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Abstract

Often, about the same real-life system, we have both measurement-related probabilistic information
expressed by a probability measure P (S) and expert-related possibilistic information expressed by a possi-
bility measure M(S). To get the most adequate idea about the system, we must combine these two pieces
of information. For this combination, R. Yager – borrowing an idea from fuzzy logic – proposed to use a
t-norm f&(a, b) such as the product f&(a, b) = a ·b, i.e., to consider a set function f(S) = f&(P (S),M(S)).
A natural question is: can we uniquely reconstruct the two parts of knowledge from this function f(S)?
In our previous paper, we showed that such a unique reconstruction is possible for strictly Archimedean
t-norms; in this paper, we extend this result to a more general class of combination operations.
c©2013 World Academic Press, UK. All rights reserved.
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1 Formulation of the Problem

Need to combine probabilistic and possibilistic knowledge. In many practical situations, we have
both probabilistic information about some objects – e.g., information coming from measurements with known
probability of measurement errors – and possibilistic information – describing expert knowledge. In the
probabilistic case, for every set S, we have a probability P (S) ∈ [0, 1] that the actual (unknown) state s of
the object belongs to the set S. In the possibilistic case, for each set S, we know the possibility M(S) ∈ [0, 1]
that s belongs to S.

It is often desirable to combine these two numbers P (S) and M(S) into a single value f(S).

Yager’s approach: the use of t-norms [4]. We need to combine two degrees from the interval [0, 1]. The
desired combination must satisfy some reasonable properties; for example:

• if it is not possible for the state s to be in the set S, i.e., if M(S) = 0, then the resulting degree f(S)
must also reflect this impossibility, i.e., we should have f(S) = 0;

• if the probability P (S) of s being in the set S is equal to 0, i.e., if P (S) = 0, then we should also have
f(S) = 0, etc.

Different procedures of combining such degrees have been actively analyzed in fuzzy logic; see, e.g., [2, 3]. In
particular, procedures that satisfy the above properties (and several other similar properties) are known as
t-norms (or and-operations) f&(a, b). It is therefore reasonable to combine P (S) and M(S) by using a t-norm,
i.e., to consider the set function f(S) = f&(P (S),M(S)).

One of the simplest (and most widely used) t-norms is the algebraic product f&(a, b) = a · b. In this case,
we get a combination with a set function f(S) = P (S) ·M(S).
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Uniqueness: a natural question. A natural question is: once we have the combined measure f(S) =
f&(P (S),M(S)), can we reconstruct both P (S) and M(S)?

Continuous case. We will consider a continuous case, in which the set X of all possible states is either
an n-dimensional space IRn or its open subset, and we restrict ourselves to open subsets S ⊆ X. We assume
that a probability measure P (S) is described by a continuous probability density function ρ(x) ≥ 0 for which
P (S) =

∫
S
ρ(x) dx and

∫
X
ρ(x) dx = 1. Similarly, we assume that a possibility measure is described by a

continuous possibility function µ(x) ≥ 0 for which M(S) = sup
x∈S

µ(x) and sup
x∈X

µ(x) = 1. We will also assume

that a t-norm f&(a, b) is continuous.

What is known and what we do in this paper. In [1], we showed that reconstruction is unique for
strictly Archimedean t-norms. In this paper, we extend this result to a more general class of combination
operations.

2 First Result: Reconstructing P (S) from f(S) = g(P (S),M(S))

Reminder. In this paper, we consider situations in which the universal set X is an open subset of an n-
dimensional space IRn, a probability measure is defined by a continuous probability density function, and a
possibility measure is defined by a continuous possibility function.

Definition 1. By a combination operation, we mean a continuous function g : [0, 1] × [0, 1] → [0, 1] which
satisfies the following two properties:

• it is monotonic in each of the variables – i.e., a ≤ a′ and b ≤ b′ imply g(a, b) ≤ g(a′, b′); and

• we have g(a, 1) = a for all a ∈ [0, 1].

Theorem 1. Let f(a, b) be a combination operation, let P (S) and P ′(S) be probability measures on the
same set X, and let M(S) and M ′(S) be possibility measures on X. If for every open set S ⊆ X, we have
g(P (S),M(S)) = g(P ′(S),M ′(S)), then P (S) = P ′(S) for all sets S.

Comment. In other words, if we know the combined measure f(S) = g(P (S),M(S)), then we can uniquely
reconstruct the probability measure.

Proof. This proof is similar to the one from [1].

1◦. For every point x0 ∈ X and for every positive real number δ, let Bδ(x0)
def
= {x : d(x, x0) < δ} denote an

open ball with a center in x and radius δ. In this proof, we will consider sets of the type S ∪ Bδ(x0) in the
limit δ → 0.

We want to know the limit of f(S ∪ Bδ(x0)) = g(P (S ∪ Bδ(x0)),M(S ∪ Bδ(x0))) when δ → 0. Since the
combination operation g(a, b) is continuous, it is sufficient to find the limits of P (S ∪ Bδ(x0)) and M(S ∪
Bδ(x0)); then, the limit of f(S ∪Bδ(x0)) is simply equal to the result of applying the combination operation
g(a, b) to the limits of P (S ∪Bδ(x0)) and M(S ∪Bδ(x0)).

2◦. Let us start with computing the limit of P (S∪Bδ(x0)). A probability measure is monotonic and additive,
so we have P (S) ≤ P (S ∪Bδ(x0)) ≤ P (S) + P (Bδ(x0)). Let us show that P (Bδ(x0))→ 0 as δ → 0; this will
imply that P (S ∪Bδ(x0))→ P (S).

Indeed, since the probability density function ρ(x) is continuous, for every ε > 0, there exists a δ > 0 such
that d(x, x0) ≤ δ implies that |ρ(x) − ρ(x0)| ≤ ε. Let us pick any ε0 > 0 (e.g., ε0 = 1). Then, there exists a
δ0 > 0 for which d(x, x0) ≤ δ0 implies that |ρ(x)− ρ(x0)| ≤ ε0.

In this case, for every δ ≤ δ0, if x ∈ Bδ(x0), then d(x, x0) < δ ≤ δ0 hence ρ(x) ≤ ρ(x0) + ε0. Thus,

0 ≤ P (Bδ(x0)) =

∫
Bδ(x0)

ρ(x) dx ≤ (ρ(x0) + ε0) · V (Bδ(x0)).
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When δ → 0, the sum ρ(x0) + ε0 is a constant and the volume V (Bδ(x0)) ∼ δn tends to 0, so indeed
P (Bδ(x0))→ 0 and P (S ∪Bδ(x0))→ P (S).

3◦. Let us now compute the limit of M(S ∪ Bδ(x0)) when δ → 0. From the definition of a possibility
measure, it follows that M(A ∪ B) = max(M(A),M(B)) for all A and B; in particular, M(S ∪ Bδ(x0)) =
max(M(S),M(Bδ(x0))). Since max(a, b) is a continuous function, it is sufficient to find the limit ofM(Bδ(x0)).

The possibility function µ(x) is also assumed to be continuous, so for every ε > 0, there exists a δ > 0
such that d(x, x0) ≤ δ implies that |µ(x)− µ(x0)| ≤ ε, i.e., for all x ∈ Bδ(x0), we have

µ(x0)− ε ≤ µ(x) ≤ µ(x0) + ε.

Since all the values µ(x) are between µ(x0) − ε and µ(x0) + ε, the largest of these values M(Bδ(x0)) =
supBδ(x0) µ(x) also lies within the same interval:

µ(x0)− ε ≤M(Bδ(x0)) ≤ µ(x0) + ε.

Thus, for every ε > 0 there exists a δ for which |M(Bδ(x0))−µ(x)| ≤ ε. By definition of the limit, this means
that M(Bδ(x0))→ µ(x). So, due to the continuity of the maximum function,

M(S ∪Bδ(x0)) = max(M(S),M(Bδ(x0)))→ max(M(S), µ(x)).

4◦. Since the combination operation g(a, b) is continuous and we know the limits for P (S ∪ Bδ(x0)) and
M(S ∪Bδ(x0)), we conclude that

f(S ∪Bδ(x0)) = g(P (S ∪Bδ(x0)),M(S ∪Bδ(x0)))→ g(P (S),max(M(S), µ(x))),

i.e., that
lim
δ→0

f(S ∪Bδ(x0)) = g(P (S),max(M(S), µ(x0))).

5◦. We now want to find the largest value of g(P (S),max(M(S), µ(x))), i.e.,

sup
x0∈X

g(P (S),max(M(S), µ(x0))).

Since the combination operation is monotonic, it is sufficient to find the largest possible value of
max(M(S), µ(x0)):

sup
x0∈X

g(P (S),max(M(S), µ(x0))) = g

(
P (S), sup

x0∈X
max(S, µ(x0))

)
.

By definition of a possibility measure,

M(X) = sup
x0∈X

µ(x0) = 1.

Since µ(x0) ≤ max(S, µ(x0)) ≤ 1, we can thus conclude that sup
x0∈X

max(S, µ(x0)) = 1 and thus,

sup
x0∈X

g(P (S),max(M(S), µ(x0))) = g(P (S), 1).

By definition of a combination operation, g(a, 1) = a, hence g(P (S), 1) = P (S) and thus, for every set S,

sup
x0∈X

g(P (S),max(M(S), µ(x0))) = P (S).

We already know how to describe g(P (S),max(M(S), µ(x0))) in terms of the combined function f(S):
g(P (S),max(M(S), µ(x0))) = lim

δ→0
f(S ∪Bδ(x0)). Thus,

P (S) = sup
x0∈X

lim
δ→0

f(S ∪Bδ(x0)).

This formula describes the probability measure in terms of the combined measure. So, the probability measure
can indeed be uniquely reconstructed form the combined measure. The theorem is proven.
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3 Second Result: For Strictly Monotonic Combination Operations,
We Can Also Reconstruct M(S) from f(S) = g(P (S),M(S))

Definition 1. We say that a combination operation g is strictly monotonic if 0 < a and 0 < b < b′ imply
g(a, b) < g(a, b′).

Discussion. In the previous section, we showed that we can uniquely reconstruct the probability measure
P (S) from the combined measure f(S) = g(P (S),M(S)). Let us show that for strictly monotonic combination
operations, we can also reconstruct the possibility measure M(S).

When ρ(x) = 0 for all points x from some region S, this means that the probability P (S) = 0 of this region
is 0, so points x from this region are not possible. We can therefore exclude these points from our universal
set X, and assume that ρ(x) > 0 for all x ∈ X. Such probability measures will be called strictly positive.

Theorem 2. Let g(a, b) be a strictly monotonic combination operation, let P (S) and P ′(S) be strictly positive
probability measures on the same set X, and let M(S) and M ′(S) be possibility measures on X. If for every
open set S ⊆ X, we have g(P (S),M(S)) = g(P ′(S),M ′(S)), then P (S) = P ′(S) and M(S) = M ′(S) for all
sets S.

Proof. According to Theorem 1, the fact that g(P (S),M(S)) = g(P ′(S),M ′(S)) for all open sets S implies
that P (S) = P ′(S) for all such sets. Thus, for every open set S, we have g(P (S),M(S)) = g(P (S),M ′(S)).
For strictly positive probability measures, with continuous positive density function ρ(x) > 0, the probability
P (S) =

∫
S
ρ(x) dx is always positive P (S) > 0.

Thus, we cannot have M(S) < M ′(S), because then, due to the the definition of strict monotonicity, we
would have g(P (S),M(S)) < g(P (S),M ′(S)). Similarly, we cannot have M ′(S) < M(S), because then we
would have g(P (S),M ′(S)) < g(P (S),M(S)). Since we cannot have M(S) < M ′(S) and we cannot have
M ′(S) < M(S), the only remaining possibility is M(S) = M ′(S). The theorem is proven.
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