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Abstract

Random error is usually estimated in two ways: either by measuring the same quantity several times
by the same measuring instrument or by measuring the same quantity using several similar measuring
instruments. In both cases, we then compute the differences of the measurement results to estimate the
random error. In environmental sciences, important information comes from eddy covariance measure-
ments that measure time-changing fluxes of CO2, H2O, heat, etc. For these measurements, it is not easy
to apply usual methods of estimating random error: we do not have a standard flux that can be used
for calibration, and it is difficult to bring additional instruments to the tower for measuring the same
flux. Thus we need new easier methods to estimate random errors of these flux measurements. For this
estimation, we propose to use the fact that while the actual flux smoothly changes with time, the measure-
ment results are non-smooth or “wiggly”. This non-smoothness is caused by the difference between the
measurement results and the actual values of the flux, i.e., by the random component of the measurement
error. (The systematic component is the same for all the measurements and therefore does not introduce
non-smoothness.) It is therefore reasonable to use the observed non-smoothness to estimate the random
component of the measurement error.
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1 Formulation of the Problem

Measurement problem. To better understand meteorological and environmental processes, scientists need
to estimate vertical exchanges of heat and different substances (such as COs and H20) between the Earth
surface and the atmosphere [I]. The exchange amount per unit of time and per unit of area is known as fluz.

Most of this exchange is carried by turbulent atmospheric processes, mostly by eddies — rotating air-flows
of different sizes. The corresponding fluxes can be measured by a tower equipped with measuring instruments
at different heights; such a tower is called an eddy covariance tower. A single tower measures flow through a
single point within the area of interest. To estimate the flux, i.e. the flow over the area of interest, scientists
commonly integrate the flow values.

Need to estimate measurement uncertainty. The ultimate objective of flux measurement is to make
important environmental decisions based on the results of these measurements. For example, if we observe
that in a certain geographic area, plants start processing fewer COg, then something needs to be done to
enhance the vitality of these plants and their ability to generate oxygen.

Since measurements are never absolutely accurate, to make meaningful decisions we need to know whether
the change in the measured flux values reflects the actual flux change or the actual flux didn’t change but the
observed values are different because of the random measurement errors. To make this distinction, we need
to know how big the random measurement errors can be, i.e., we need to estimate the random errors.

What is random error: reminder. The measurement error Az is defined as the difference Ax =7 — =
between the measurement result Z and the actual value z of the desired quantity; see, e.g., [2].
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Measurement results are never absolutely accurate and never absolutely reliable. A natural way to increase
accuracy and reliability is make several repeated measurements. If we repeatedly use the same measuring
instrument to measure the same quantity x, then, in general, we get slightly different measurement results —
since while the instrument is the same and the quantity is the same, factors affecting accuracy may change.
In other words, in this case, the measurement result can be viewed as a random variable, in which different
values appear with different probability. Thus, the measurement error Ax = r — x is also a random variable.

The expected (mean) value of the measurement error is known as systematic error component (or systematic

error, for short) Az def E[Az], and the remaining part of the measurement error is called a random error

component (or simply random error) Ax, f Az — Axg.

By definition, the random error has zero mean:
E[Az,] = E[Ax — Az = E[Ax] — E[Axg] = Azs — Azs = 0.

To characterize random error, usually, its standard deviation o is used. In general, the standard deviation is
defined as 02 = E |(Ax, — E[Amr])ﬂ. Since E[Ax,] = 0, this formula can be simplified:

o2 =E [(Axrﬂ —F [(Ag: - E[Az])ﬂ .

How random error is usually estimated. The problem of estimating random error is ubiquitous in mea-
surement practice; see, e.g., [2]. In some measuring situations, we have a “standard” measuring instrument,
i.e., an instrument which is much more accurate than the one whose random error we are estimating. In such
situations, we can simply compare the results T obtained by our measuring instrument with the results T
obtained by the standard measuring instrument, and determine all the needed characteristics of the random
erTor.

Specifically, since the measurement error Axg, = Zgy — x of the standard measuring instrument is much
smaller than the measurement error Axz of our measuring instrument, we can safely ignore the value Axg
and thus, take the result Ty of applying the standard measuring instrument as the actual value x. In this
approximation, the measurement error Ax; = T; — x of each measurement ¢ = 1,...,n can be approximated
as Ax; ~ T; — Ts;. Based on these values, we can estimate the desired standard deviation o2 in the usual
way: first, we estimate the mean

1 n
Azg ~ . Zlei,
=

and then, estimate the standard deviation by using the formula

o’ ~ 1 Z(A% — Az,)?.

n—1
i=1

When the standard measuring instrument is not easily available, another way to gauge the random error
is to repeatedly measure the same quantity by two similar measuring instruments. By definition of the
measurement error components, the results 7 () and 7 (?) can be described as

g0 =z 4+ Az + AzM; 7O =z 4 Az + Az?.
Subtracting the expressions corresponding to the two instruments, we conclude that

7@ - 70 = (2 - AclV) + (A - AcD).

Here, the mean value of the difference 7@ —7M) i equal to A:cg) — Aa:él). Since measurement errors
corresponding to different measuring instruments are usually independent, it makes sense to assume that the
random variables Am@ and Axgl) are independent. Under this assumption, we can conclude that the variance
of the difference 72 — 7 () is equal to the sum of the variances corresponding to Azg) and Axgl). The two
measuring instruments are similar, so they have the same standard deviation ¢ and variance ¢2; therefore,
the standard deviation of the difference z(?) — () is equal to 202.
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Thus, if we have n pairs of results z;”’ and Ei@) of measuring the same quantities x; by two similar
measuring instruments, then we can estimate the standard deviation O’ of the random error of each measuring

instrument as follows. First, we estimate the mean difference m = A (2) A:cgl) between the systematic
errors as the average dlfference between the measurement results:

SEDMNCEEE U
n gt )
after that, we estimate the variance V = 202 of the difference between the measurement results as
1 2
o 2 ~(2) _ =)
Vet iy (R -EY) -m)
i=1

From V = 202, we can reconstruct o as o = 1/V/2.

Problem. For eddy covariance towers, the tower is the best available measuring instrument, so no more
accurate (“standard”) measuring instrument is available. Thus, the first way of gauging random error is not
applicable in our case.

The second way is, in principle, possible: we can bring all the instruments from one tower to a location of
another tower and thus, compare the measurement results. However, while this is possible (and done), this is
a very expensive and time-consuming procedure, so it can be used only rarely.

It is therefore desirable to come up with an easier way of gauging the random error of eddy covariance
measurements.

What we do in this paper. In this paper we propose a new method for estimating the random error of
eddy covariance measurements.

2 Main Idea

The objective of the tower is to measure the flux over a big area and average the values over a half-hour period.
This flux is smoothly changing during the day. For example, over plant-covered area, the daily changes in
the CO5 flux reflect the plant biology. During daytime, the plants’ photosynthesis process breaks down the
COg so its concentration decreases resulting in a downward flux. During nighttime, the plants breathe and
produce COs, so we have an upward flux. As a result the actual downward flux smoothly increases starting
from early morning and then smoothly decreases starting with late afternoon.

While the actual flux smoothly changes with time, the measurement results are non-smooth or “wiggly”.
This non-smoothness is caused by the difference between the measurement results and the actual values of the
flux, i.e., the measurement errors. To be more precise, the non-smoothness is caused by the random component
of the measurement error, because the systematic component is the same for all the measurements and
therefore does not introduce non-smoothness. It is therefore reasonable to use the observed non-smoothness
to estimate the random component of the measurement error.

[43

3 Towards an Algorithm

We know that the flux usually changes smoothly during the day, i.e., that the differences f4 11 — f4.+ between
the actual fluxes fg: and fg:11 at two consequent moments of time ¢ and ¢ + 1 are small. We also know
that if we perform the measurements during the same part of the season, then the corresponding differences
fat+1 — fa,e will not change much from one day d to another. As a result, if we had no measurement errors,
then, for each moment of time ¢, the differences between the measured flux values jﬁ:i’t+1 —]?d,t will be practically
the same for all days d.

In reality, the differences between the measured fluxes change from one day to another. As we have
mentioned, the reason why the observed flux values behave differently from the actual fluxes is that the
observed flux values f;: also contain systematic and random measurement errors:

far = far+ Afsas+ Afeas
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Because of this, each observed difference f:j,t_l,_l — fd,t consists of three components:
e the actual difference fg:41 — fa,+ between the fluxes — which doesn’t change much from day to day,

o the difference Afs g++1 — Afsa,+ between systematic errors — which also does change from day to day,
and

o the difference between random errors Afy g¢11 — Afy g+, which varies from day to day (and is 0 on
average).

f;l,t+1 - .]?d,t = (far+1 — far) + (Afsair1 — Dfsae) + (Afrderr — Afeat)- (1)

The first and the second components do not change from day to day, and the mean value of the third component
is 0; thus, the mean value of the sum (1) is equal to the sum of the the first and the second components:

m < E [ﬁi,t+1 - fd,t] = (fat+1 — far) + (Afsait1 — Afsar)-

So, by estimating the mean difference }V'd’t+1 — ]?d,t, we thus get an estimate for the sum of the first and the
second components:

D
my = (fae+1 — far) + (Afsaper — Afsar) = B [fd,t-i-l - J?d,t] ~ % > (Farrr = fa), (2)
d

=1

where D denotes the total number of observation days within a given season.
Now, by taking the difference between the observed differences fj:11 — fi+ and the estimated mean my,
we get the differences

Afr,d,t+1 - Afr,d,t = (ﬁi,t+1 - fd,t) — my

between the random errors. Similarly to the above description, it is reasonable to assume that these errors
are independent, and thus, to conclude that the variance of these differences is equal to 207:

D D
Vi= 201-2 ~ ﬁ : Z (Afrderr — Afr,d,t)2 = ﬁ : Z ((fd,tﬂ - J?d7t) - mt)z-
d=1 d=1

Thus, we arrive at the following algorithm for gauging the random error.

4 Resulting Algorithm for Estimating Standard Deviation of Ran-
dom Error
Input data. As the input, we take flux values fd,t measured on different days d = 1,..., D at different times

t =1,...,T. Usually, measurements are performed every half-hour, so T" = 48 measurement are performed
during the 24-hour day.

Objective. The objective is to compute, for each time ¢, the standard deviation o; which characterizes the
random error related to measuring the flux at time ¢.

Algorithm. First, we compute the differences between the results measured at consecutive times of the
same day:

fa1 — far
After that, we compute the means

1 D
mg 1= 5 ' Z (fd,t—rl - ﬁi,t) .

d=1
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Then, we compute

1 & - 2
Vi = m : Z ((fd,t+1 - fd,t) - mt) .

Based on V;, we estimate the desired standard deviation as

Vi
Ot = —_.

2

Testing. We tested this algorithm on the simulated data. We started with a simple quadratic heat flux
model where at time ¢ = 0 flux f = 0, at time t = 24 flux f = 1, and at time ¢ = 48 flux f = 0. These three
requirements uniquely determine the corresponding quadratic dependence as:

(t/2) - (24 = (t/2))

122

far=

To simulate random measurement errors, we selected ¢ = 0.1 and then, for each d and ¢, we added, to the
actual flux values, the results ;: of simulating a normally distributed normal variable with 0 mean and

standard deviation o: fq;: = fq,+ + £a,+. For thus simulated data, the above algorithm enables to recover the
value o with a reasonable accuracy.
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