Yager’s Combination of Probabilistic and Possibilistic Knowledge: Beyond t-Norms

Thavatchai Ngamsantivong¹,* Nitaya Buntoa²

¹Department of Computer and Information Science, Faculty of Applied Science
King Mongkut’s University of Technology North Bangkok
²Department of Applied Statistics, Faculty of Applied Science
King Mongkut’s University of Technology North Bangkok
1518 Piboonsongkhram Road, Bangsue, Bangkok 10800 Thailand

Received 2 April 2012; Revised 20 September 2012

Abstract

Often, about the same real-life system, we have both measurement-related probabilistic information expressed by a probability measure \(P(S) \) and expert-related possibilistic information expressed by a possibility measure \(M(S) \). To get the most adequate idea about the system, we must combine these two pieces of information. For this combination, R. Yager – borrowing an idea from fuzzy logic – proposed to use a t-norm \(f(a,b) \) such as the product \(f(a,b) = a \cdot b \), i.e., to consider a set function \(f(S) = f_\&(P(S), M(S)) \).

A natural question is: can we uniquely reconstruct the two parts of knowledge from this function \(f(S) \)? In our previous paper, we showed that such a unique reconstruction is possible for strictly Archimedean t-norms; in this paper, we extend this result to a more general class of combination operations.

©2013 World Academic Press, UK. All rights reserved.

Keywords: Yager’s combination, possibility measure, probability measure, t-norms, combination operations

1 Formulation of the Problem

Need to combine probabilistic and possibilistic knowledge. In many practical situations, we have both probabilistic information about some objects – e.g., information coming from measurements with known probability of measurement errors – and possibilistic information – describing expert knowledge. In the probabilistic case, for every set \(S \), we have a probability \(P(S) \in [0,1] \) that the actual (unknown) state \(s \) of the object belongs to the set \(S \). In the possibilistic case, for each set \(S \), we know the possibility \(M(S) \in [0,1] \) that \(s \) belongs to \(S \).

It is often desirable to combine these two numbers \(P(S) \) and \(M(S) \) into a single value \(f(S) \).

Yager’s approach: the use of t-norms [4]. We need to combine two degrees from the interval \([0,1]\). The desired combination must satisfy some reasonable properties; for example:

- if it is not possible for the state \(s \) to be in the set \(S \), i.e., if \(M(S) = 0 \), then the resulting degree \(f(S) \) must also reflect this impossibility, i.e., we should have \(f(S) = 0 \);
- if the probability \(P(S) \) of \(s \) being in the set \(S \) is equal to 0, i.e., if \(P(S) = 0 \), then we should also have \(f(S) = 0 \), etc.

Different procedures of combining such degrees have been actively analyzed in fuzzy logic; see, e.g., [2,3]. In particular, procedures that satisfy the above properties (and several other similar properties) are known as t-norms (or and-operations) \(f_\&(a,b) \). It is therefore reasonable to combine \(P(S) \) and \(M(S) \) by using a t-norm, i.e., to consider the set function \(f(S) = f_\&(P(S), M(S)) \).

One of the simplest (and most widely used) t-norms is the algebraic product \(f_\&(a,b) = a \cdot b \). In this case, we get a combination with a set function \(f(S) = P(S) \cdot M(S) \).

*Corresponding author. Email: tvc@kmutnb.ac.th (T. Ngamsantivong).
Uniqueness: a natural question. A natural question is: once we have the combined measure \(f(S) = f_\mathcal{C}(P(S), M(S)) \), can we reconstruct both \(P(S) \) and \(M(S) \)?

Continuous case. We will consider a continuous case, in which the set \(\mathbb{R}^n \) or its open subset, and we restrict ourselves to open subsets \(S \subseteq X \). We assume that a probability measure \(P(S) \) is described by a continuous probability density function \(\rho(x) \geq 0 \) for which \(P(S) = \int_S \rho(x) \, dx \) and \(\int_X \rho(x) \, dx = 1 \). Similarly, we assume that a possibility measure is described by a continuous possibility function \(\mu(x) \geq 0 \) for which \(M(S) = \sup_{x \in S} \mu(x) \). We will also assume that a t-norm \(f_\mathcal{C}(a, b) \) is continuous.

What is known and what we do in this paper. In [1], we showed that reconstruction is unique for strictly Archimedean t-norms. In this paper, we extend this result to a more general class of combination operations.

2 First Result: Reconstructing \(P(S) \) from \(f(S) = g(P(S), M(S)) \)

Reminder. In this paper, we consider situations in which the universal set \(X \) is an open subset of an \(n \)-dimensional space \(\mathbb{R}^n \), a probability measure is defined by a continuous probability density function, and a possibility measure is defined by a continuous possibility function.

Definition 1. By a combination operation, we mean a continuous function \(g : [0, 1] \times [0, 1] \to [0, 1] \) which satisfies the following two properties:

- it is monotonic in each of the variables – i.e., \(a \leq a' \) and \(b \leq b' \) imply \(g(a, b) \leq g(a', b') \); and
- we have \(g(a, 1) = a \) for all \(a \in [0, 1] \).

Theorem 1. Let \(f(a, b) \) be a combination operation, let \(P(S) \) and \(P'(S) \) be probability measures on the same set \(X \), and let \(M(S) \) and \(M'(S) \) be possibility measures on \(X \). If for every open set \(S \subseteq X \), we have \(g(P(S), M(S)) = g(P'(S), M'(S)) \), then \(P(S) = P'(S) \) for all sets \(S \).

Comment. In other words, if we know the combined measure \(f(S) = g(P(S), M(S)) \), then we can uniquely reconstruct the probability measure.

Proof. This proof is similar to the one from [1].

1°. For every point \(x_0 \in X \) and for every positive real number \(\delta \), let \(B_\delta(x_0) \) denote an open ball with a center in \(x \) and radius \(\delta \). In this proof, we will consider sets of the type \(S \cup B_\delta(x_0) \) in the limit \(\delta \to 0 \).

We want to know the limit of \(f(S \cup B_\delta(x_0)) = g(P(S \cup B_\delta(x_0)), M(S \cup B_\delta(x_0))) \) when \(\delta \to 0 \). Since the combination operation \(g(a, b) \) is continuous, it is sufficient to find the limits of \(P(S \cup B_\delta(x_0)) \) and \(M(S \cup B_\delta(x_0)) \); then, the limit of \(f(S \cup B_\delta(x_0)) \) is simply equal to the result of applying the combination operation \(g(a, b) \) to the limits of \(P(S \cup B_\delta(x_0)) \) and \(M(S \cup B_\delta(x_0)) \).

2°. Let us start with computing the limit of \(P(S \cup B_\delta(x_0)) \). A probability measure is monotonic and additive, so we have \(P(S) \leq P(S \cup B_\delta(x_0)) \leq P(S) + P(B_\delta(x_0)) \). Let us show that \(P(B_\delta(x_0)) \to 0 \) as \(\delta \to 0 \); this will imply that \(P(S \cup B_\delta(x_0)) \to P(S) \).

Indeed, since the probability density function \(\rho(x) \) is continuous, for every \(\varepsilon > 0 \), there exists a \(\delta > 0 \) such that \(d(x, x_0) \leq \delta \) implies that \(|\rho(x) - \rho(x_0)| \leq \varepsilon \). Let us pick any \(\varepsilon_0 > 0 \) (e.g., \(\varepsilon_0 = 1 \)). Then, there exists a \(\delta_0 > 0 \) for which \(d(x, x_0) \leq \delta_0 \) implies that \(|\rho(x) - \rho(x_0)| \leq \varepsilon_0 \).

In this case, for every \(\delta \leq \delta_0 \), if \(x \in B_\delta(x_0) \), then \(d(x, x_0) < \delta \leq \delta_0 \) hence \(\rho(x) \leq \rho(x_0) + \varepsilon_0 \). Thus,

\[
0 \leq P(B_\delta(x_0)) = \int_{B_\delta(x_0)} \rho(x) \, dx \leq (\rho(x_0) + \varepsilon_0) \cdot V(B_\delta(x_0)).
\]
When \(\delta \rightarrow 0 \), the sum \(\rho(x_0) + \varepsilon_0 \) is a constant and the volume \(V(B_\delta(x_0)) \sim \delta^n \) tends to 0, so indeed \(P(B_\delta(x_0)) \rightarrow 0 \) and \(P(S \cup B_\delta(x_0)) \rightarrow P(S) \).

3°. Let us now compute the limit of \(M(S \cup B_\delta(x_0)) \) when \(\delta \rightarrow 0 \). From the definition of a possibility measure, it follows that \(M(A \cup B) = \max(M(A), M(B)) \) for all \(A \) and \(B \); in particular, \(M(S \cup B_\delta(x_0)) = \max(M(S), M(B_\delta(x_0))) \). Since \(\max(a, b) \) is a continuous function, it is sufficient to find the limit of \(M(B_\delta(x_0)) \).

The possibility function \(\mu(x) \) is also assumed to be continuous, so for every \(\varepsilon > 0 \), there exists a \(\delta > 0 \) such that \(d(x, x_0) \leq \delta \) implies that \(|\mu(x) - \mu(x_0)| \leq \varepsilon \), i.e., for all \(x \in B_\delta(x_0) \), we have

\[
\mu(x_0) - \varepsilon \leq \mu(x) \leq \mu(x_0) + \varepsilon.
\]

Since all the values \(\mu(x) \) are between \(\mu(x_0) - \varepsilon \) and \(\mu(x_0) + \varepsilon \), the largest of these values \(M(B_\delta(x_0)) = \sup_{B_\delta(x_0)} \mu(x) \) also lies within the same interval:

\[
\mu(x_0) - \varepsilon \leq M(B_\delta(x_0)) \leq \mu(x_0) + \varepsilon.
\]

Thus, for every \(\varepsilon > 0 \) there exists a \(\delta \) for which \(|M(B_\delta(x_0)) - \mu(x)| \leq \varepsilon \). By definition of the limit, this means that \(M(B_\delta(x_0)) \rightarrow \mu(x) \). So, due to the continuity of the maximum function,

\[
M(S \cup B_\delta(x_0)) = \max(M(S), M(B_\delta(x_0))) \rightarrow \max(M(S), \mu(x)).
\]

4°. Since the combination operation \(g(a, b) \) is continuous and we know the limits for \(P(S \cup B_\delta(x_0)) \) and \(M(S \cup B_\delta(x_0)) \), we conclude that

\[
f(S \cup B_\delta(x_0)) = g(P(S \cup B_\delta(x_0)), M(S \cup B_\delta(x_0))) \rightarrow g(P(S), \max(M(S), \mu(x))),
\]

i.e., that

\[
\lim_{\delta \rightarrow 0} f(S \cup B_\delta(x_0)) = g(P(S), \max(M(S), \mu(x))).
\]

5°. We now want to find the largest value of \(g(P(S), \max(M(S), \mu(x))) \), i.e.,

\[
\sup_{x_0 \in X} g(P(S), \max(M(S), \mu(x)))).
\]

Since the combination operation is monotonic, it is sufficient to find the largest possible value of \(\max(M(S), \mu(x)) \):

\[
\sup_{x_0 \in X} g(P(S), \max(M(S), \mu(x))) = g\left(P(S), \sup_{x_0 \in X} \max(M(S), \mu(x))\right).
\]

By definition of a possibility measure,

\[
M(X) = \sup_{x_0 \in X} \mu(x_0) = 1.
\]

Since \(\mu(x_0) \leq \max(S, \mu(x_0)) \leq 1 \), we can thus conclude that \(\sup_{x_0 \in X} \max(S, \mu(x_0)) = 1 \) and thus,

\[
\sup_{x_0 \in X} g(P(S), \max(M(S), \mu(x))) = g(P(S), 1).
\]

By definition of a combination operation, \(g(a, 1) = a \), hence \(g(P(S), 1) = P(S) \) and thus, for every set \(S \),

\[
\sup_{x_0 \in X} g(P(S), \max(M(S), \mu(x))) = P(S).
\]

We already know how to describe \(g(P(S), \max(M(S), \mu(x))) \) in terms of the combined function \(f(S) \):

\[
g(P(S), \max(M(S), \mu(x))) = \lim_{\delta \rightarrow 0} f(S \cup B_\delta(x_0)).
\]

Thus,

\[
P(S) = \sup_{x_0 \in X} \lim_{\delta \rightarrow 0} f(S \cup B_\delta(x_0)).
\]

This formula describes the probability measure in terms of the combined measure. So, the probability measure can indeed be uniquely reconstructed from the combined measure. The theorem is proven.
3 Second Result: For Strictly Monotonic Combination Operations, We Can Also Reconstruct $M(S)$ from $f(S) = g(P(S), M(S))$

Definition 1. We say that a combination operation g is strictly monotonic if $0 < a$ and $0 < b < b'$ imply $g(a, b) < g(a, b')$.

Discussion. In the previous section, we showed that we can uniquely reconstruct the probability measure $P(S)$ from the combined measure $f(S) = g(P(S), M(S))$. Let us show that for strictly monotonic combination operations, we can also reconstruct the possibility measure $M(S)$.

When $\rho(x) = 0$ for all points x from some region S, this means that the probability $P(S) = 0$ of this region is 0, so points x from this region are not possible. We can therefore exclude these points from our universal set X, and assume that $\rho(x) > 0$ for all $x \in X$. Such probability measures will be called strictly positive.

Theorem 2. Let $g(a, b)$ be a strictly monotonic combination operation, let $P(S)$ and $P'(S)$ be strictly positive probability measures on the same set X, and let $M(S)$ and $M'(S)$ be possibility measures on X. If for every open set $S \subseteq X$, we have $g(P(S), M(S)) = g(P'(S), M'(S))$, then $P(S) = P'(S)$ and $M(S) = M'(S)$ for all sets S.

Proof. According to Theorem 1, the fact that $g(P(S), M(S)) = g(P'(S), M'(S))$ for all open sets S implies that $P(S) = P'(S)$ for all such sets. Thus, for every open set S, we have $g(P(S), M(S)) = g(P(S), M'(S))$. For strictly positive probability measures, with continuous positive density function $\rho(x) > 0$, the probability $P(S) = \int_S \rho(x) \, dx$ is always positive $P(S) > 0$.

Thus, we cannot have $M(S) < M'(S)$, because then, due to the the definition of strict monotonicity, we would have $g(P(S), M(S)) < g(P'(S), M'(S))$. Similarly, we cannot have $M'(S) < M(S)$, because then we would have $g(P(S), M'(S)) < g(P'(S), M(S))$. Since we cannot have $M(S) < M'(S)$ and we cannot have $M'(S) < M(S)$, the only remaining possibility is $M(S) = M'(S)$. The theorem is proven.

Acknowledgments

The work of N. Buntao was supported by a grant from the Office of the Higher Education Commission, Thailand, under the Strategic Scholarships for Frontier Research Network.

The authors are thankful to Vladik Kreinovich, Carol Walker, Elbert Walker, and Ron Yager for valuable discussions.

References

