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Abstract

Fuzzy random variable is a useful tool to describe twofold uncertainty. The purpose of this paper
is to study the convergence modes of fuzzy random variables in equilibrium theory. We first introduce
several convergence concepts for sequences of fuzzy random variables, such as convergence in equilibrium
measure and convergence in equilibrium distribution. Then, we discuss the convergence criteria for the
convergence modes. On the basis of the convergence criteria, we establish the convergence relations among
the convergence modes. Finally, we define the integral of fuzzy random variable with respect to equilib-
rium measure, and establish the dominated convergence theorem and bounded convergence theorem for
sequences of integrable fuzzy random variables.
c©2013 World Academic Press, UK. All rights reserved.
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1 Introduction

Fuzzy random variable was introduced by Kwakernaak [8] to describe the phenomena in which fuzziness
and randomness appear simultaneously in a decision process. Since then, its variants as well as extensions
were presented by a number of researchers, such as Kruse and Meyer [7], Puri and Ralescu [29] and Liu and
Liu [17]. The interested reader may refer to [2, 23], where various measurability criteria for fuzzy random
vectors were characterized by possibility and credibility measures. In this paper, we adopt the definition of
fuzzy random variable presented in [17] for fuzzy random optimization [9, 24], including fuzzy random chance-
constrained programming [4, 11, 16, 19, 20, 25, 30], fuzzy random dependent-chance programming [9, 12] and
fuzzy random expected value model [3, 5, 14, 18, 31]. For other formulations of fuzzy random optimization
models, the interested reader may refer to Luhandjula [26], Nematian [28] and Wang and Qiao [32].

Fuzzy random optimization problems include fuzzy random variable parameters described by possibil-
ity and probability distributions, when the uncertain parameters have continuous distributions, algorithms
to solve such optimization problems usually rely on approximation schemes and heuristic algorithms. For
example, Liu [14, 15] developed the approximation schemes for two-stage fuzzy random programming with
recourse; Hao and Liu [5] and Liu et al. [25] studied fuzzy random portfolio optimization problems by em-
ploying the approximation methods to compute the variance and mean chance of fuzzy random variables; Qin
and Liu [30, 31] combined the approximation method with heuristic algorithms to solve fuzzy random data
envelopment analysis, and the convergence modes in mean theory were documented in Liu et al. [22]. To
further develop the approximation schemes for fuzzy random optimization problems, the purpose of present
paper is to study the convergence modes of fuzzy random variables in equilibrium theory [19], in which we
discuss the convergence criteria of convergence modes, the convergence relations of convergence modes and
the convergence theorems of integrable fuzzy random variables.

This paper is organized as follows. Section 2 recalls several concepts in fuzzy random theory, including
fuzzy variable, fuzzy random variable, and the equilibrium measure of fuzzy random event. In Section 3,
we first define some convergence concepts for sequences of fuzzy random variables, including convergence in
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equilibrium measure, and convergence in equilibrium distribution, then we discuss the convergence criteria
for convergence almost uniform, convergence almost sure, and convergence in equilibrium measure. The
convergence relationships among the convergence modes are also discussed in this section. In Section 4, we
first define the integral of fuzzy random variable, then we deal with two main convergent results, the first is
called the dominated convergence theorem for integrable fuzzy random variables, and the second is called the
bounded convergence theorem for essentially bounded fuzzy random variables. Finally, Section 5 gives the
conclusions.

2 Preliminaries

Given a universe Γ, an ample field A on Γ is a class of subsets of Γ that is closed under arbitrary unions,
intersections and complement in Γ. If Pos is a set function defined on the ample field A, then the set function
Cr defined by

Cr(A) =
1

2
(1 + Pos(A)− Pos(Ac)) , A ∈ A (1)

is called a credibility measure [13]. It is easy to check that Cr is a self-dual set function in the sense that

Cr(A) = 1− Cr(Ac), A ∈ A.

The triplet (Γ,A,Cr) is called a credibility space, in which a fuzzy variable is defined as follows.

Definition 1 ([10]). A fuzzy variable X is defined as a function from a credibility space (Γ,A,Cr) to the real
line < such that for every t ∈ <,

{γ ∈ Γ | X(γ) ≤ t} ∈ A. (2)

The possibility distribution of the fuzzy variable X is defined as

µX(t) = Pos({γ ∈ Γ | X(γ) = t}), t ∈ <.

In fuzzy random theory, we formally define a fuzzy random variable as follows.

Definition 2 ([17]). Assume (Ω,Σ,Pr) is a probability space. A fuzzy random variable is a map ξ : Ω→ Fv
such that for any Borel subset B of <, the credibility function Cr{ξω ∈ B} is measurable with respect to ω,
where Fv is a collection of fuzzy variables defined on a credibility space.

The following definition is about the equilibrium chance of a fuzzy random event.

Definition 3 ([19]). Let ξ be a fuzzy random variable, and B a Borel subset of <. Then the equilibrium
(chance) measure of an event {ξ ∈ B} is defined as

Che{ξ ∈ B} =
∨

0≤α≤1

[α ∧ Pr{ω | Cr{ξω ∈ B} ≥ α}] . (3)

Since 0 ≤ Cr{ξω ∈ B} ≤ 1, the integral in Eq. (3) is well-defined. For any Borel subset B of <, the
equilibrium measure has the following dual relation

Che {ξ ∈ B} = 1− Che {ξ ∈ Bc} . (4)

We next recall three convergence concepts for sequences of fuzzy random variables.

Definition 4 ([22]). Let {ξn} be a sequence of fuzzy random variables. The sequence {ξn} is said to converge

uniformly to a fuzzy random variable ξ on Ω× Γ, denoted by ξn
u.−→ ξ, if

lim
n→∞

sup
(ω,γ)∈Ω×Γ

|ξn,ω(γ)− ξω(γ)| = 0.

Definition 5 ([22]). Let {ξn} be a sequence of fuzzy random variables. The sequence {ξn} is said to converge

almost uniformly to a fuzzy random variable ξ, denoted by ξn
a.u.−→ ξ, if there exist two nonincreasing sequences

{Em} ⊂ Σ, {Fm} ⊂ A with limm Pr(Em) = limm Cr(Fm) = 0 such that for each m = 1, 2, . . . , we have

ξn
u.−→ ξ on Ω\Em × Γ\Fm.
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Definition 6 ([22]). Let {ξn} be a sequence of fuzzy random variables. The sequence {ξn} is said to converge

almost surely to a fuzzy random variable ξ, denoted by ξn
a.s.−→ ξ, if there exist E ∈ Σ, F ∈ A with Pr(E) =

Cr(F ) = 0 such that for every (ω, γ) ∈ Ω\E × Γ\F , we have

lim
n→∞

ξn,ω(γ)→ ξω(γ).

3 Relationships among Convergence Modes

In this section, we first use the equilibrium measure to introduce some new concepts. Let ξ be a fuzzy random
variable defined on a probability space. The equilibrium distribution function of ξ is defined as

Geξ(t) = Che{ξ ≥ t}, t ∈ <.

It is evident that Geξ is a nonincreasing [0, 1]-valued function.
Let {Fn} and F be nonincreasing real-valued functions. The sequence {Fn} is said to converge weakly to

F , denoted by Fn
w.−→ F , if Fn(t)→ F (t) for all continuity points t of F .

As for the convergence modes with respect to the equilibrium measure, we have:

Definition 7. Let {ξn} be a sequence of fuzzy random variables. The sequence {ξn} is said to converge in

equilibrium measure to a fuzzy random variable ξ, denoted by ξn
Che

−→ ξ, if for every ε > 0,

lim
n→∞

Che{|ξn − ξ| ≥ ε} = 0.

Definition 8. Let Geξn be the equilibrium distribution functions of fuzzy random variables ξn, and Geξ the equi-
librium distribution function of fuzzy random variable ξ. The sequence {ξn} is said to converge in equilibrium

distribution to ξ, denoted by ξn
e.d.−→ ξ, if Geξn

w.−→ Geξ.

3.1 Convergence Criteria

The following lemma deals with the criterion for convergence almost uniform.

Lemma 1. Let {ξn} and ξ be fuzzy random variables, and Che the equilibrium measure. If ξn
a.u.−→ ξ, then

for every ε > 0, we have

lim
m→∞

Che

( ∞⋃
n=m

{|ξn − ξ| ≥ ε}

)
= 0. (5)

Conversely, if ω is a finite discrete random variable, then Eq. (5) implies ξn
a.u.−→ ξ.

Proof. If ξn
a.u.−→ ξ, then it is easy to show that the limit

ξn,ω
a.u.−→ ξω

holds almost surely with respect to ω. As a consequence, we have

lim sup
n→∞

Cr

( ∞⋃
n=m

{γ | |ξn,ω(γ)− ξω(γ)| ≥ ε}

)
a.s.
= 0.

Finally, according to the dominated convergence theorem of fuzzy integral, we obtain

lim
m→∞

Che

( ∞⋃
n=m

{|ξn − ξ| ≥ ε}

)
= 0.

Conversely, if Eq. (5) is valid, then we have

Cr

( ∞⋃
n=m

{|ξn,ω − ξω| ≥ ε}

)
Pr−→ 0.
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By Riesz’s theorem, there is a subsequence of {Cr(
⋃∞
n=m{|ξn,ω − ξω| ≥ ε})} convergence almost sure. By

the monotonicity of {Cr(
⋃∞
n=m{|ξn,ω − ξω| ≥ ε})}, we have

lim
m→∞

Cr

( ∞⋃
n=m

{|ξn,ω − ξω| ≥ ε}

)
a.s.
= 0.

Since ω is a finite discrete random variable, By [22, Proposition 1], we have ξn
a.u.−→ ξ. The proof of the

lemma is complete.

The criterion for convergence almost sure is given in the following lemma.

Lemma 2. Let {ξn} and ξ be fuzzy random variables, and Che the equilibrium measure. Then ξn
a.s.−→ ξ if

and only if for every ε > 0,

Che

( ∞⋂
m=1

∞⋃
n=m

{|ξn − ξ| ≥ ε}

)
= 0. (6)

Proof. First, it is easy to check that ξn
a.s.−→ ξ if and only if the limit

ξn,ω
a.s.−→ ξω

holds almost surely with respect to ω, i.e., there exists E ∈ Σ with Pr(E) = 0 such that for each ω ∈ Ω\E,
we have

ξn,ω
a.s.−→ ξω.

As a consequence, for every ε > 0,

Cr

( ∞⋂
m=1

∞⋃
n=m

{γ ∈ Γ | |ξn,ω(γ)− ξω(γ)| ≥ ε}

)
= 0, ω ∈ Ω\E,

which, by the property of fuzzy integral, is equivalent to

Che

( ∞⋂
m=1

∞⋃
n=m

{|ξn − ξ| ≥ ε}

)
= 0.

The proof of the lemma is complete.

We now deal with the criterion for convergence in equilibrium measure.

Lemma 3. Let {ξn} and ξ be fuzzy random variables, and Che the equilibrium measure. Then ξn
Che

−→ ξ if
and only if for every ε > 0,

Cr{γ | |ξn,ω(γ)− ξω(γ)| ≥ ε} Pr−→ 0.

Proof. Assume that ξn
Che

−→ ξ, then for every ε > 0 and α ∈ (0, 1], one has

0 ≤ α ∧ Pr{ω | Cr{|ξn,ω(γ)− ξω(γ)| ≥ ε} ≥ α} ≤ Che{|ξn − ξ| ≥ ε}.

As a consequence, we have

Cr{γ | |ξn,ω(γ)− ξω(γ)| ≥ ε} Pr−→ 0.

On the other hand, if

Cr{γ | |ξn,ω(γ)− ξω(γ)| ≥ ε} Pr−→ 0,

then for every α ∈ (0, 1], we have

lim
n→∞

Pr{ω | Cr{|ξn,ω(γ)− ξω(γ)| ≥ ε} ≥ α} = 0.

Finally, according to the dominated convergence theorem of fuzzy integral, we obtain

lim
n→∞

Che{|ξn − ξ| ≥ ε} = 0,

which completes the proof of the lemma.
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Proposition 1. Let {ξn} and ξ be fuzzy random variables, and Che the equilibrium measure. If ξn,ω
Cr−→ ξω

almost surely with respect to ω, then ξn
Che

−→ ξ.

Proof. Assume that ξn,ω
Cr−→ ξω almost surely with respect to ω. Then for every ε > 0, the limit

lim
n→∞

Cr{γ | |ξn,ω(γ)− ξω(γ)| ≥ ε} = 0

holds with probability 1. Since convergence a.s. implies convergence in probability, one has

Cr{γ | |ξn,ω(γ)− ξω(γ)| ≥ ε} Pr−→ 0,

which, by Lemma 3, implies ξn
Che

−→ ξ.

3.2 Convergence Relations

First, the following theorem compares convergence almost uniform and convergence almost sure.

Theorem 1. Let {ξn} and ξ be fuzzy random variables. If ξn
a.u.−→ ξ, then ξn

a.s.−→ ξ.

Proof. Assume ξn
a.u.−→ ξ. By Lemma 1, we have

lim
m→∞

Che

( ∞⋃
n=m

{|ξn − ξ| ≥ ε}

)
= 0.

By the monotonicity of equilibrium measure, we have

Che

( ∞⋂
m=1

∞⋃
n=m

{|ξn − ξ| ≥ ε}

)
≤ Che

( ∞⋃
n=m

{|ξn − ξ| ≥ ε}

)
,

which implies

Che

( ∞⋂
m=1

∞⋃
n=m

{|ξn − ξ| ≥ ε}

)
= 0.

It follows from Lemma 2 that ξn
a.s.−→ ξ. The proof of the theorem is complete.

The relation between convergence almost sure and convergence in equilibrium measure is discussed in the
following theorem.

Theorem 2. Let {ξn} and ξ be fuzzy random variables, and Che the equilibrium measure. If ξn
a.u.−→ ξ, then

ξn
Che

−→ ξ. Conversely, if ω is a finite discrete random variable, then ξn
Che

−→ ξ implies ξn
a.u.−→ ξ.

Proof. Suppose ξn
a.u.−→ ξ. By Lemma 1, we have

lim
m→∞

Che

( ∞⋃
n=m

{|ξn − ξ| ≥ ε}

)
= 0.

According to the following inequality

Che {|ξm − ξ| ≥ ε} ≤ Che

( ∞⋃
n=m

{|ξn − ξ| ≥ ε}

)
,

we obtain that
lim
m→∞

Che {|ξm − ξ| ≥ ε} = 0,

i.e., ξn
Che

−→ ξ.
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Assume ω is a discrete random variable with the following probability distribution

ω ∼
(
ω1, ω2, . . . , ωN
p1, p2, . . . , pN

)
,

where pi > 0 and
∑N
i=1 pi = 1. Let αi = Cr {|ξn,ωi(γ)− ξωi(γ)| ≥ ε}. Then we have

Cr {|ξn,ωi(γ)− ξωi(γ)| ≥ ε} ∧ pi ≤ Che {|ξn − ξ| ≥ ε} .

By ξn
Che

−→ ξ, we deduce that

ξn,ωi

Cr−→ ξωi
, i = 1, 2, . . . , N.

Then for each positive integer k = 1, 2, . . . , and i = 1, 2, . . . , N , we have

lim
n→∞

Cr {γ ∈ Γ | |ξn,ωi(γ)− ξωi(γ)| ≥ 1/k} = 0.

Thus, for each m, there exists Nkm such that for i = 1, 2, . . . , N , one has

Cr {γ ∈ Γ | |ξn,ωi
(γ)− ξωi

(γ)| ≥ 1/k} < 1/2m

whenever n ≥ Nkm. Letting

Em =

N⋃
i=1

∞⋃
k=1

⋃
n≥Nkm

{γ ∈ Γ | |ξn,ωi
(γ)− ξωi

(γ)| ≥ 1/k},

then we have
Cr(Em) ≤ sup

i
sup
k

sup
n≥Nkm

Pos {γ | |ξn,ωi(γ)− ξωi(γ)| ≥ 1/k} < 1/m.

It is easy to show that {ξn,ωi} converges to ξωi uniformly on each Γ\Em. Thus, ξn
a.u.−→ ξ. The proof of the

theorem is complete.

By Theorems 1 and 2, we obtain the following result about the relation between convergence in equilibrium
measure and convergence almost sure.

Theorem 3. Let {ξn} and ξ be fuzzy random variables, and Che the equilibrium measure. If ω is a finite

discrete random variable, then ξn
Che

−→ ξ implies ξn
a.s.−→ ξ.

Finally, the following theorem discusses the relation between convergence in equilibrium measure and
convergence in equilibrium distribution.

Theorem 4. Let {ξn} and ξ be fuzzy random variables, and Che the equilibrium measure. If ξn
Che

−→ ξ, then

ξn
e.d.−→ ξ.

Proof. For every ω ∈ Ω, let Gn,ω and Gω be the credibility distribution functions of ξn,ω and ξω, respectively.
Then for every t ∈ <, ε > 0 and integer n, one has

Cr{ξn,ω ≥ t} ≤ Cr{ξn,ω ≥ t, |ξn,ω − ξω| < ε}+ Cr{ξn,ω ≥ t, |ξn,ω − ξω| ≥ ε}
≤ Cr{ξω ≥ t− ε}+ Cr{|ξn,ω − ξω| ≥ ε}.

That is,
Gn,ω(t) ≤ Gω(t− ε) + Cr{|ξn,ω − ξω| ≥ ε}.

Letting n→∞, and then ε→ 0, we obtain

lim sup
n→∞

Gn,ω(t) ≤ Gω(t− 0).

On the other hand, according to the following inequality

Cr{ξω ≥ t+ ε} ≤ Cr{ξω ≥ t+ ε, |ξn,ω − ξω| < ε}+ Cr{ξω ≥ t+ ε, |ξn,ω − ξω| ≥ ε}
≤ Cr{ξn,ω ≥ t}+ Cr{|ξn,ω − ξω| ≥ ε},
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we have
Gω(t+ ε) ≤ Gn,ω(t) + Cr{|ξn,ω − ξω| ≥ ε},

and
lim inf
n→∞

Gn,ω(t) ≥ Gω(t+ 0).

Therefore, Gn,ω
w.−→ Gω almost sure with respect to ω. By the dominated convergence theorem of fuzzy

integral, we have Gen
w.−→ Ge, i.e., ξn

e.d.−→ ξ.

4 Dominated Convergence Theorems

In equilibrium theory, we define the equilibrium expected value of a fuzzy random variable as follows.

Definition 9. Let ξ be a fuzzy random variable. Then the (equilibrium) expected value of ξ is defined as

Ee[ξ] =

∫ ∞
0

Che{ ξ ≥ r } dr −
∫ 0

−∞
Che{ ξ ≤ r } dr (7)

provided one of the two integrals is finite.

Let f : I → <̄ = < ∪ {±∞} be a nonincreasing function on an interval I ⊂ <̄, and the interval J =

[infx∈I f(x), supx∈I f(x)] ⊂ <̄. Then a map f̆ : J → Ī is called the pseudo-inverse function of f if

a ∨ sup{x | f(x) > y} ≤ f̆(y) ≤ a ∨ sup{x | f(x) ≥ y},

where a = inf I. It is easy to check that the function f̆ is nonincreasing and its pseudo-inverse (f̆)˘ equals f
except on an at most countable set, and denoted e.c. for short, i.e.,

(f̆)˘
e.c.
= f. (8)

The improper Riemann integrals of f and f̆ have the following connections (see, [1]):

(i) For a nonincreasing function f : <̄+ → <̄+ and any pseudo-inverse f̆ of f , one has∫ ∞
0

f(x)dx =

∫ ∞
0

f̆(y)dy. (9)

(ii) For a nonincreasing function f : [0, b]→ <̄, 0 < b <∞ and any pseudo-inverse f̆ of f , one has∫ b

0

f(x)dx =

∫ ∞
0

f̆(x)dx+

∫ 0

−∞
(f̆(y)− b)dy. (10)

Next, we define the equilibrium fractile function of a fuzzy random variable:

Definition 10. Let ξ be a fuzzy random variable with the equilibrium distribution function Geξ. Then the
equilibrium fractile function of ξ is defined by

V@Re
α(ξ) = sup{t | Geξ(t) ≥ α}, α ∈ [0, 1]. (11)

The equilibrium distribution function Geξ is nonincreasing, its equilibrium fractile function V@Re
α(ξ) is

also nonincreasing with respect to α, and it is a pseudo-inverse function of Geξ.
The following lemma gives an equivalent representation for the equilibrium expected value of fuzzy random

variable:

Lemma 4. If ξ is a fuzzy random variable, then its equilibrium expected value is equivalent to the following
integral of the equilibrium fractile V@Re

α(ξ),

Ee[ξ] =

∫ 1

0

V@Re
α(ξ)dα.



Journal of Uncertain Systems, Vol.7, No.2, pp.118-128, 2013 125

Proof. In Eq. (10), let f(α) = V@Re
α(ξ), and b = 1. Then, by Eq. (8), we have

f̆
e.c.
= Geξ.

Therefore, according to Eq. (4), one has∫ 1

0

V@Re
α(ξ)dα =

∫ ∞
0

Geξ(t)dt+

∫ 0

−∞
(Geξ(t)− 1)dt = Ee[ξ],

which completes the proof of the lemma.

Definition 11. Let {ξn} and ξ be fuzzy random variables, and their equilibrium fractile functions are

{V@Re
α(ξn)} and V@Re

α(ξ), respectively. If V@Re
α(ξn)

w.−→ V@Re
α(ξ), then the sequence {ξn} is said to

converge in equilibrium fractile to ξ, and denoted by ξn
e.f.−→ ξ.

For sequences of fuzzy random variables, we have the following relation between the convergence in equi-
librium distribution and the convergence in equilibrium fractile:

Lemma 5. Let {ξn} and ξ be fuzzy random variables. Then ξn
e.d.−→ ξ is equivalent to ξn

e.f.−→ ξ.

Proof. We first prove the sufficiency. Suppose ξn
e.d.−→ ξ, we next prove ξn

e.f.−→ ξ.
In fact, suppose α ∈ (0, 1) is such that there is at most one value t having Geξ(t) = α. Denote z = V@Re

α(ξ).
On the one hand, we have Geξ(t) > α for t < z. Thus Geξn(t) > α for n ≥ Nt (some positive integer),

provided that t < z is a continuity point of Geξ. Hence V@Re
α(ξn) ≥ t, provided that t < z is a continuity

point of Geξ. Therefore

lim inf
n→∞

V@Re
α(ξn) ≥ t.

Since there is an increasing sequence {tn} of continuity points of Geξ converging to z, we have

lim inf
n→∞

V@Re
α(ξn) ≥ z.

On the other hand, as t > z, we have Geξ(t) < α. Thus Geξn(t) < α for n ≥ N ′t (some positive integer),
provided that t > z is a continuity point of Geξ. Hence V@Re

α(ξn) ≤ t, provided that t > z is a continuity
point of Geξ. Therefore

lim sup
n→∞

V@Re
α(ξn) ≤ t.

Since there is a decreasing sequence {tn} of continuity points converging to z, we have

lim sup
n→∞

V@Re
α(ξn) ≤ z.

Therefore, V@Re
α(ξn) → V@Re

α(ξ) for all except at most countably infinite number of α’s, i.e., for all
except those α’s that have many values of t such that Geξ(t) = α, which correspond to the heights of flat spots

of Geξ, and these flat spot height α’s are exactly the discontinuity points of V@Re
α(ξn). That is, ξn

e.f.−→ ξ.
Note that Geξ is the pseudo-inverse function of fractile function V@Re

α(ξ), the proof of the necessity is
similar to that of the sufficiency.

For sequence of integrable fuzzy random variables, we have the following general convergence theorem:

Theorem 5. Let {ξn} be a sequence of fuzzy random variables, and η and ζ integrable fuzzy random variables
such that

Geη
e.c.
≤ Geξn

e.c.
≤ Geζ .

If ξn
e.d.−→ ξ or ξn

Che

−→ ξ, then we have

lim
n→∞

Ee[ξn] = Ee[ξ].
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Proof. By Lemma 4, we have

Ee[ξ] =

∫ 1

0

V@Re
α(ξ)dα, Ee[ξn] =

∫ 1

0

V@Re
α(ξn)dα

for n = 1, 2, . . . . Since Geη
e.c.
≤ Geξn

e.c.
≤ Geζ , by the definition of fractile function, we deduce

V@Re
α(η)

e.c.
≤ V@Re

α(ξn)
e.c.
≤ V@Re

α(ζ), n = 1, 2, . . . .

Suppose ξn
e.d.−→ ξ, according to Lemma 5, we have

ξn
e.f.−→ ξ,

i.e., V@Re
α(ξn)

w.−→ V@Re
α(ξ). Since η and ζ are integrable, i.e,

Ee[η] =

∫ 1

0

V@Re
α(η))dα, Ee[ζ] =

∫ 1

0

V@Re
α(ζ)dα

are finite, by Lebesgue dominated convergence theorem, one has

lim
n→∞

∫ 1

0

V@Re
α(ξn)dα =

∫ 1

0

V@Re
α(ξ)dα,

i.e.,
lim
n→∞

Ee[ξn] = Ee[ξ].

On the other hand, if ξn
Che

−→ ξ, then Theorem 4 implies that

ξn
e.d.−→ ξ.

Therefore, we also have the desired result. The proof of the theorem is complete.

Definition 12. A fuzzy random variable ξ is said to be essentially bounded with respect to equilibrium measure
if there is a positive number a such that

Geξ(−a) = 1, and Geξ(a) = 0.

A sequence {ξk} of fuzzy random variables is said to be uniformly essentially bounded with respect to
equilibrium measure if there is a positive number a such that for each k = 1, 2, . . ., we have Geξk(−a) = 1, and
Geξk(a) = 0.

For essentially bounded fuzzy random variables, we have the following result:

Theorem 6. Let {ξn} and ξ be fuzzy random variables. If {ξn} is uniformly essentially bounded, and ξn
e.d.−→ ξ

or ξn
Che

−→ ξ, then we have
lim
n→∞

Ee[ξn] = Ee[ξ].

Proof. Since {ξn} is uniformly essentially bounded fuzzy random variables, there exist a positive number a
such that for any n,

Che{ξn ≥ −a} = 1, and Che{ξn ≥ a} = 0.

By the self-duality of equilibrium chance Che, for any n, we have

Che{ξn < −a} = 0, and Che{ξn < a} = 1.

By the definition of equilibrium chance, for any n, the following equalities

Cr{ξn,ω ≥ a} = Cr{ξn,ω < −a} = 0
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hold almost sure with respect to ω.
Letting η = −a, and ζ = a, then Geη ≤ Geξn ≤ G

e
ζ .

In fact, for every t ∈ <, by the subadditivity of Cr, the inequality

Cr{ξn,ω ≥ t} ≤ Cr{ξn,ω ≥ t, ξn,ω ≥ ζω}+ Cr{ξn,ω ≥ t, ξn,ω < ζω} ≤ Cr{ζω ≥ t}

holds almost sure with respect to ω. By the monotonicity of equilibrium chance, we obtain

Che{ξn ≥ t} ≤ Che{ζ ≥ t},

i.e., Geξn ≤ G
e
ζ . Similarly, by

Cr{ηω ≥ t} ≤ Cr{ηω ≥ t, ξn,ω ≥ ηω}+ Cr{ηω ≥ t, ξn,ω < ηω} ≤ Cr{ξn,ω ≥ t},

we have Geη ≤ Geξn . It follows from Theorem 5 that

lim
n→∞

Ee[ξn] = Ee[ξ].

The proof of the theorem is complete.

5 Conclusions

In equilibrium theory, we studied the convergence modes of fuzzy random variables, and obtained the following
major new results:

(i) We introduced some new convergence modes, including convergence in equilibrium measure, conver-
gence in equilibrium distribution, and convergence in equilibrium fractile for sequences of fuzzy random
variables.

(ii) We discussed the convergence criteria about convergence almost uniform, convergence almost sure and
convergence in equilibrium measure.

(iii) On the basis of convergence criteria, we established the convergence relations among convergence almost
sure, convergence almost uniform, convergence in equilibrium measure and convergence in equilibrium
distribution.

(iv) After introducing the integral of fuzzy random variable with respect to the equilibrium measure, we
established the dominated convergence theorem and bounded convergence theorem for sequences of
integrable fuzzy random variables.
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