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Abstract

The linear rank test for two-sample data, which is a popular non-parametric statistical test, is extended
to the case when the available data are imprecise rather than crisp. To do this, using some elements of
credibility theory, we suggest a ranking method among imprecise observations and apply it to extend the
usual concept of p-value leading a degree to accept or reject the null hypothesis of interest. Some applied
examples, in psychology and lifetime testing, are provided to clarify the proposed approach.
c©2013 World Academic Press, UK. All rights reserved.
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1 Introduction

Nonparametric statistical tests have advantages over their parametric counterparts because they have fewer
underlying assumptions. Two-sample nonparametric tests are usual powerful tests in detecting population
differences when underlying probability distributions are not completely assumed. In fact, two-sample tests
are the most useful nonparametric methods for comparing two populations, as they are sensitive to differences
in both location and shape of the empirical cumulative distribution functions of the two populations. Such
tests are commonly based on crisp (exact/nonfuzzy) observations. But, in the real world, there are many
situations in which, due to some practical limitations and/or human judgments, the available data are fuzzy
rather than crisp (precise). In such cases, we are often dealing with two types of uncertainty; randomness
and fuzziness. Randomness involves only uncertainties in the outcomes of an experiment; fuzziness, on the
other hand, involves uncertainties in the impreciseness/vagueness of the data. For instance, a virus may be
active complectly over a certain period but losing in effect for some time, and finally go dead complectly at a
certain time. In such a case, we may report the lifetimes as imprecise quantities such as: “approximately 40
(h)”, “approximately 55 (h)”, “essentially less than 30 (h)”and the like. As another example, the lifetime of a
tire cannot be measured precisely. In this case, we can just report the lifetime of the tires by some imprecise
quantities such as “about 32000 miles”, “essentially less than 41000 miles”,“approximately 33000 miles”, etc.

To deal with both types of uncertainties, it is necessary to incorporate uncertain concepts into statistical
techniques. By inception of fuzzy set theory, a lot of researches were concerned about the generalization of
statistical procedures to the fuzzy environments. However, as authors know, there have been few studies on
the topic of non-parametric procedures for the fuzzy environment. Regarding the purposes of this article,
we briefly review some of the literature on this topic. Grzegorzewski [5] introduced a method for inference
about the median of a population based on fuzzy random variables. He demonstrated a straightforward
generalization of some classical non-parametric tests for fuzzy random variables [6]. The last work relies
on the quasi-ordering based on a metric in the space of fuzzy numbers. Also, he utilized the necessity-
index of strict dominance, introduced by Zadeh [24], for ranking observations of vague data. Kahraman
et al. [12] proposed some algorithms for non-parametric rank-sum tests based on fuzzy random variables.
Grzegorzewski [7] proposed a two-sample fuzzy median test for fuzzy random variables. In this manner, he
obtained a fuzzy test showing a degree of possibility and a degree of necessity for rejecting the underlying
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hypothesis. Denoeux et al. [2] introduced a method for some non-parametric rank-sum based tests (for
large sample cases) that relies on the definition of a fuzzy partial ordering based on the necessity-index of
strict dominance between fuzzy numbers. Applying Monte Carlo approximation methods, they extended the
concept of p-value and proposed a degree of possibility and a degree of necessity to evaluate the null hypothesis
of interest. Hryniewicz [10] investigated the fuzzy version of the Goodman-Kruskal γ statistic described by
ordered categorical data. Hryniewicz and Szediw [11] investigated a heuristic algorithm for the calculation
of fuzzy Kendall’s τ that makes the implementation of the proposed chart applicable in statistical quality
control. Grzegorzewski [9] proposed a modification of the classical one-sided upper Sign test to cope with
vague data modeled by intuitionists fuzzy set for testing crisp or imprecise hypotheses. He also studied the
problem of testing the equality of k-samples against the so-called “simple-tree alternative” by generalizing the
two-sample fuzzy median test [8]. Using a defuzzification method to compare the observations, and based on a
crisp test statistic, Lin et al. [15] considered the problem of two-sample Kolmogorov-Smirnov test for certain
fuzzy data. Arefi et al. [1] extended some methods (histogram, empirical c.d.f., and kernel methods) for
estimating probability distribution functions (p.d.f.) when the available data are fuzzy. Taheri and Hesamian
[21] introduced a version of the Goodman-Kruskal measure of association for a two-way contingency table
when the observations are crisp but the categories are described by fuzzy sets, and developed a method for
testing independence in such a two-way contingency table (see also [20]). They also proposed a generalized
method of the Wilcoxon signed-rank test for imprecise observations, when the given significance level is a fuzzy
set [22]. In their work, the usual concepts of the test statistic and critical value are extended to the concepts
of the fuzzy test statistic and fuzzy critical value. For more on statistical methods for fuzzy observations, see
for example [14], [18] and [23].

The present paper aims to develop the non-parametric location and scale tests for imprecise observations
based on extending the classical p-value approach. The proposed method has some novelty among them is
that this method uses some concepts of credibility theory. Meanwhile, we develop the test function based on
the concept of interval p-value.

This paper is organized as follows: In Section 2, we review some classical non-parametric location and scale
tests. In Section 3, we recall some concepts of fuzzy variables and credibility measure. Then, using some ideas
of credibility theory, we propose a method to rank imprecise observations. In Section 4, based on the proposed
ranking method, we introduce a method to extend the linear rank statistics for imprecise observations. Finally,
using an extension of the concept of p-value, we propose a procedure to test the hypothesis of interest based on
a degree of acceptance and a degree of rejection. To explain the proposed method, some numerical examples
are provided in Section 5. Section 6 concludes the paper.

2 Linear Rank Tests: A Brief Review

Suppose that two independent random samples X1, . . . , Xn and Y1, . . . , Ym are drawn from populations with
the continuous cumulative distribution functions FX and FY , respectively. Many statistical tests applicable
to the two-sample problem are based on the rank-sum statistics for the combined samples of size N = n+m.
These tests can be classified as linear combinations of certain indicator variables for the combined ordered
sample of observations W1,W2, . . . ,WN , where Wj = 1 if the jth random variable in the combined ordered
sample is an X and Wj = 0 if it is a Y , for j = 1, 2, . . . , N . Such functions, often called linear rank statistics,
are defined as follows

TN =

N∑
j=1

a[j]Wj , (2.1)

where the a[j] are given constants called weights or scores [3].
Under the null hypothesis H0 : FX = FY , we have for all j = 1, 2, . . . , N ,

E(TN ) =
m

N

N∑
j=1

a[j],

V ar(TN ) =
mn

N2(N − 1)
(N

N∑
j=1

a2[j]− (

N∑
j=1

a[j])2).
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In this case, the distribution of TN is symmetric about its mean if a[j] = a[N−j+1], j = 1, 2, . . . , N (specially
when m = n = N/2). The distribution of the standardized linear rank statistic (TN − E(TN ))/

√
V ar(TN )

approaches to the standard normal distribution subject to certain regularity conditions [3, 4].
In testing the null hypothesis of identical distributions, there are generally two cases for the alternative

hypothesis, location problem and scale problem, which are explained in below (for more details, see [3]).

2.1 Location Problem

In this case, the alternative hypothesis is that the populations are of the same form but with a different
measure of central tendency. This can be expressed symbolically as follows,{

H0 : FY (x) = FX(x)
H1 : FY (x) = FX(x− θ), θ 6= 0.

Note that, the random variable Y is stochastically larger than X when θ > 0, and Y is stochastically
smaller than X when θ < 0. Thus, for example, when θ < 0, the median of X (MX) is larger than the median
of Y (MY ).

Some well-known linear rank statistics used in the two-sample location problem are given in Table 2.1. In
the table, Φ(x) and ζj denote the cumulative standard normal distribution and the jth-order statistic from a
standard normal population, respectively.

Table 2.1: Some well-known test statistics for two-sample location problem

Test Statistic a[j]

Wilcoxon: WN j

Van-Der Vaerden: VN Φ−1( j
N+1 )

Terry-Hoeffing: (TH)N E(ζj)

For example, the Wilcoxon’s large sample test statistic is given by

Z =
WN − mn

2√
mn(N+1)

12

,

whose distribution is approximately standard normal [3, 4]. At a given significance level δ, we reject H0 if the
observed p− value is less than δ, and otherwise, we accept it.

2.2 Scale Problem

Assume that, we are interested in detecting differences in variability between two populations. This can be
expressed symbolically as follows,{

H0 : FY−M (x) = FX−M (x)
H1 : FY−M (x) = FX−M (θx), θ > 0, θ 6= 1,

where M is interpreted to be the median and θ = σX/σY . The alternative hypothesis H1 appropriately called
the scale alternative because the cumulative distribution function of the Y is the same as that of the X but
with a compressed or enlarged scale according to θ > 1 or θ < 1, respectively. Some well-known linear rank
statistics used in the two-sample scale problem are given in Table 2.2 [3, 4].

Similar to the location problem, at a given significance level δ, we reject H0 if p−value < δ, and otherwise,
we accept it.

In Section 4, using some ideas from credibility theory, we will extend the linear rank tests for the location
and scale problems to the case when the available data are provided as fuzzy observations.
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Table 2.2: Some well-known test statistics for two-sample scale problem

Test Statistic a[j]

Mood: MN (j − (N + 1)/2)2

Ansari-Bradly: AN |j − (N + 1)/2|

Klotz Normal-Scores: KN (Φ−1(j/(N + 1)))2

Siegel-Tukey: SN



2j j even, 1 < j ≤ N/2,

2j − 1 j odd, 1 ≤ j ≤ N/2,

2(N − j) + 2 j even, N/2 < j ≤ N,

2(N − j) + 1 j odd, N/2 < j ≤ N.

3 Credibility Measure: Some Elementary Definitions and Results

Credibility theory, founded by Liu [17], is a branch of mathematics for studying the behavior of uncertain
phenomena. Since we will use some elements of credibility theory in our proposed procedure, in this section
we present some main concepts and results of this topic.

Definition 1 [17] Let Ω be a nonempty set, and A the power set of Ω. Generally, each element in A is called
an event. A set function Cr : A → [0, 1] is called a credibility measure on (Ω,A) if it satisfies the following
four axioms:

1. Axiom 1. (Normality) Cr{Ω} = 1.

2. Axiom 2. (Monotonicity) Cr{A} ≤ Cr{B} whenever A ⊆ B.

3. Axiom 3. (Self-Duality) Cr{A}+ Cr{Ac} = 1 for any event A.

4. Axiom 4. (Maximality) Cr{∪iAi} = supi Cr{Ai} for any events {Ai} with supi Cr{Ai} < 0.5.

Definition 2 [17] A fuzzy variable is a measurable function from a credibility space (Ω,A, Cr) to the set of

real numbers. For a fuzzy variable Ã, its membership function is defined by

µÃ(x) = (2Cr{Ã ∈ {x}}) ∧ 1, x ∈ R,

where the symbol ∧ stands for the minimum.

In the following, by {Ã ∈ C} we mean the set {w ∈ Ω : Ã(w) ∈ C}.
A fuzzy variable Ã with supµÃ(x) = 1 is called a normal fuzzy variable. By a triangular fuzzy variable we

mean the fuzzy variable fully determined by the triplet (aL, a, aU ) (briefly, Ã = (aL, a, aU )T ) of crisp numbers
with aL < a < aU , whose membership function is given by

µÃ(x) =


x−aL
a−aL if aL ≤ x < a
aU−x
aU−a if a ≤ x ≤ aU

0 if x < aL or x > aU .

Example 1: ([17], p.180) Let Ã be a normal fuzzy variable and r be a real number. Then, the credibility of

{Ã ∈ (−∞, r]} is

Cr{Ã ∈ (−∞, r]} =
1

2
(sup
x≤r

µÃ(x) + 1− sup
x>r

µÃ(x)). (3.1)
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Example 2: Suppose that Ã = (aL, a, aU )T is a triangular fuzzy variable. For any real number r, we can

calculate Cr{Ã ∈ (−∞, r]} as follows

Cr{Ã ∈ (−∞, r]} =


0 if r < aL
r−aL

2(a−aL) if aL ≤ r ≤ a
aU−2a+r
2(aU−a) if a < r ≤ aU

1 if r > aU .

For example, let Ã = (−2, 0, 1)T , then

Cr{Ã ∈ (−∞, r]} =


r+2
4 if − 2 ≤ r ≤ 0

1+r
2 if 0 < r ≤ 1

0 elsewhere.

To perform the non-parametric two-sample tests for location and scale problems based on imprecise observa-
tions, we need a suitable method of ranking fuzzy variables. Here, we introduce a method for ranking fuzzy
variables, which will be used in this article.

Definition 3 Let Ã and B̃ be two normal fuzzy variables, and α ∈ (0, 1] be a prescribed real number. Then,

at the level of α, B̃ is said to be smaller than Ã, denoted by B̃ <α Ã, if B̃α < Ãα, where, B̃α = inf{r :

Cr{B̃ ∈ (−∞, r] ≥ α} and Ãα = inf{r : Cr{Ã ∈ (−∞, r] ≥ α}. Also, at the level of α, B̃ is said to be equal

to Ã, denoted by B̃ =α Ã, if B̃α = Ãα. Finally, at the level of α, B̃ is said to be smaller than or equal to Ã,
denoted by B̃ ≤α Ã, if and only if B̃ <α Ã or B̃ =α Ã.

Note that Ãα is called α-optimistic value of Ã and Ãα = sup{r : Cr{B̃ ∈ [r,∞) ≥ α} is called α-pessimistic

value of B̃ [19].

Example 3: Suppose that Ã = (aL, a, aU )T is a triangular fuzzy variable. Then, from Example 3 we have

Ãα =

{
aL + 2α(a− aL) for 0 ≤ α ≤ 0.5
2α(aU − a)− (aU − 2a) for 0.5 < α ≤ 1.

For instance, if B̃ = (0, 2, 6)T and Ã = (1, 4, 5)T , then B̃ ≤α Ã for any α ∈ [0, 0.833].
The proposed ranking method has some properties, which are given in the following theorem.

Theorem 1 Let Ã, B̃ and C̃ be some normal fuzzy variables. At any level of α ∈ (0, 1],

1. Reflexivity: Ã ≤α Ã.

2. Symmetry: Ã ≤α B̃ and B̃ ≤α Ã, implies B̃ =α Ã.

3. Transitivity: Ã ≤α B̃ and B̃ ≤α C̃, imply Ã ≤α C̃.

4. For two arbitrary fuzzy variables Ã and B̃, Ã ≤α B̃ or Ã >α B̃.

Proof. (1) and (2) follow immediately from Definition 3.

(3) Since Ã ≤α B̃ and B̃ ≤α C̃, we have four cases as 1) Ãα < B̃α and B̃α < C̃α, 2) Ãα < B̃α and B̃α = C̃α,

3) Ãα = B̃α and B̃α < C̃α, 4) Ãα = B̃α and B̃α = C̃α. For each case, we have Ãα < C̃α or Ãα = C̃α. Thus,
the transitivity property is verified.
(4) Since Ãα ≤ B̃α or Ãα > B̃α, the result follows immediately. �

4 Linear Rank Tests with Imprecise Observations

In this section, we extend the linear rank tests to examine the hypotheses about the differences in location or
variability between two populations to the case when the observations are imprecise rather than crisp.

As we mentioned in Section 2, in the classical approach to test the null hypothesis H0 : FY = FX , the
observed linear rank statistic is given by

TN =

N∑
j=1

a[j]wj . (4.1)
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Now, consider the problem of non-parametric location and scale tests based on the imprecise observations
x̃1, x̃2, . . . , x̃n and ỹ1, ỹ2, . . . , ỹm. In this situation, to verify the null hypothesis H0, we have to combine the
imprecise observations as w̃1, w̃2, . . . , w̃N . Since the expression “less than or equal to” is a vague concept in
fuzzy environment, so we apply the ranking method proposed in Section 3 for realizing whether w̃j could be
regarded as “less than or equal to” w̃i. For a given α ∈ (0, 1], assume w̃α1, w̃α2, . . . , w̃αN denotes the ordered
combined samples x̃α1, x̃α2, . . . , x̃αn and ỹα1, ỹα2, . . . , ỹαm, where x̃αi and ỹαj are introduced in Definition
3 and w̃αj = 1 if the jth element in the combined ordered sample is an x and w̃αj = 0 if it is a y, for
j = 1, 2, . . . , N . However, since for every α ∈ (0, 1], the value

TNα =

N∑
j=1

a[j]w̃αj

is a candidate to be a test statistic, therefore, we have a set of linear rank test statistics as

T̃N = {T̃LN , T̃LN + 1, . . . , T̃UN }, (4.2)

in which

T̃LN = inf
α∈(0,1]

N∑
j=1

a[j]w̃αj , T̃
U
N = sup

α∈(0,1]

N∑
j=1

a[j]w̃αj . (4.3)

Since the extended test statistic is a set, hence to construct a procedure for testing the interested hypothe-
ses, we define an extended p-value as an interval in the following way.

Definition 4 In testing the null hypothesis H0 : FY = FX based on imprecise observations, the p-value is
defined by an interval p̃− value = [p̃L, p̃U ] as follows

• for the case of alternative hypothesis H1 : θ < 0,

p̃L = infw∈T̃N
PH0

(TN ≥ w) = PH0
(TN ≥ T̃UN ), (4.4)

p̃U = supw∈T̃N
PH0

(TN ≥ w) = PH0
(TN ≥ T̃LN ), (4.5)

• for the case of alternative hypothesis H1 : θ > 0,

p̃L = infw∈T̃N
PH0

(TN ≤ w) = PH0
(TN ≤ T̃LN ), (4.6)

p̃U = supw∈T̃N
PH0

(TN ≤ w) = PH0
(TN ≤ T̃UN ), (4.7)

• for the case of alternative hypothesis H1 : θ 6= 0,

p̃L = min
t∈T̃N

{
min

{
2 min{PH0

(TN ≤ t),PH0
(TN ≥ t)}, 1

}}
, (4.8)

p̃U = max
t∈T̃N

{
min

{
2 min{PH0

(TN ≤ t),PH0
(TN ≥ t)}, 1

}}
. (4.9)

Now, by inception the idea given by Grzegorzewski [9], decision making to accept or reject the null hypothesis
is provided based on the following test function.

Definition 5 Consider the problem of linear rank test with imprecise observations at a given significance level
δ ∈ (0, 1]. Then, the test function is defined by

φδ(x̃1, x̃2, . . . , x̃n, ỹ1, ỹ2, . . . , ỹm) =


0 if δ ≤ p̃L
δ−p̃L
p̃U−p̃L if p̃L < δ ≤ p̃U
1 if δ > p̃U .

(4.10)

In which, test function, φδ(x̃1, x̃2, . . . , x̃n, ỹ1, ỹ2, . . . , ỹm) is interpreted as “degree of rejection” of H0 and
1− φδ(x̃1, x̃2, . . . , x̃n, ỹ1, ỹ2, . . . , ỹm) is interpreted as “degree of acceptance” of H0.
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Table 5.1: Data set in Example 5

Supplier A Supplier B
(42 , 46 , 53 )T (30 , 35 , 42 )T
(53 , 56 , 62 )T (56 , 66 , 73 )T
(57 , 60 , 68 )T (48 , 58 , 63 )T
(42 , 49 , 57 )T (77 , 83 , 88 )T

- (65 , 71 , 76 )T

Based on the proposed method in this paper, therefore, the steps of linear rank test for imprecise obser-
vations can be summarized as follows:

1. Determine the fuzzy test statistic, using Equation (4.2).
2. Determine the interval p-value p̃− value = [p̃L, p̃U ] for the hypotheses of interest, using Definition 4.
3. At the given significance level of δ:

if δ ≤ p̃L, then accept H0 with degree of one;
if p̃U < δ, then reject H0 with degree of one;

if p̃L < δ ≤ p̃U , then reject H0 with degree of φδ = δ−p̃L
p̃U−p̃L and accept it with degree of 1− φδ.

Remark 1: If the imprecise observations reduce to the crisp values, then Cr{w̃j ∈ (−∞, r]} = 1
2 (I(wj ≤

r) + 1− I(wj > r)), and so for any α ∈ (0, 1] we have w̃αj = inf{r : Cr{w̃αj ∈ (−∞, r] ≥ α} = wj . Therefore,

T̃LN = T̃LN =
∑N
j=1 a[j]wj = TN , and then p̃ − value = p − value. So, the proposed test is reduced to the

classical non-parametric location and scale tests (Section 2).

Remark 2: It should to be mentioned that, using a concept of fuzzy test statistic, Grzegorzewski [7, 8]
investigated median tests for vague data. He utilized the necessity-index introduced by Zadeh [24] for ranking
fuzzy data. At a crisp significance level, he constructed a fuzzy test based on the classical critical region, in
which the result of the test is presented by two possibility-necessity-based indices. In addition, Kahraman et
al. [12] considered the problem of some non-parametric tests for fuzzy observations. Based on some fuzzy
ranking methods and some representative values, they obtained a crisp test statistic to evaluate the hypotheses
of interest. In addition, they constructed a fuzzy non-parametric test for which the result of the test is given by
a 0-1 decision. In contrast, our method lead to a degree between zero and one, to evaluate the null hypothesis
of interest.

Grzegorzewski also proposed a modification of the classical one-sided upper Sign test to cope with vague
data modeled by intuitionists fuzzy set for testing crisp or imprecise hypotheses [9]. Based on his approach,

the output of the Sign test statistic is an interval T̃N = [TL, TU ]. As a counterpart of the traditional p-value,
he considered an interval p-value as p̃ = [p̃L, p̃U ]. At a significance level δ, he made the following decision
rules:

if p̃U ≤ δ, then we reject H0;

if p̃U > δ, then we accept H0;

if p̃L ≤ δ < p̃U , then the test is not decisive (see [9]).

In contrast, in our proposed test, using a new ranking method and defining a test statistic T̃N =
{T̃LN , . . . , T̃UN }, we suggested a different method to that of Grzegorzewski’s method. Moreover, for making
decision to reject or accept a given hypothesis, we also proposed an extended version of Grzegorzewski’s
decision rule by introducing the concepts of degree of acceptance and degree of rejection.

5 Numerical Examples

To clarify our proposed method, some numerical examples are provided in this section.

Example 4: ([3], p.348) Two potential suppliers of street lighting equipment, A and B, want to present
their bids to a city manager. Two independent random samples of sizes 5 and 4 street lighting equipments
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Table 5.2: Data set in Example 5

Married Single
(51 , 57 , 60 )T (55 , 58 , 58 )T
(38 , 44 , 47 )T (45 , 45 , 45 )T
(59 , 60 , 60 )T (45 , 50 , 55 )T
(40 , 44 , 49 )T (47 , 54 , 57 )T
(34 , 39 , 43 )T (42 , 49 , 56 )T
(60 , 60 , 60 )T (32 , 39 , 45 )T
(35 , 44 , 50 )T (50 , 50 , 50 )T

- (42 , 51 , 58 )T

were tested from the suppliers. Since, under some unexpected situations, we cannot measure the lifetimes,
precisely, we can just obtain them around a number. The lifetimes are reported to be triangular fuzzy variables
as shown in Table 5.1. At the significance level δ = 0.05 we wish to test H0 : MA = MB v.s. H1 : MA 6= MB .

One of the most commonly used tests for the location problem is the Wilcoxon test. From Equation (4.3),
calculations show that

W̃L
N = inf

α∈(0,1]

9∑
j=1

jw̃αj = 15, W̃U
N = sup

α∈(0,1]

9∑
j=1

jw̃αj = 18,

and so W̃N = {15, 16, 17, 18}. Based on [3], Table J, pp. 585, and using Equations (4.8) and (4.9), we obtain,
p̃−value = [0.286, 0.730]. From Equation (4.10), since p̃L ≥ 0.05, we conclude that, with degree of acceptance
equal to one, there is no difference in the locations of the populations A and B.

Example 5: Consider the previous example. Assume that, we wish to test the null hypothesis whether
the lifetime of suppliers A and B have equal variability or not (i.e. H0 : σA = σB v.s. H1 : σA 6= σB), at
significance level 0.05. For such a case, the most frequently used test statistic is Siegel-Tukey statistic (Table

2.2). Using Equation (4.3), we obtained S̃N = {23, 24, 25, 26}. We also obtained p̃ − value = [0.180, 0.256].
Now, since p̃L ≥ 0.05, therefore, at the significance level δ = 0.05, we conclude that, with degree of one, there
is no basis for difference between variability suppliers A and B.

Example 6: ([13], p.221) A psychologist studies the degree of happiness of people at various stages in life.
His measure of general happiness varies from 0 to 60. In a certain study he compared the happiness of married
and single men aged 25. Each response is reported by a triangular fuzzy number as shown in Table 5.2. We
wish to test if singles are happier than marries (i.e., H0 : MS = MM v.s. H1 : MS > MM ).

From Equation (4.2), we obtained W̃N = {55, 56, 57, 58, 59, 60, 61, 62} and therefore, using Equations (4.4-
4.5), we obtained p̃−value = [0.268, 0.567]. At the significance level of δ = 0.10, since p̃L ≥ 0.10, we conclude
that with degree of one there is no difference between the two groups.

6 Conclusion

In the present paper, we proposed a generalization of the non-parametric two-sample tests for imprecise
observations. We considered mainly location and scale tests that utilized a proposed ranking method based
on some preliminary concepts of the credibility measure. To do this, the usual concept of p-value is extended
to an interval p-value. Finally, we introduce the concepts of “degree of acceptance” and “degree of rejection”,
to evaluate the hypothesis of interest.

The study of the power of the proposed test and developing the linear rank test for fuzzy hypotheses are
some potential subjects for further research.
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