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Abstract

This paper analyzes the multicriteria bimatrix goal game under the light of entropy environment. In
this approach, the entropy functions of the players are considered as objectives to the bimatrix game. The
solution concepts behind this game are based on getting the probability to achieve some specified goals
by determining G-goal security strategies (GGSS). We define the real coded Genetic Algorithm (GA) to
obtain the bounds of the objectives of the proposed game. Then formulated model is solved by fuzzy
programming technique. Finally a numerical example is included to illustrate the methodology.
c©2013 World Academic Press, UK. All rights reserved.
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1 Introduction

The concept of “entropy” is introduced to provide a quantitative measure of uncertainty. Entropy models are
emerging as valuable tools in the study of various social and engineering problems.

Two-person zero-sum game models are accurate when stakes are small monetary amounts. But in reality
sense, when the stakes are more complicated, as often in economic situations, it is not generally true that the
interests of the two players are exactly opposed. Such type of game models are known as non-cooperative
game model. In other words, such situations give rise to two-person non-zero sum game, called bimatrix
game. A bimatrix game can be considered as a natural extension of the matrix game, to cover situations in
which the outcome of a decision process does not necessarily dictate the verdict that what one player gains
the other one has to lose.

The family of probability distributions of strategies of every players are consistent with given information
for bimatrix game. We choose the distribution whose uncertainty or entropy is maximum. Each player is
interested in making moves which will be as surprising and as uncertain to the other player as possible. For
this reason, the players are involved in maximizing their entropies. Consequently, in the mathematical models
of multicriteria bimatrix game with certain goals, incorporate an entropy function as one of their objectives.
This model is known as multicriteria entropy bimatrix goal game model.

In conventional mathematical programming, the coefficients or parameters of the bimatrix game model
are assumed to be deterministic and fixed. But, there are many situations where the parameters may not
be exactly known i.e., the parameters may have some uncertainty in nature. Thus, the decision-making
method under uncertainty is needed. From this point of view, the fuzzy programming has been incorporated
in decision-making method. In fuzzy programming problem, the coefficients, constraints and the goals are
viewed as fuzzy numbers or fuzzy sets. In decision-making process, the fuzzy set theory was initiated by
Bellman and Zadeh [13] and later Zimmermann [14] showed that the classical algorithms could be used to
solve multi-objective fuzzy linear programming problem.

In this paper, some references are presented including their work. Fernandez et al. [5] considered to solve
the two-person multicriteria zero-sum games. As they have considered a multicriteria game, the solution
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concept is based on Pareto optimality. Finally they obtained the Pareto efficient solution for their proposed
games. Roy [12] has presented the study of two different solution procedures for the two-person bimatrix
game. The first solution procedure is applied to the game on getting the probability to achieve some specified
goals along the player’s strategy. The second specified goals along with the player’s strategy by introducing the
membership function of fuzzy programming defined on the pay-off matrix of the bimatrix game. In our recent
paper [3], we have proposed a new solution concept by considering the entropy function as an objective of the
players to bimatrix goal game and formulated some models, known as entropy bimatrix goal game models.
Solutions are obtained by introducing the concept of Pareto-optimal security strategies(POSS). It is shown
that the said models may have some risk factors in pay-offs for player with their measure of uncertainties
in strategies. Also in our another recent paper [9], we have proposed a game model by considering entropy
functions into the objectives of the players to the multicriteria goal game and named as multicriteria entropy
goal game model. Solutions are obtained by introducing the concept of G-goal security strategies(GGSS). It
includes as a part of solution with the probabilities of obtaining presanctified values of the pay-off functions
when the players are wanted to maximize the information about their strategies. But, no studies have been
made on multicriteria bimatrix goal game under the light of entropy environment.

2 Mathematical Model of a Bimatrix Game

A bimatrix game can be considered as a natural extension of the matrix game. A two-person non zero-sum
game can be expressed by a bimatrix game, comprised of two m× n dimensional matrices, namely A and B,
where

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

 , B =


b11 b12 . . . b1n
b21 b22 . . . b2n
...

...
. . .

...
bm1 bm2 . . . bmn

 .
If player PI adopts the strategy “row i” and player PII adopts the strategy “column j”, then aij denotes

the expected payoff for player PI and bij denotes the expected payoff for player PII.
For two-person multicriteria non zero-sum game, multiple pair of m×n payoff matrices can be formulated

as follows:

Al =


al11 al12 . . . al1n
al21 al22 . . . al2n
...

...
. . .

...
alm1 alm2 . . . almn

 , l = 1, . . . , n1 Bl =


bl11 bl12 . . . bl1n
bl21 bl22 . . . bl2n
...

...
. . .

...
blm1 blm2 . . . blmn

 , l = 1, . . . , n2

where the players PI and PII have n1 and n2 numbers of objectives respectively. Without any loss of generality,
assuming that the players PI and PII both are maximized players.

Definition 2.1 (Mixed Strategies): The mixed strategy of the bimatrix game for player PI and PII are defined
as follows:

Y = { y ∈ Rm;

m∑
i=1

yi = 1; yi ≥ 0, i = 1, 2, . . . ,m },

Z = { z ∈ Rn;

n∑
j=1

zj = 1; zj ≥ 0, j = 1, 2, . . . , n }.

Definition 2.2 (Expected Payoffs of Multicriteria Bimatrix Game): For bimatrix game, if the player PI
chooses the mixed strategy y ∈ Y and the player PII chooses the mixed strategy z ∈ Z, then the lth payoff
for the player PI is represented by Sl

1 = ytAlz, l = 1, . . . , n1 and that of the kth payoff for the player PII is
represented by Sk

2 = ytBkz, k = 1, . . . , n2. Here the player PI chooses a mixed strategy y and the player PII
chooses a mixed strategy z in a multicriteria bimatrix game (Al, Bk), l = 1, . . . , n1; k = 1, . . . , n2.
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For simplicity, we have considered the number of alternatives are equal i.e, n1 = n2.
Definition 2.3 (Expected Payoffs of Multicriteria Bimatrix Goal Game): The expected payoff vl(y, z), l =
1, . . . , s of the s-objective bimatrix game, Al = (alij) and Bl = (blij), l = 1, . . . , s with goals Gl = (Gl

1, G
l
2), for

each strategy pair y ∈ Y and z ∈ Z, is defined as follows:

vl(y, z) =
[
vl1(y, z), vl2(y, z)

]
, l = 1, . . . , s

where vl1(y, z) = ytAl
Gz, v

l
2(y, z) = ytBl

Gz, l = 1, . . . , s, Al
G = (δ1ij(l)), i = 1, 2, . . . ,m, j = 1, 2, . . . , n, l =

1, . . . , s, Bl
G = (δ2ij(l)), i = 1, 2, . . . ,m, j = 1, 2, . . . , n, l = 1, . . . , s, where

δ1ij(l) =

{
1 if alij ≥ Gl

1

0 otherwise
l = 1, . . . , s and δ2ij(l) =

{
1 if blij ≥ Gl

2

0 otherwise
l = 1, . . . , s.

Definition 2.4 (G-goal Security Level): The G-goal security level for PI, for each y ∈ Y, is

vG(y)(l) =
[
vG1 (y)(l), vG2 (y)(l)

]
, l = 1, . . . , s

where

vG1 (y)(l) = min
z∈Z

vl1(y, z) = min
z∈Z

ytAl
Gz = min

1≤j≤n

m∑
i=1

yiδ
1
ij(l),

vG2 (y)(l) = min
z∈Z

vl2(y, z) = min
z∈Z

ytBl
Gz = min

1≤j≤n

m∑
i=1

yiδ
2
ij(l).

Definition 2.5 (G-goal Security Strategy): A strategy y∗ ∈ Y is a G-goal security strategy (GGSS) for PI if
for each l = 1, . . . , s there is no y ∈ Y such that vG(y∗)(l) ≤ vG(y)(l), vG(y∗)(l) 6= vG(y)(l).

2.1 Determination of G-goal Security Strategies

The multicriteria bimatrix goal game model is represented as follows:

Model 1 max : vG1 (1), . . . , vG1 (s)

max : vG2 (1), . . . , vG2 (s)

subject to ytAl
G ≥ [vG1 (l), . . . , vG1 (l)], l = 1, . . . , s

ytBl
G ≥ [vG2 (l) . . . , vG2 (l)], l = 1, . . . , s

m∑
i=1

yi = 1; yi ≥ 0, i = 1, 2, . . . ,m

Definition 2.6 (Efficient Solution): A solution [vG∗(l); y∗], (l = 1, . . . , s) is an efficient solution of above
model (Model 1) if there does not exist any [vG(l); y], (l = 1, . . . , s) such that [vG(l); y], (l = 1, . . . , s) domi-
nates [vG∗(l); y∗], (l = 1, . . . , s).

Theorem 2.1 A strategy y∗ ∈ Y is a G-goal security strategies (GGSS) and vG∗(l) = vG(y∗)(l) =[
v1

G(y∗)(l), v2
G(y∗)(l)

]
(l = 1, . . . , s) is its G-goal security level iff [vG∗(1), . . . , vG∗(s); y∗] is an efficient

solution of Model 1.
Proof: Let y∗ be a GGSS. Then by definition there is no y ∈ Y such that vG(y∗)(l) ≤ vG(y)(l), vG(y∗)(l) 6=
vG(y)(l) (l = 1, . . . , s). This is an equivalent to[

min
j

(

m∑
i=1

yiδ
1
ij(l)),min

j
(

m∑
i=1

yiδ
2
ij(l))

]
≥

[
min
j

(

m∑
i=1

y∗i δ
1
ij(l)),min

j
(

m∑
i=1

y∗i δ
2
ij(l))

]
,

and [
min
j

(

m∑
i=1

yiδ
1
ij(l)),min

j
(

m∑
i=1

yiδ
2
ij(l))

]
6=

[
min
j

(

m∑
i=1

y∗i δ
1
ij(l)),min

j
(

m∑
i=1

y∗i δ
2
ij(l))

]
.
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Hence [vG∗(l); y∗], (l = 1, . . . , s) is an efficient solution of the problem

max
y∈Y

[
min
j

(

m∑
i=1

yiδ
1
ij(l)),min

j
(

m∑
i=1

yiδ
2
ij(l))

]
, l = 1, . . . , s.

Consequently the above solution is an equivalent to the solution of Model 1 i.e,

Model 1 max : vG1 (1), . . . , vG1 (s)

max : vG2 (1), . . . , vG2 (s)

subject to ytAl
G ≥ [vG1 (l), . . . , vG1 (l)], l = 1, . . . , s

ytBl
G ≥ [vG2 (l) . . . , vG2 (l)], l = 1, . . . , s

m∑
i=1

yi = 1; yi ≥ 0, i = 1, . . . ,m.

Conversely, suppose that an efficient solution [vG∗(l); y∗] (l = 1, . . . , s) of Model 1 and y∗ is not a GGSS.
Then, there exists y ∈ Y such that[

min
j

(

m∑
i=1

yiδ
1
ij(l)),min

j
(

m∑
i=1

yiδ
2
ij(l))

]
≥

[
min
j

(

m∑
i=1

y∗i δ
1
ij(l)),min

j
(

m∑
i=1

y∗i δ
2
ij(l))

]
,

and [
min
j

(

m∑
i=1

yiδ
1
ij(l)),min

j
(

m∑
i=1

yiδ
2
ij(l))

]
6=

[
min
j

(

m∑
i=1

y∗i δ
1
ij(l)),min

j
(

m∑
i=1

y∗i δ
2
ij(l))

]
.

Taking v(l) = [v1(l), v2(l)] (l = 1, . . . , s),wherev1(l) = minj(
∑m

i=1 yiδ
1
ij(l)), v2(l) = minj(

∑m
i=1 yiδ

2
ij(l)),

The vector [v(l); y] (l = 1, . . . , s) is a feasible solution of Model 1 dominating [vG∗(l); y∗], (l = 1, . . . , s).
This is a contradiction. Hence the theorem is proved.

2.2 Entropy Bimatrix Goal Game Model

Each player is interested in making moves which will be as surprising and as uncertain to the other player as
possible. For this reason, the two players are involved in maximizing their entropies. The mathematical form
of entropy are as follows:

H1 = −
m∑
i=1

yi ln(yi) (1)

Without any loss of generality, we combined the Model 1 with the above entropy function (1) and we have
formulated a new mathematical model namely Entropy Bimatrix Goal Game Model which is a multi-objective
non-linear programming model and this model is defined for player PI as follows:

Model 2 max : vG1 (1), . . . , vG1 (s)

max : vG2 (1), . . . , vG2 (s)

max : vG3 = H1

subject to ytAl
G ≥ [vG1 (l), . . . , vG1 (l)], l = 1, . . . , s

ytBl
G ≥ [vG2 (l) . . . , vG2 (l)], l = 1, . . . , s

H1 = −
m∑
i=1

yi ln(yi)

m∑
i=1

yi = 1; yi ≥ 0, i = 1, 2, . . . ,m.

Theorem 2.2 A strategy y∗ ∈ Y is a G-goal security strategies (GGSS) and vG∗(l) = vG(y∗)(l) =[
v1

G(y∗)(l), v2
G(y∗)(l)

]
, (l = 1, . . . , s) and vG3 (y∗) is its G-goal security level iff [vG∗(l); vG∗3 ; y∗] (l = 1, . . . , s)
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is an efficient solution of Model 2.
Proof: Let y∗ be a GGSS. Then by definition there is no y ∈ Y such that vG(y∗)(l) ≤ vG(y)(l), vG(y∗)(l) 6=
vG(y)(l), (l = 1, . . . , s) and vG3 (y) ≥ vG3 (y∗). This is an equivalent to[

min
j

(

m∑
i=1

yiδ
1
ij(l)),min

j
(

m∑
i=1

yiδ
2
ij(l))

]
≥

[
min
j

(

m∑
i=1

y∗i δ
1
ij(l)),min

j
(

m∑
i=1

y∗i δ
2
ij(l))

]
,

and [
min
j

(

m∑
i=1

yiδ
1
ij(l)),min

j
(

m∑
i=1

yiδ
2
ij(l))

]
6=

[
min
j

(

m∑
i=1

y∗i δ
1
ij(l)),min

j
(

m∑
i=1

y∗i δ
2
ij(l))

]
,

and H1(y) ≥ H1(y∗). Hence [vG∗(l); vG∗3 ; y∗] (l = 1, . . . , s) is an efficient solution of the following problem

max
y∈Y

[
min
j

(

m∑
i=1

yiδ
1
ij(l)),min

j
(

m∑
i=1

yiδ
2
ij(l))

]
, l = 1, . . . , s.

max
y∈Y

[H1(y)]

Consequently, the above solution is an equivalent to the solution of Model 2, i.e.,

Model 2 max : vG1 (1), . . . , vG1 (s)

max : vG2 (1), . . . , vG2 (s)

max : vG3 = H1

subject to ytAl
G ≥ [vG1 (l), . . . , vG1 (l)], l = 1, . . . , s

ytBl
G ≥ [vG2 (l) . . . , vG2 (l)], l = 1, . . . , s

H1 = −
m∑
i=1

yi ln(yi)

m∑
i=1

yi = 1; yi ≥ 0, i = 1, 2, . . . ,m.

Conversely, suppose that an efficient solution [vG∗(l); vG∗3 ; y∗] (l = 1, . . . , s) of Model 2 and y∗ is not a GGSS.
Then, there exists y ∈ Y such that[

min
j

(

m∑
i=1

yiδ
1
ij(l)),min

j
(

m∑
i=1

yiδ
2
ij(l))

]
≥

[
min
j

(

m∑
i=1

y∗i δ
1
ij(l)),min

j
(

m∑
i=1

y∗i δ
2
ij(l))

]
,

and [
min
j

(

m∑
i=1

yiδ
1
ij(l)),min

j
(

m∑
i=1

yiδ
2
ij(l))

]
6=

[
min
j

(

m∑
i=1

y∗i δ
1
ij(l)),min

j
(

m∑
i=1

y∗i δ
2
ij(l))

]
and H1(y) ≥ H1(y∗). Taking v(l) = [v1(l), v2(l)] (l = 1, . . . , s) and v3 where

v1(l) = min
j

(

m∑
i=1

yiδ
1
ij(l)), v2(l) = min

j
(

m∑
i=1

yiδ
2
ij(l)),

v3 = H1 = max H1(y). The vector [v(l), ; v3; y] (l = 1, . . . , s) is a feasible solution of Model 2 dominating
[vG∗(l); vG∗3 ; y∗] (l = 1, . . . , s). This is a contradiction. Hence the theorem is proved.

3 Solution Procedure

3.1 Fuzzy Programming

In fuzzy programming, first we construct the membership function for each objective function from Model
2. Let µl(v

G
1 (l)), µ2(vG2 (l)), l = 1, . . . , s, µ3(H1) be the membership functions for objectives respectively and
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they are defined as follows:

µ1(vG1 (l)) =


0 if vG1 (l) ≤ vG−1 (l)
vG
1 (l)−vG−

1 (l)

vG+
1 (l)−vG−

1 (l)
if vG−1 (l) ≤ vG1 (l) ≤ vG+

1 (l)

1 if vG1 (l) ≥ vG+
1 (l),

(2)

µ2(vG2 (l)) =


0 if vG2 (l) ≤ vG−2 (l)
vG
2 (l)−vG−

2 (l)

vG+
2 (l)−vG−

2 (l)
if vG−2 (l) ≤ vG2 (l) ≤ vG+

2 (l)

1 if vG2 (l) ≥ vG+
2 (l),

(3)

and

µ3(H1) =


0 if H1 ≤ H−1
H1−H−1
H+

1 −H
−
1

if H−1 ≤ H1 ≤ H+
1

1 if H1 ≥ H+
1

(4)

where vG+
1 (l), vG−1 (l) (l = 1, . . . , s) respectively, represent maximum and minimum values of vG1 (l) (l =

1, . . . , s); vG+
2 (l), vG−2 (l) (l = 1, . . . , s) respectively, represent maximum and minimum values of vG2 (l) (l =

1, . . . , s) and H+
1 , H

−
1 respectively, represent maximum and minimum values of H1, for player PI.

To convert in a single objective non-linear model from multi-objective non-linear model, we have introduced
the concept of fuzzy programming technique [i.e, using the equations (2),(3),(4)] and with the help of Model
2, then we have formulated the following single objective non-linear model and this model is denoted by
Model 3 as

Model 3 max : λ

subject to λ ≤ vG1 (l)− vG−1 (l)

vG+
1 (l)− vG−1 (l)

, l = 1, . . . , s

λ ≤ vG2 (l)− vG−2 (l)

vG+
2 (l)− vG−2 (l)

, l = 1, . . . , s

λ ≤ H1 −H−1
H+

1 −H
−
1

ytAl
G ≥ [vG1 (l), . . . , vG1 (l)], l = 1, . . . , s

ytBl
G ≥ [vG2 (l) . . . , vG2 (l)], l = 1, . . . , s

H1 = −
m∑
i=1

yi ln(yi)

m∑
i=1

yi = 1; yi ≥ 0, i = 1, 2, . . . ,m.

Now to solve the Model 3, we have required the values of vG+
1 (l), vG−1 (l), vG+

2 (l), vG−2 (l), (l = 1, . . . , s) H+
1 , H

−
1 .

These values are determined by our proposed GA which is defined in the next subsection.

3.2 Genetic Algorithm(GA)

Now, we developed an algorithm for determining the vG+
1 (l), vG−2 (l), (l = 1, . . . , s) and H+

1 , H
−
1 . The

following steps of GA are shown as follows:

Step 1: Initialize the parameters of GA of the proposed Entropy Bimatrix Goal Game model.
Step 2: t = 0 (t represents the number of current generation).
Step 3: Initialize P (t) [ P (t) represents the population at the t-th generation ].
Step 4: Evaluate P (t).
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Step 5: Find optimal result from P (t).
Step 6: t = t+ 1.
Step 7: If (t > maximum generation number) go to Step 13.
Step 8: Alter P (t) by mutation.
Step 9: Evaluate P (t).
Step 10: Find optimal result from P (t).
Step 11: Compare optimal results of P (t) and P (t− 1) and store better one.
Step 12: Go to Step 6.
Step 13: Print optimal result.
Step 14: Stop.

To implement the above GA for the proposed model, the following basic components are considered: (i)
Parameters of GA (ii) Chromosome Representation (iii) Initialization (iv) Evaluation Function (v) Selection
Process (vi) Genetic Operators (crossover and mutation) which are defined as follows:
• Parameters of GA : GA depends on different parameters like population size(POPSIZE), probability of
crossover(PCROS), probability of mutation(PMUTE) and maximum number of generation (MAXGEN). In
this study, we have taken the value of these parameters as follows:
POPSIZE= 25 PCROS= 0 PMUTE=0.6 MAXGEN= 80
• Chromosome Representation
The chromosome is defined as (ya1 , y

a
2 , y

a
3 , . . . , y

a
m) where yai ∈ Y, i = 1, 2, 3, . . . ,m.

• Initialization
In this study; ya1 , ya2 , . . . , yam−1, y

a
m are randomly given values and the chromosomes must satisfy that

ya1 + ya2 + ya3 + . . . + yam = 1. This process is randomly generating each element in (ya1 , y
a
2 , y

a
3 , . . . , y

a
m) and

ya1 + ya2 + ya3 + . . .+ yam = 1; Moreover the number of chromosome is limited to 25 when each new run begins.
• Evaluation function
Once (ya1 , y

a
2 , y

a
3 , . . . , y

a
m) is determined, the corresponding vGa

1 (l), vGa
2 (l), (l = 1, 2, . . . , s) can be computed

by Model 1 and Ha
1 can be computed by (1).

• Optimum 1
For 25 chromosomes, we get 25 set of values of vGa

1 (l), vGa
2 (l), (l = 1, 2, . . . , s) and Ha

1 . For each l = 1, 2, . . . , s,
among these 25 values of vGa

1 (l), we have stored maximum and minimum values in vGa+
1 (l) and vGa−

1 (l), re-
spectively. Similarly, for each l = 1, 2, . . . , s, among these values of vGa

2 (l), l = 1, 2, . . . , s we have stored
maximum and minimum values in vGa+

2 (l) and vGa−
2 (l), respectively. In each iteration, these maximum and

minimum values are globally stored in VMAX1(l), V MIN1(l), V MAX2(l), V MIN2(l), (l = 1, 2, . . . , s) re-
spectively. Similarly, among 25 values of Ha

1 we stored maximum value in Ha+
1 and minimum value in Ha−

1

and they are also globally stored in another locations HMAX1 and HMIN1 respectively, in each iteration.
• Selection
Selection procedure is omitted because here objectives are more than one so we can not choose the weaker
chromosome that serve worst value for all objectives.
• Crossover
Since it is not easy to design a crossover between chromosomes for satisfying that ya1 + ya2 + ya3 + . . .+ yam = 1,
therefore no crossover is applied in this study.
• Mutation
It is applied to single chromosome. It is designed as an order of elements in (ya1 , y

a
2 , y

a
3 , . . . , y

a
m) by randomly

determined cut-point. Consider an example: if the original chromosome is (ya1 , y
a
2 , y

a
3 , . . . , y

a
m) and cut-point

is randomly determined between the string: ya1 and ya2 , ya3 ,. . . , yam, then moreover newly mutated chromosome
(y
′

1, y
′

2, y
′

3, . . . , y
′

m) is (ya2 , y
a
3 , . . . , y

a
m, y

a
1 ).

In each iteration the (POPSIZE * PMUTE) number of chromosome are chosen for mutation.
• Iteration
The number of iteration is set to 80 runs, each of which begins with the different random seed.
• Optimum 2
After completing all the iterations, we determine vG+

1 (l), (l = 1, 2, . . . , s) as the maximum among all
VMAX1(l), l = 1, 2, . . . , s and vG−1 (l), (l = 1, 2, . . . , s) as the minimum among all VMIN1(l), (l =
1, 2, . . . , s). Similarly, we determine vG+

2 (l), (l = 1, 2, . . . , s) as the maximum among all VMAX2(l), l =
1, 2, . . . , s and vG−2 (l), (l = 1, 2, . . . , s) as the minimum among all VMIN2(l), (l = 1, 2, . . . , s). Also, H+

1 is
the maximum among all HMAX1 and H−1 is the minimum among all HMIN1 are determined.
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4 Numerical Example

Example : Consider the following bimatrix game

A(1) =

 7 4 3
5 6 2
2 5 4

 , B(1) =

 6 3 5
7 6 2
3 8 4

 , (5)

A(2) =

 7 4 3
3 6 2
5 3 3

 , B(2) =

 6 4 3
3 2 7
5 3 8

 . (6)

Let G1
1 = 5, G2

1 = 4, G1
2 = 4, G2

2 = 5, be the goals specified by PI. Then

A1
G =

 1 0 0
1 1 0
0 1 0

 , B1
G =

 1 0 1
1 1 0
0 1 1

 , (7)

A2
G =

 1 1 0
0 1 0
1 0 0

 , B2
G =

 1 0 0
0 0 1
1 0 1

 . (8)

The maximum and minimum values of vG1 (l) and vG2 (l) (l = 1, 2) are summarized in Table 1 which is computed
by genetic algorithm as follows:

Table 1: Maximum and minimun values of objectives

maximum value minimum value

vG1 (1) vG+
1 (1) = 0.94715 vG−1 (1) = 0.0238

vG1 (2) vG+
1 (2) = 0.995 vG−1 (2) = 0.5092

vG2 (1) vG+
2 (1) = 0.6459 vG−2 (1) = 0.0238

vG2 (2) vG+
2 (2) = 0.4908 vG−2 (2) = 0.005

H1 H+
1 = 1.097652 H−1 = 0.126435

With the help of above values from Table-1 and Model 3, we have formulated the model (Model 4) as
follows:

Model 4 max : λ

subject to λ ≤ vG1 (1)− 0.0238

0.94715− 0.0238

λ ≤ vG1 (2)− 0.5092

0.995− 0.5092

λ ≤ vG2 (1)− 0.0238

0.6459− 0.0238

λ ≤ vG2 (2)− 0.005

0.4908− 0.005

λ ≤ H1 − 0.126435

1.097652− 0.126435

ytAl
G ≥ [vG1 (l), . . . , vG1 (l)], l = 1, 2, 3

ytBl
G ≥ [vG2 (l) . . . , vG2 (l)], l = 1, 2, 3

H1 = −
3∑

i=1

yi ln(yi)

3∑
i=1

yi = 1; yi ≥ 0, i = 1, 2, 3.
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The aspiration level λ∗ with an objective is determined from Model 4 by the help of Lingo package and the
efficient solution is represented in the following Table 2.

Table 2: Results of Model 4

aspiration level efficient solution
probability of goal entropy GGSS

λ∗ = 0.3924114 vG∗1 (1) = 0.6003331, H∗1 = 1.088996 y∗ = (0.3996670, 0.3001665, 0.3001665)
vG∗1 (2) = 0.6998335,
vG∗2 (1) = 0.4821191,
vG∗2 (2) = 0.1956335

Thus when player PI is interested to maximize the measure of uncertainty to apply his/her strategies then
it is seen that if PI plays his/her strategy (0.399667, 0.3001665, 0.3001665) then he/she gets at least G1 = 5
with a probability 0.6003331 and at least G2 = 4 with a probability 0.6998335 in first criteria. And for
second criteria PI plays his/her strategy (0.3996669, 0.3001665, 0.3001665) then he/she gets at least G1 = 5
with a probability 0.4821191 and at least G2 = 4 with a probability 0.1956335 With the help of Table 1, we
considered the objectives without entropy function in Model 3 and we formulated the Model 5 which is as
follows:

Model 5 max : δ

subject to δ ≤ vG1 − 0.000153

0.5000− 0.000153

δ ≤ vG2 − 0.000153

0.5000− 0.000153

y1 + y2 ≥ vG1
y1 + y2 + y3 ≥ vG1
y1 ≥ vG2
y1 + y2 + y3 ≥ vG2
y3 ≥ vG2
3∑

i=1

yi = 1; yi ≥ 0, i = 1, 2, 3.

The aspiration level δ∗ for the objective is determined from Model 5 by the help of Lingo package and the
efficient solution is represented in the following Table 3.

Table 3: Results of Model 5

aspiration level efficient solution
probability of goal GGSS

δ∗ = 0.3924114 vG∗1 (1) = 0.6003331, y∗ = (0.399667, 0.3001665, 0.3001665)
vG∗1 (2) = 0.6998335,
vG∗2 (1) = 0.4821191,
vG∗2 (2) = 0.1956335

Thus when player PI is interested to maximize the measure of uncertainty with applying his/her strategies
then it is seen that PI plays his/her strategy (0.399667, 0.3001665, 0.3001665) and he/she gets at least G1 = 5
with a probability 0.6003331 and at least G2 = 4 with a probability 0.6998335 in first criteria. And for second
criteria PI plays his/her strategy (0.3996669, 0.3001665, 0.3001665) then he/she gets at least G1 = 5 with a
probability 0.4821191 and at least G2 = 4 with a probability 0.1956335.

From Tables 2 and 3 for both the models ( Models 4 and 5) have identical results.

5 Conclusion

This paper presented the study of multicriteria bimatrix goal game under the light of entropy environment.
In practical problems, when conflict situations are more complicated like players have many criterions, then
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the single criteria entropy bimatrix goal game model is not applicable. In this situation, multicriteria entropy
bimatrix goal game model is highly applicable to handle the problem. Using the goal, we considered the
solution not only the strategy played by the players, but also the probabilities of getting at least goal values
of the players. Therefore, with this approach, each player has gained the information about the probability
of achieving the possible outcomes of the multicriteria entropy bimatrix goal game.

To obtain the GGSS, we applied the fuzzy based genetic algorithm to multicriteria entropy bimatrix goal
game model. We have shown that all these strategies together with their associated probabilities can be
obtained as an efficient solution of a particular non-linear model. The model with entropy is highly significant
related to the real-life practical problem on multicriteria entropy bimatrix goal game.

References

[1] Barron, E.N., Game Theory: An Introduction, Wiley Edition, India, 2008.

[2] Chen, Y.W., An alternative approach to the bimatrix non-cooperative game with fuzzy multiple objectives,
Journal of Chinese Institute and Industrial Engineers, vol.19, pp.9–16, 2002.

[3] Das, C.B., and S.K. Roy, Fuzzy based GA for entropy bimatrix goal game, International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems, vol.18, no.6, pp.779–799, 2010.

[4] Fang, S.C., J.R. Rajasekera, and H.S.J. Taso, Entropy Optimization and Mathematical Programming, Kluwer
Academic Publishers, Boston/London/Dordrecht, 1997.

[5] Fernandez, F.R., J. Puerto, and L. Monroy, Multicriteria goal games, Journal of Optimization Theory and Appli-
cations, vol.99, no.2, pp.403–421, 1998.

[6] Fernandez, F.R., J. Puerto, and L. Monroy, Two-person non-zero-sum games as multicriteria goal games, Annals
of Operations Research, vol.84, pp.195–208, 1998.

[7] Kapur, J.N., Maximum Entropy Models in Science and Engineering, Revised Edition, Wiley Eastern Limited,
New Delhi, 1993.

[8] Michalewicz, Z., Genetic Algorithm + Data Structure = Evoluation Programs, Springer-Verlag, Berlin, NewYork,
1999.

[9] Roy, S.K., and C.B. Das, Fuzzy based genetic algorithm for multicriteria matrix goal game, Journal of Uncertain
Systems, vol.3, no.3, pp.201–209, 2009.

[10] Roy, S.K., Game Theory under MCDM and Fuzzy Set Theory, Verlag Dr. Müller, Germany, 2010.

[11] Roy, S.K., M.P. Biswal, and R.N. Tiwari, An approach to multi-objective bimatrix games for Nash equilibrium
solutions, Ricerca Operativa, vol.30, no.95, pp.56–63, 2001.

[12] Roy, S.K., Fuzzy programming approach to two-person multicriteria bimatrix games, The Journal of Fuzzy Math-
ematics, vol.15, no.1, pp.141–153, 2007.

[13] Zadeh, L.A., Fuzzy sets, Information and Control, vol.8, pp.338–353, 1965.

[14] Zimmermann, H.J., Fuzzy programming and linear programming with several objective functions, Fuzzy Sets and
Systems, vol.1, pp.46–55, 1978.


	jus-7-2-3.pdf
	Introduction
	 Mathematical Model of a Bimatrix Game
	Determination of G-goal Security Strategies
	Entropy Bimatrix Goal Game Model

	Solution Procedure
	 Fuzzy Programming
	Genetic Algorithm(GA)

	Numerical Example
	Conclusion

	jus-7-2-4.pdf
	Introduction
	Preliminaries
	Relationships among Convergence Modes
	Convergence Criteria
	Convergence Relations

	Dominated Convergence Theorems
	Conclusions

	jus-7-2-5.pdf
	Introduction
	Linear Rank Tests: A Brief Review
	Location Problem
	Scale Problem

	Credibility Measure: Some Elementary Definitions and Results
	Linear Rank Tests with Imprecise Observations
	Numerical Examples
	Conclusion

	jus-7-2-6.pdf
	Introduction
	Bipolar Fuzzy Nominal Classification
	Classifiability and Rejectability Measures Derivation Procedure
	Aggregation Operators
	Choquet Integral
	Weighted Cardinal Fuzzy Measure
	Classifiability and Rejectability Measures

	Classification Procedure

	Application
	Conclusion

	jus-7-2-7.pdf
	Introduction and Preliminaries
	�Generalized Fuzzy Filters (Ideals) of BE�Algebras
	Conclusion

	jus-7-2-7.pdf
	Introduction and Preliminaries
	�Generalized Fuzzy Filters (Ideals) of BE�Algebras
	Conclusion




