),
then p(Aa,Ag) -7 = f(Aa - [4],A\p - [B]). In other words, the dependence f([4],[B]) is such that for every
Aa and Ap, there exists a p for which: if r = f([A],[B]) then " = f([A]’,[B]’), where [A]" = A4 - [A],
[BY = Ap - [B], and 7" = p - r. It is also natural to assume that the dependence f([A], [B]) is differentiable.

What we can conclude from scale-invariance. Our assumption means that for all z > 0, y > 0, A4 > 0,
and Ap > 0, we have f(Aa -2, g -y) = p(Aa, A) - f(z,9).

If f(xo,y0) = 0 for some g > 0 and yo > 0, then for every other pairs (x,y) of positive numbers, we could
take Ag = x/xp and Ap = y/yo and get

flz,y) = f(Aa-20,AB - yo) = t(Aa, AB) - f(zo,yo0) = u(Aa, Ag) -0 =0.

Thus, if the function is not identically 0, we conclude that f(z,y) # 0 for all x > 0 and y > 0.
We assumed that the function f(x,y) is differentiable. Thus, we can conclude that the function

fAa-z,2-y)
f(x,y)

is also differentiable, as a ratio of two differentiable functions.
Let us take Ag = 1. In this case, the above equation takes the form

(Aa, A) =

fa-z,y) =pAa, 1) - f(z,9).

When we differentiate both sides of this equation with respect to A4, we get
z f'Aa-a,y) =p' (M) - f(z,),
where f’ denotes the partial derivative over z. Substituting A4 = 1, we get
z- fl(zy) = f(z,y),

where we denoted a % ' (1). In other words, we get an equation

df
z-—=a-f
dx /
To solve this equation, we separate the variables, i.e., we move all the terms related to x to one side and all
terms related to f to another side. As a result, we get the following equation:
df dx
-~ =a-—.
f x
Integrating, we get
In(f(z,y)) = a-In(z) + c1(y),
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with an integration constant c; possibly different for different values y. From the logarithm, we can now
reconstruct the original function as

f(z,y) = exp(In(f(z,y))) = exp(er- In(z) + c1(y)) = exp(a - In(z)) - c2(y),

where we denoted c2(y) Lef exp(c1(y)). Here

(e e}

exp(a - In(x)) = (exp(in()))” = 2,

so we conclude that
«

f(z,y) = ca(y) - 2.
If instead we take A4 = 1, differentiate with respect to Ap and then take A\p = 1, we similarly get

fla,y) = cs(z) - y°

for some constant 8 and for some function cz(x).
The two expressions for f(z,y) must coincide, so we have

B

e

ca(y) - z% =c3(w) -y

for all  and y. In particular, for z = 1, we get co(y) = c3(1) - y°. Substituting this expression for c3(y) into
the above formula f(z,y) = c2(y) - %, we conclude that

f(z,y) = const - z - 3.

So, for the reaction A + B — C, the reaction rate is
F([AL[B]) = ko - [A]* - [B)°

for some constants k,, «, and .

A similar analysis can be applied to derive the reaction rate f([C]) for the reaction C — A + B. In this
case, scale invariance means that for every A¢, there exists a u(A¢g) for which f(A¢ - 2) = u(Ae) - f(2). A
similar analysis leads us to the conclusion that f(z) = const - 27 for some constant ~.

Thus, for the reaction C' — A + B, the the scale-invariant reaction rate is equal to

FC)) =ka - [CT
for some constants kg and .

Derivation of Hill’s equation. Under the above generalized chemical kinetics equations, the equilibrium

is attained when
d[L]

dt
So, at the equilibrium, we have

= —f([L}, [P]) + F(ILP)) = ~ka - [L]* - [P}’ + kq - [LP]" = 0.

ko oo I
e [P = (1P

and
[LP]=C-[L]"- [P/,

with C % (ko /kq)"” and n % a/y.

When 8 =+, we have [P] + [LP] = (1 + C - [L]™) - [P], hence
N 122 I o L2
~[Pl+[LP]  1+C-[L]™

Dividing both numerator and denominator by C, we get the desired Hill’s equation

"

0= ————,
KdJr[L]"

with Ky < 1/C.
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3 Conclusions

In biochemistry, the proportion of the bound macromolecules is often described by Hill’s equation

[L]"

0= ————.
Kd-i-[L]”

When n is an integer, this equation can be explained by chemical kinetics, where the rate of the reaction
A+ B — Cis equal to k- [A] - [B]. However, in practice, n is often not an integer, and so the chemical kinetics
explanation is not applicable.

In this paper, we generalize the traditional equations of chemical kinetics by assuming that the reaction
rate f([A],[B]) is scale-invariant but can be more general than the product. As a result, we get a family of
formulas that include Hill’s equation as a particular case. Thus, we get a theoretical explanation for Hill’s
equation.

We also get a more general formula that may be useful to explain possible deviation from Hill’s equation.
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