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Abstract 
 

We have introduced intuitionistic fuzzy number and its arithmetic operations based on extension principle of 
intuitionistic fuzzy sets. Here two types of intuitionistic fuzzy sets, namely triangular intuitionistic fuzzy number and 
trapezoidal intuitionistic fuzzy number is presented. We also present that the arithmetic operation of two or more 
intuitionistic fuzzy number is again an intuitionistic fuzzy number. The starting failure of an automobile system is 
presented by intuitionistic fuzzy system. Each components failure is represented by trapezoidal intuitionistic fuzzy 
number of the system failure model to compute the imprecise failure. Finally, the presented concepts are analyzed 
through suitable numerical example. 
© 2013 World Academic Press, UK. All rights reserved.  
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1 Introduction 
 
Intuitionistic fuzzy set (IFS) is one of the generalizations of fuzzy sets theory [22]. Out of several higher-order fuzzy 
sets, IFS first introduced by Atanassov [1] have been found to be compatible to deal with vagueness. The conception 
of IFS can be viewed as an appropriate/alternative approach in case where available information is not sufficient to 
define the impreciseness by the conventional fuzzy set. In fuzzy sets the degree of acceptance is considered only but 
IFS is characterized by a membership function and a non-membership function so that the sum of both values is less 
than one [2]. Presently IFSs are being studied and used in different fields of science. Among the research works on 
IFS we can mention Atanassov [2-6], Atanassov and Gargov [7], Szmidt and Kacprzyk [19], Buhaescu [9], Ban [8], 
Deschrijver and Kerre [13], Stoyanova [18]. With the best of our knowledge, Burillo et al. [10] proposed definition of 
intuitionistic fuzzy number (IFN) and studied perturbations of IFN and the first properties of the correlation between 
these numbers. Several researchers [15, 17, 21] considered the problem of ranking a set of IFNs to define a fuzzy rank 
and a characteristic vagueness factor for each IFN. 

In the real world problems, the collected data or system parameters are often imprecise because of incomplete or 
non-obtainable information, and the probabilistic approach to the conventional reliability analysis is inadequate to 
account for such built-in uncertainties in data. Therefore concept of fuzzy reliability has been introduced and 
formulated either in the context of the possibility measures or as a transition from fuzzy success state to fuzzy failure 
state [11, 12]. Cheng and Mon [16] considered that components are with different membership functions, then 
interval arithmetic and  -cuts were used to evaluate fuzzy system reliability. Verma [20] presented the dynamic 
reliability evaluation of the deteriorating system using the concept of probist reliability as a triangular fuzzy number. 
Mahapatra and Roy [14] evaluate system reliability by considering reliability of components as triangular 
intuitionistic fuzzy number. 
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In this paper, we have presented IFN according to the approach of fuzzy number presentation. Triangular 
intuitionistic fuzzy number (TIFN) and trapezoidal intuitionistic fuzzy number (TrIFN) are defined, and their 
arithmetic operations based on intuitoinistic fuzzy extension principle and (α, β)-cut method is presented. The grade 
of a membership function indicates a subjective degree of preference of a decision maker within a given tolerance and 
grade of a non-membership function indicates a subjective degree of negative response of a decision maker within a 
given tolerance. Here we consider failure of components of starting failure of an automobile system as TrIFN. 
Intuitionitic fuzzy fault tree analysis is presented for starting failure of the automobile system. Arithmetic operations 
of TrIFN are used to evaluate imprecise system failure. 
 

2 Basic Concept of Intuitionistic Fuzzy Sets 
 
Fuzzy set theory was first introduced by Zadeh [22] in 1965. Let X be universe of discourse defined 
by  1 2, ,..., nX x x x . The grade of membership of an element ix X  in a fuzzy set is represented by real value in 

[0,1]. It does indicate the evidence for ix X , but does not indicate the evidence against ix X . Atanassov [1] 

presented the concept of IFS, an IFS 
~i

A  in X is characterized by a membership function ~ ( )i
A

x  and a non-

membership function ~ ( )i
A

x . Here ~ ( )i
A

x  and ~ ( )i
A

x are associated with each point in X, a real number in [0,1] with 

the values of ~ ( )i
A

x  and ~ ( )i
A

x  at X representing the grade of membership and non-membership of x in 
~i

A . When 
~i

A  

is an ordinary (crisp) set, its membership function can take only two values zero and one. An IFS becomes a fuzzy set 

A  when ~ ( ) 0i
A

x   but  ~

~

( ) 0,1i

i

A
x x A    . 

Definition 2.1 Intuitionistic Fuzzy Set: Let a set X be fixed. An IFS 
~i

A  in X is an object having the 

form  ~ ~

~

, ( ), ( ) :i i

i

A A
A x x x x X     , where the ~ ( )i

A
x : X  [0,1] and ~ ( )i

A
x :X[0,1] define the degree of 

membership and degree of non-membership respectively, of the element xX to the set iA , which is a subset of X, 
for every element of xX, ~ ~0 ( ) ( ) 1i i

A A
x x    . 

Definition 2.2  ,  -level Intervals or  ,  -cuts: A set of  ,  -cut, generated by an IFS 
~i

A , where 

 , 0,1   are fixed numbers such that 1    is defined as  

    ~ ~ ~ ~, , ( ), ( ) : , ( ) , ( ) , , 0,1i i i i
A A A A

A x x x x X x x              . 

We define  ,  -level interval or  ,  -cut, denoted by ,A  , as the crisp set of elements x which belong to 
~i

A  at 

least to the degree α and which belong to 
~i

A  at most to the degree β. 
 

3 Presentation of Intuitionistic Fuzzy Numbers and Its Properties 
 

Definition 3.1 Intuitionistic Fuzzy Number: An IFN 
~i

A is defined as follows: 

i) an intuitionistic fuzzy subset of the real line 
ii) normal, i.e., there is any 0x R  such that  ~i 0

A
1x  (so  ~i 0

A
0x  ) 

iii) a convex set for the membership function  ~i
A

x , i.e.,  

         ~i ~i ~i1 2 1 2 1 2
A A A

1 min ,    , , 0,1x x x x x x R            

iv) a concave set for the non-membership function  ~i
A

x , i.e., 
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         ~i ~i ~i1 2 1 2 1 2
A A A

1 max ,    , , 0,1x x x x x x R           . 

Definition 3.2 Triangular Intuitionistic Fuzzy Number: A TIFN 
~i

A  is a subset of IFS in R with following 
membership function and non-membership function as follows: 

 ~i

1
1 2

2 1

3
2 3

A
3 2

for

for

0 otherwise

x a
a x a

a a

a x
x a x a

a a


   
 

   




    and    ~i

2
1 2

2 1

2
2 3

A
3 2

for

for

1 otherwise

a x
a x a

a a

x a
x a x a

a a


    
      




 

where 1 1 2 3 3a a a a a     and TIFN (Fig. 1) is denoted by  
~i

TIFN 1 2 3 1 2 3A , , ; , , .a a a a a a   

  

Figuer 1: Membership and non-membership functions of TIFN 

Note 1 Here  ~i
A

x  increases with constant rate for  1 2,x a a and decreases with constant rate for  2 3,x a a  but 

 ~i
A

x  decreases with constant rate for  1 2,x a a and increases with constant rate for  2 3,x a a .  

Definition 3.3 Trapezoidal Intuitionistic Fuzzy Number: A TrIFN (Fig. 2) 
~i

A  is a subset of IFS in R with membership 
function and non-membership function as follows 

 ~i

1
1 2

2 1

2 3

A
4

3 4
4 3

  for

1   for

   for

0   otherwise

x a
a x a

a a

a x a
x

a x
a x a

a a



   
      
 



     and    ~i

2
1 2

2 1

2 3

A
3

3 4
4 3

  for

0   for

   for

1    otherwise

a x
a x a

a a

a x a
x

x a
a x a

a a



    
      
  



 

where 1 1 2 3 4 4a a a a a a      and TrIFN is denoted by  
~i

TrIFN 1 2 3 4 1 2 3 4A , , , ; , , ,a a a a a a a a       

 

Figure 2: Membership and non-membership function of TrIFN 

Note 2 Here  ~i
A

x increases with constant rate for  1 2,x a a and decreases with constant rate for  3 4,x a a  but 

 ~i
A

x  decreases with constant rate for  1 2,x a a and increases with constant rate for  3 4,x a a . 
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Here we have presented a chart of IFN with transformation rule to fuzzy numbers and interval and real number. 

 
Figure 3: Chart of transformation rule on IFN 

 

4  Extension Principle for Intuitionistic Fuzzy Sets 
 

Let :f X Y be a mapping from a set X to a set Y. then the extension principle allows us to define the IFS 
~i

B in Y 

induced by the IFS 
~i

A  in X through f as follows 

  ~ ~

~i

B , ( ), ( ) : ,i i
B B

y y y y f x x X       

with 

 
 

 

~

~

1

1

sup ( ) :
( )

0 :

i

i

Ay f x

B

x f y
y

f y

 










  
 

  and    
 

 

~

~

1

1

inf ( ) :
( )

0 :

i

i

y f x A

B

x f y
y

f y

 










  


 

where  1f y is the inverse image of y . 

 
4.1 Cartesian Product of Intuitionistic Fuzzy Sets 
 

Let 
~i ~i

1 nA ,...,A  be IFSs in 1,..., nX X  with the corresponding membership functions ~ ~

1

( ),..., ( )i i

nA A
y y   and non-

membership function ~ ~

1

( ),..., ( )i i

nA A
y y   respectively. Then the Cartesian product of the IFSs 

~i ~i

1 nA ,...,A  denoted by 

~i ~i

1 nA A   is defined as IFS in 1 nX X   whose membership functions and non-membership functions are 

expressed by  

~ ~ ~ ~

1 1
1 1 1( ,..., ) min ( ),..., ( )i i i i

n n
n

A A A A
x x x x  

 

   
 

and ~ ~ ~ ~

1 1
1 1 1( ,..., ) max ( ),..., ( )i i i i

n n
n

A A A A
x x x x  

 

   
 

. 
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4.2 Extension Principle in Cartesian Space 
 

Let 1: nf X X Y    be a mapping from 1 nX X    to a set Y such that  1,..., ny f x x . Then the extension 

principle allows us to define the IFS B in Y induced by the IFS 
~i ~i

1 nA A   in 1 nX X   through f as follows 

      ~ ~

~i

1 1 1B , ( ), ( ) : ,..., , ,..., ,...,i i n n n
B B

y y y y f x x x x x x       

with  

 
   

 

1 n
1 1

~i

1
A A 1

,..., ,...,

B 1

sup ,...,

0

n n

n
x x X X

x x f y
y

f y

 





 





  
 


  

and  

 
   

 

1 n
1 1

~i

1
A A 1

,..., ,...,

B 1

,...,

0

n n

n
x x X X

inf x x f y
y

f y

 





 





  
 


 

where  1f y  is the inverse image of y . 

 

5 Arithmetic Operations on Intuitionistic Fuzzy Numbers 
 
In this section, we have presented arithmetic operations of IFNs based on intuitionistic fuzzy extension principle and 
approximation ((α, β)-cuts) method. 
 
5.1 Arithmetic Operations of Intuitionistic Fuzzy Numbers based on Extension Principle 
 

The arithmetic operation (*) of two IFNs is a mapping of an input vector  1 2,
T

X x x  define in the Cartesian product 

space R R  onto an output y define in the real space R. If 
~ ~

1 2

i i

A and A  are IFN then their outcome of arithmetic 

operation is also a IFN determined with the formula 

         ~i ~i ~i ~i

1 21 2 1 21 2

~ ~

1 2 1 2 1 2 1 2*A A A A*
* , sup min , , inf max , , ,

i i

y x xy x x
A A y y x x x x x x y R   



                                
 

to calculate the arithmetic operation of IFNs it is sufficient to determine the membership function and non-
membership function as follows  

           ~ ~ ~i ~i ~ ~ ~i ~i

1 21 2 1 2 1 2 1 21 2

1 2 1 2** A A * A A*
sup min , inf max ,i i i i

y x xA A A Ay x x
y x x and y x x     



                   
. 

 
5.2 Arithmetic Operations of Intuitionistic Fuzzy Numbers based on (, β)-cuts Method 
 

If 
~i

A  is an IFN, then  ,  -level interval or  ,  -cut is given by 

     
     

1 2

,

1 2

, for degreeof acceptance 0,1
with 1.

, for degreeof rejection 0,1

A A
A

A A
 

  
 

  

     
    

 

Here (i) 
         1 2

1 20, 0  0,1 , 1 1
dA dA

A A
d d

 


 
      and  (ii) 

     1 20, 0  0,1 ,
dA dA

d d

 


 
 

     

   1 20 0A A  . 

It is expressed as           , 1 2 1 2, ; , , 1, , 0,1A A A A A                    .  

For instance, if  
~

1 2 3 4 1 2 3 4, , , ; , , ,
i

A a a a a a a a a   is a TrIFN, then  ,  -level intervals or  ,  -cuts is 
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          , 1 2 1 2, ; , , 1, , 0,1A A A A A                     

where                1 1 2 1 2 4 4 3 1 2 2 1 2 3 4 3, ; , .A a a a A a a a A a a a A a a a                       

Property 5.1 (a) If TrIFN  
~

1 2 3 4 1 2 3 4, , , ; , , ,
i

A a a a a a a a a   and y ka  (with k>0), then 
~ ~i i

Y k A  is a TrIFN 

 1 2 3 4 1 2 3 4, , , ; , , ,ka ka ka ka ka ka ka ka  . 

(b) If y ka  (with k<0), then 
~ ~i i

Y k A  is a TrIFN  4 3 2 1 4 3 2 1, , , ; , , ,ka ka ka ka ka ka ka ka  . 

Proof: (a) When k>0, with the transformation y ka , we can find the membership function for membership 

(acceptance) function of TrIFN 
~ ~i i

Y k A  by -cut method. 

Left-hand and right-hand -cut of 
~i

A  is      ~ 1 2 1 4 4 3,i
A

x a a a a a a            for any  0,1  , i.e., 

   1 2 1 4 4 3,x a a a a a a        . So,      1 2 1 4 4 3,y ka ka ka ka ka ka ka         . 

Thus, we get the membership function of 
~ ~i i

Y k A  as 

 
~

1
1 2

2 1

2 3

4
3 4

4 3

   for

1    for

   for

0   otherwise.

i
y

y ka
ka y ka

ka ka

ka y ka
y

ka y
ka y ka

ka ka



   
      
 



     (5.1) 

Hence the rule is proved for membership function. 

For non-membership function, -cut of 
~i

A  is      ~ 2 2 1 3 4 3,i
A

x a a a a a a             for any  0,1  , 

i.e.,    2 2 1 3 4 3,x a a a a a a         . So,      2 2 1 3 4 3,y ka ka ka ka ka ka ka          . 

Thus, we get the non-membership function of 
~ ~i i

Y k A  as 

 ~

2
1 2

2 1

2 3

3
3 4

4 3

   for

0    for

    for

1     otherwise.

i
A

ka y
ka y ka

ka ka

ka y ka
y

y ka
ka y ka

ka ka



    
      
  



     (5.2) 

Hence rule is proved for non-membership function.  

Thus we have  
~ ~

1 2 3 4 1 2 3 4, , , ; , , ,
i i

Y k A ka ka ka ka ka ka ka ka    is a TrIFN. 

(b) Similarly we can proof that, if y ka and k<0 , then 

~

4
4 3

3 4

3 2

1
2 1

1 2

   for

1     for
( )

    for

0    otherwise.

i
y

y ka
ka y ka

ka ka

ka y ka
y

ka y
ka y ka

ka ka



   
   

  
 



  and  ~

3
4 3

3 4

3 2

2
2 1

1 2

   for

0     for
( )

    for 

1     otherwise.

i
y

ka y
ka y ka

ka ka

ka y ka
y

y ka
ka y ka

ka ka



    
   

  
  



  (5.3) 

Property 5.2 If  
~

1 2 3 4 1 2 3 4, , , ; , , ,
i

A a a a a a a a a   and  
~

1 2 3 4 1 2 3 4, , , ; , , ,
i

B b b b b b b b b   are two TrIFNs, then 
~ ~ ~i i i

C A B   is 

also TrIFN  
~ ~

1 1 2 2 3 3 4 4 1 1 2 2 3 3 4 4, , , ; , , ,
i i

A B a b a b a b a b a b a b a b a b             . 
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Proof: With the transformation z=x+y, we can find the membership function of acceptance (membership) IFS 
~ ~ ~i i i

C A B   by -cut method. 

-cut for membership function of 
~i

A  is      1 2 1 4 4 3, 0,1a a a a a a          , i.e.,  

   1 2 1 4 4 3, .x a a a a a a         

-cut for membership function of 
~i

B  is      1 2 1 4 4 3, 0,1b b b b b b          ,  i.e. , 

   1 2 1 4 4 3, .y b b b b b b          

So, 

z (=x+y)          1 1 2 1 2 1 4 4 4 3 4 3,a b a a b b a b a a b b              . 

So, the membership (acceptance) function of 
~ ~ ~i i i

C A B   is 

  

   

   

~

1 1
1 1 2 2

2 1 2 1

2 2 3 3

4 4
3 3 4 4

4 3 4 3

   for   

1     for  

  for   

0    otherwise.

i
C

z a b
a b z a b

a a b b

a b z a b
z

a b z
a b z a b

a a b b



        
           
   



    (5.4) 

Hence additions rule is proved for membership function. 

For non-membership function, β-cut of 
~i

A  is      2 2 1 3 4 3, 0,1a a a a a a           , i.e.,  

   2 2 1 3 4 3,x a a a a a a         . 

β-cut for non-membership function of 
~i

B  is      2 2 1 3 4 3, 0,1b b b b b b           , i.e., 

   2 2 1 3 4 3,y b b b b b b         . 

So, z (=x+y)          2 2 2 1 2 1 3 3 4 3 4 3,a b a a b b a b a a b b                 . 

So, the non-membership (rejection) function of 
~ ~ ~i i i

C A B   is 

 

   

   

~

2 2
1 1 2 2

2 1 2 1

2 2 3 3

3 3
3 3 4 4

4 3 4 3

   for 

0    for 

   for

1     otherwise.

i
C

a b z
a b z a b

a a b b

a b z a b
z

z a b
a b z a b

a a b b



          
            
    



    (5.5) 

Hence additions rule is proved for non-membership function. 

Thus we have  
~ ~

1 1 2 2 3 3 4 4 1 1 2 2 3 3 4 4, , , ; , , ,
i i

A B a b a b a b a b a b a b a b a b             is a TrIFN. 

Note 3 If we have the transformation 
~ ~ ~

1 2

i i i

C k A k B   (k1, k2 are (not all zero) real numbers), then the IFS 
~ ~ ~

1 2

i i i

C k A k B   is the following TrIFN: 

(i)  1 1 2 1 1 2 2 2 1 3 2 3 1 4 2 4 1 1 2 1 1 2 2 2 1 3 2 3 1 4 2 4, , , ; , , ,k a k b k a k b k a k b k a k b k a k b k a k b k a k b k a k a            if 1 20, 0k k   

1or 0,k  2 0k  ,  

(ii)  1 1 2 4 1 2 2 3 1 3 2 2 1 4 2 1 1 1 2 4 1 2 2 3 1 3 2 2 1 4 2 1, , , ; , , ,k a k b k a k b k a k b k a k b k a k b k a k b k a k b k a k b            if 1 20, 0k k   

1 2or 0, 0k k  ,  

(iii)  1 4 2 1 1 3 2 2 1 2 2 3 1 1 2 4 1 4 2 1 1 3 2 2 1 2 2 3 1 1 2 4, , , ; , , ,k a k b k a k b k a k b k a k b k a k b k a k b k a k b k a k b            if 1 20, 0k k  , 

1 2or 0, 0k k   
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(iv)  
1 4 2 4 1 3 2 3 1 2 2 2 1 1 2 1 1 4 2 4 1 3 2 3 1 2 2 2 1 1 2 1

, , , ; , , ,k a k b k a k b k a k b k a k b k a k b k a k b k a k b k a k b            if 1 20, 0k k   

1 2or 0, 0k k  . 

Property 5.3 If  
~

1 2 3 4 1 2 3 4, , , ; , , ,
i

A a a a a a a a a  and  
~

1 2 3 4 1 2 3 4, , , ; , , ,
i

B b b b b b b b b  are two TrIFN, then 
~ ~ ~i i i

P A B   is 

approximated TrIFN  
~ ~

1 1 2 2 3 3 4 4 1 1 2 2 3 3 4 4, , , ; , , ,
i i

A B a b a b a b a b a b a b a b a b     . 

Proof: With the transformation z=x×y, we can find the membership function of acceptance (membership) IFS 
~ ~ ~i i i

P A B   by -cut method. 

-cut for membership function of
~i

A is        ~ 1 2 1 4 4 3, 0,1i
A

x a a a a a a              , i.e.,  

   1 2 1 4 4 3, .x a a a a a a         

-cut for membership function of 
~i

B  is        ~ 1 2 1 4 4 3, 0,1i
B

x b b b b b b              , i.e., 

   1 2 1 4 4 3, .y b b b b b b         

So, z (=x×y)            1 2 1 1 2 1 4 4 3 4 4 3,a a a b b b a a a b b b              .  

So, the membership (acceptance) function of 
~ ~ ~i i i

P A B   is 

 

 

 
~

2
1 1 1 1 1

1 1 2 2
1

2 2 3 3

2
2 2 2 4 4

3 3 4 4
2

4

2

1

4

2

0

   for 

     for 

    for 

    otherwise

i
P

B B A a b z
a b z a b

A

a b z a b
z

B B A a b z
a b z a b

A



   
  

   
   

 



    (5.6) 

where   1 2 1 2 1A a a b b   ,    1 1 2 1 1 2 1B b a a a b b    ,   2 4 3 4 3A a a b b   and     2 4 4 3 4 4 3B b a a a b b     . 

For non-membership function, β-cut of 
~i

A  is        ~ 2 2 1 3 4 3, 0,1i
A

x a a a a a a               , i.e., 

   2 2 1 2 3 2,x a a a a a a         , β-cut of 
~i

B  is        ~ 2 2 1 3 4 3, 0,1i
B

x b b b b b b               , i.e.,  

   2 2 1 2 3 2, .y b b b b b b          

So, z(=x×y)            2 2 1 2 2 1 3 4 3 3 4 3, .a a a b b b a a a b b b                  So, the non-membership 

(rejection) function of 
~ ~ ~i i i

P A B   is 

 

 

 
~

2
1 1 1 1 1

1 1 2 2
1

2 2 3 3

2
2 2 2 4 4

3 3 4 4
2

4
1   for  

2

0    for  

4
1    for  

2

1     otherwise

i
P

B B A a b z
a b z a b

A

a b z a b
z

B B A a b z
a b z a b

A



        
    


   

       
    



    (5.7) 

where   1 2 1 2 1A a a b b     ,    1 1 2 1 1 2 1B b a a a b b        ,   2 4 3 4 3A a a b b      and     2 4 4 3 4 4 3B b a a a b b         . 

So 
~ ~ ~i i i

P A B   represented by (5.6) and (5.7) is a trapezoidal shaped IFN. It can be approximated to a TrIFN 

 
~ ~

1 1 2 2 3 3 4 4 1 1 2 2 3 3 4 4, , , ; , , ,
i i

A B a b a b a b a b a b a b a b a b      (shown in Fig.3 with - - - - line). 
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Figure 4: Membership and non-membership functions for product of two TrIFN 

Theorem 1 The divergences due to approximation of trapezoidal shaped IFN to TrIFN for multiplication of two 
TrIFN are as follows: 
(a) Maximum left divergence for membership (non-membership) function = 1 4  product of left spread of TrIFN 
~ ~

and
i i

A B  for membership (non-membership) function.  

(b) Maximum right divergence for membership (non-membership) function =1 4  product of right spread of TrIFN 
~ ~

and
i i

A B  for membership (non-membership) function. 

Proof: 
~ ~i i

A B  represented by (5.6) and (5.7) is a trapezoidal shaped IFN. It can be approximated to a TrIFN 

 
~

1 1 2 2 3 3 4 4 1 1 2 2 3 3 4 4, , , ; , , ,
i

P a b a b a b a b a b a b a b a b    . 

Now consider   c, ut    of the above approximated TrIFN, which is given by ,P    

        1 2 1 2, , ,P P P P            where    1 1 1 2 2 1 1P a b a b a b    ,    2 4 4 4 4 3 3P a b a b a b    ,  1P    

 2 2 2 2 1 1a b a b a b    ,    2 3 3 4 4 3 3P a b a b a b      . 

The corresponding left divergent for membership function   lm   is  

          1 2 1 1 2 1 1 1 2 2 1 1 .lm a a a b b b a b a b a b             

To find out the optimum divergence 
 

0lmd

d

 


  gives  * 0.5 0,1   . The maximum left divergence for 

membership is     *
2 1 2 1 / 4.lm a a b b       

Again the corresponding right divergent for membership function   rm   is  

          4 4 3 4 4 3 4 4 4 4 3 3rm a a a b b b a b a b a b            . 

To find out the optimum divergence 
 

0rmd

d

 


  gives  * 0.5 0,1   . The maximum right divergence for 

membership is     *
4 3 4 3 / 4.lm a a b b       

The corresponding left divergent for non-membership function  ln   is 

          2 2 1 2 2 1 2 2 2 2 1 1ln a a a b b b a b a b a b               . 

To find out the optimum divergence 
 

0lnd

d

 


  gives  * 0.5 0,1   . The maximum left divergence for non-

membership is     *
2 1 2 1 / 4.ln a a b b        

Again the corresponding right divergent for non-membership function  rn   is  

          3 4 3 3 4 3 3 3 4 4 3 3rn a a a b b b a b a b a b               . 
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To find out the optimum divergence 
 

0rnd

d

 


  gives  * 0.5 0,1   . The maximum right divergence for non-

membership is     *
4 3 4 3 / 4.rn a a b b        

Note 4 It may conclude that when spreads are increasing, divergences due to approximation for product of two 
TrIFNs are also increasing. Divergences are insignificant for very small spreads. In such a situation product of two 
TrIFNs can directly be written as approximated TrIFN. 

Property 5.4 If  
~

1 2 3 4 1 2 3 4, , , ; , , ,
i

A a a a a a a a a   and  
~

1 2 3 4 1 2 3 4, , , ; , , ,
i

B b b b b b b b b   are two TrIFN, then 
~ ~ ~i i i

D A B   is 

approximated TrIFN  
~ ~

3 31 2 4 1 2 4

4 3 2 1 4 3 2 1
, , , ; , , ,

i i a aa a a a a a
b b b b b b b bA B

 
 

    
 

. 

Proof: With the transformation z=x÷y, we can find the membership function of acceptance (membeship) IFS 
~ ~ ~i i i

D A B   by -cut method. 

-cut for membership function of
~i

A is      ~ 1 2 1 4 4 3,i
A

x a a a a a a            0,1  , i.e., 

   1 2 1 4 4 3, .x a a a a a a         -cut for membership function of 
~i

B  is  ~i
B

x    

   1 2 1 4 4 3,b b b b b b         0,1  ,  i.e.,    1 2 1 4 4 3, .y b b b b b b         So,  

z (=x÷y)
4 4 31 2 1

1 2 14 4 3

,
a a aa a a

b b bb b b





  
   
   
   

     

  

  

 
  
  

. 

So, we have the membership (acceptance) function of 
~ ~ ~i i i

D A B   as 

 

   

   

~

4 1

2 1 4 3

1 1

4 3 2 1

1 2

1 3

32

3 2

3 4

2 1

  for

1    for

  for

0    otherwise.

i
D

a a
b b

aa
b b

a a
b b

b z a
z

a a z b b

z
z

a b z
z

a a z b b



     
   
 

    


     (5.8) 

For non-membership function, β-cut of 
~i

A  is        ~ 2 2 1 3 4 3, 0,1i
A

x a a a a a a               , i.e., 

   2 2 1 2 3 2, .x a a a a a a          β-cut of 
~i

B  is        ~ 2 2 1 3 4 3, 0,1i
B

x b b b b b b               , i.e., 

   2 2 1 2 3 2,y b b b b b b         . So,  

z (=x÷y)
3 4 32 2 1

2 2 13 4 3

,
a a aa a a

b b bb b b





  
   
   
   

  
  





 

 

 
  
  

. 

So, we have the non-membership (rejection) function of 
~ ~ ~i i i

D A B   as follows 

 

   

   

~

2 3

2 1 4 3

2 3

4 3 2 1

1 2

4 3

32

3 2

3 4

2 1

    for

0     for

    for

1      otherwise.

i
D

a a
b b

aa
b b

a a
b b

a b z
z

a a z b b

z
z

b z a
z

a a z b b









      
   
 

     


     (5.9) 
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So 
~ ~ ~i i i

D A B   represented by (5.8) and (5.9) is a trapezoidal shaped IFN. It can be approximated to TrIFN 

 ~ ~
3 31 2 4 1 2 4

4 3 2 1 4 3 2 1
, , , ; , , ,

i i a aa a a a a a
b b b b b b b bA B

 
   . 

Theorem 2 Divergences due to approximation of trapezoidal shaped IFN to TrIFN for division of two TrIFNs 

 
~

1 2 3 4 1 2 3 4, , , ; , , ,
i

A a a a a a a a a   and  
~

1 2 3 4 1 2 3 4, , , ; , , ,
i

B b b b b b b b b   are as follows: 

(a) Maximum left and right divergences for membership function are 

 4 3 2 1

3 44 3

b b a a
b bb b




 and  2 1 34

1 22 1

b b aa

b bb b




  

 respectively.  
(b) Maximum left and right divergences for non-membership function are 

 4 3 2 1

3 44 3

b b a a

b bb b

  
 

  and  2 1 34

1 22 1

b b aa

b bb b

 

  

respectively. 

Proof: Let 
~ ~ ~i i i

D A B   represented by (5.8) and (5.9) is a trapezoidal shaped IFN. It can be approximated to a TrIFN  

 ~ ~
3 31 2 4 1 2 4

4 3 2 1 4 3 2 1
, , , ; , , ,

i i a aa a a a a a
b b b b b b b bA B

 
   . 

Now consider   c, ut    of the above approximated TrIFN, which is given by  

,D           1 2 1 2, , ,D D D D            

where    1 2 1

4 3 41
a a a

b b bD     ,    34 4

1 1 22
aa a

b b bD     ,     2 2 1

3 3 41
a a a

b b bD   
    ,     3 34

2 1 22
a aa

b b bD   
    . 

The corresponding left divergent for membership function   lm   is    
    1 2 1 1 2 1

4 3 44 4 3

a a a a a a
lm b b bb b b


   

     . To 

find out the optimum divergence 
 

0lmd

d

 


  gives  4

4 3

* 0,1b

b b



  . The maximum left divergence for 

membership is    4 3 2 1

3 44 3

* b b a a
lm b bb b
  


   . 

Again the corresponding right divergent for membership function   rm   is 

   
    4 4 3 34 4

1 1 21 2 1

a a a aa a
rm b b bb b b


   

     . 

To find out the optimum divergence 
 

0rmd

d

 


  gives  1

2 1

* 0,1b

b b



  . The maximum right divergence for 

membership is    2 1 34

1 22 1

* b b aa
lm b bb b
  


   . 

The corresponding left divergent for non-membership function  ln   is    
    2 2 1 2 2 1

3 3 43 4 3

a a a a a a
ln b b bb b b


    

 
    . 

To find out the optimum divergence 
 

0lnd

d

 


  gives  3

4 3

* 0,1
b

b b


 
  . The maximum left divergence for non-

membership is    4 3 2 1

3 44 3

* b b a a
ln b bb b
   


   . 

Again the corresponding right divergent for non-membership function  rn   is 

   
    3 4 3 3 34

2 1 22 2 1

a a a a aa
rn b b bb b b


    

     . To find out the optimum divergence 
 

0rnd

d

 


  gives  2

2 1

* 0,1
b

b b



  . 

The maximum right divergence for non-membership is    2 1 34

1 22 1

* b b aa
rn b bb b
   


   . 

Note 5 When spreads increases, divergences due to approximation for division of two TrIFNs also increases. 
Divergences are insignificant for very small spreads. In such a situation division of two TrIFNs can directly be 
written as approximated TrIFN. 
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6 Numerical Exposure of Arithmetic Operation on Intuitionistic Fuzzy 
Number 

 
Here we have presented numerical example of arithmetic operations of IFNs based on intuitionistic fuzzy extension 
principle and on approximation ((α, β)-cuts) method. 
 
6.1 Addition of Two TrIFN by Intuitionistic Fuzzy Extension Principle 
 

Let  
~

1.5, 2,3.5,4;0.5,2,3.5,4.5
i

A  ,  
~

2,3, 4,5.5;1.5,3,4,6
i

B   and 
~ ~ ~i i i

C A B   (Fig.5). Then  

       ~ ~ ~sup min , :i i i
C A B

z x y x y z      and        ~ ~ ~inf max , :i i i
C A B

z x y x y z     . 

Let us exhibit the computational procedure involve in above equation for membership function, first pick a value 

for z, then evaluate     ~ ~min ,i i
A B

x y   for x and y which add up to z=4.5. We have done this for certain values of x 

and y as shown in Table 1. It appear that the max occurs for x=2 and y=2.5, therefore  ~ 4.5 0.5i

C

  . Now do this for 

other values of z. Similarly for non-membership function, evaluate     ~ ~max ,i i
A B

x y   for x and y which add up to 

z=4.5. We have done this for certain values of x and y as shown in Table 2. The min occurs for x=1.75 and y=2.75 so 

that  ~ 4.5 0.16666i
C

  . Now do this for other values of z. Finally, we get  
~

3.5,5,7.5,9.5;2,5,7.5,10.5
i

C   a TrIFN. 

 
Figure 5: Addition of two TrIFN based on IF Extension principle 

 

Table 1: Finding membership function of sum of two TrIFN 

x   ~i

A

x  y  ~i

B

y min(col#2, col#4)

1.5 0 3 1 0 

1.75 0.5 2.75 0.75 0.25 

2 1 2.5 0.5 0.5 

2.25 1 2.25 0.25 0.25 

2.5 1 2 0 0 

 
6.2 Addition of Two TrIFN by (α, β)-cut Method  
 

Let us consider two TrIFN  
~

1.5, 2,3.5,4;0.5,2,3.5,4.5
i

P   and  
~

2,3,4,5.5;1.5,3,4,6
i

Q  . Using Eq.(5.4) and 

Eq.(5.5), the addition of these two TrIFN is defined by  
~ ~

3.5,5,7.5,9.5;2,5,7.5,10.5
i i

P Q   with membership and 

non-membership function as follows 
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 ~ ~

3.5
 if 3.5 5

1.5
1   if 5 7.5

9.5
  if 7.5 9.5

2
0    otherwise

i i
P Q

x
x

x
x

x
x




  


     




  and   ~ ~

5
if  2 5

3
0 if  5 7.5

7.5
if  7.5 10.5

3
1   otherwise.

i i
P Q

x
x

x
x

x
x




  


     




 

 
Table 2: Finding non-membership function of sum of two TrIFN 

x   ~i

A

x  y  ~i

B

y max(col#2, col#4)

0.5 1 4 0 1 

0.75 0.83333 3.75 0 0.83333 

1 0.66666 3.5 0 0.66666 

1.25 0.5 3.25 0 0.5 

1.5 0.33333 3 0 0.33333 

1.75 0.16666 2.75 0.16666 0.16666 

2 0 2.5 0.33333 0.33333 

2.25 0 2.25 0.5 0.5 

2.5 0 2 0.66666 0.66666 

2.75 0 1.75 0.83333 0.83333 

3 0 1.5 1 1 

 

6.3 Multiplication of Two TrIFN by (α, β)-cut Method 
 

Let us consider two TrIFN  
~

1.5, 2,3.5,4;0.5,2,3.5,4.5
i

P   and  
~

2,3,4,5.5;1.5,3,4,6
i

Q  . Using Eq.(5.6) and 

Eq.(5.7), the multiplication of these two TrIFN is defined by the approximate TrIFN 
~ ~i i

P Q   

 3,6,14,22;0.75,6,14,27  with membership and non-membership function as follows 

 ~ ~

3
   if 3 6

3
1    if 6 14

22
  if14 22

8
0   otherwise

i i
P Q

x
x

x
x

x
x




  


     




  and   ~ ~

6
   if  0.75 6

5.25
0    if  6 14

14
  if  14 27

13
1     otherwise.

i i
P Q

x
x

x
x

x
x




  


     




 

The corresponding left, right divergence for membership and non-membership functions are 0.25, 0.1875 and 
0.5625, 0.5 respectively. 

 
6.4 Division of Two TrIFN by (α, β)-cut Method 
 

Let us consider two TrIFN  
~

2,5,6,8;1.5,5,6,9
i

P  and  
~

1,3, 4,5;0.5,3,4,6
i

Q  . Using Eq.(5.8) and Eq.(5.9), the 

division of TrIFN is defined by  
~ ~

0.4,1.25,2,8;0.25,1.25, 2,18
i i

P Q   with membership and non-membership 

function as follows 
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 ~ ~

0.4
   if  0.4 1.25

0.85
1     if  1.25 2

8
    if  2 8

6
0       otherwise

i i
P Q

x
x

x
x

x
x




  


     




 and  ~ ~

1.25
  if  0.25 1.25

1
0    if  1.25 2

2
    if  2 18

16
1      otherwise

i i
P Q

x
x

x
x

x
x




  


     




 

The corresponding left and right divergence for membership are 0.047368 for α=0.527864 and 1.607695 for 
α=0.633974 respectively. Left and right divergence for non-membership are 0.10102 for β=0.55051 and 6.723266 for 
β=0.710102 respectively. 

 
7 Application of System Failure using Intuitionistic Fuzzy Number 
 
Starting failure of an automobile depends on different facts. The facts are battery low charge, ignition failure and fuel 
supply failure. There are two sub-factors of each of the facts. The fault-tree of failure to start of the automobile is 
shown in the Fig.6. 

~ i

fs
F  represents the system failure to start of automobile. 

~ i

blc
F  represents the failure to start of automobile due to Battery Low Charge. 

~ i

if
F  represents the failure to start of automobile due to Ignition Failure. 

~ i

fsf
F  represents the failure to start of automobile due to Fuel Supply Failure. 

~ i

lbf
F  represents the failure to start of automobile due to Low Battery Fluid. 

~ i

bis
F  represents the failure to start of automobile due to Battery Internal Short. 

~ i

whf
F  represents the failure to start of automobile due to Wire Harness Failure. 

~ i

spf
F  represents the failure to start of automobile due to Spark Plug Failure. 

~ i

fif
F  represents the failure to start of automobile due to Fuel Injector Failure. 

~ i

fpf
F  represents the failure to start of automobile due to Fuel Pump Failure. 

 
The intuitonistic fuzzy failure to start of an automobile can be calculated when the failures of the occurrence of 

basic fault events are known. Failure to start of an automobile can be evaluated by using the following steps: 
Step 1.  

~

1
i

blc
F  Ө(1Ө

~ i

lbf
F )(1 Ө

~ i

bis
F )                                   (7.1) 

~

1
i

if
F  Ө(1Ө

~ i

whf
F )(1Ө

~ i

spf
F ) 

~

1
i

fsf
F  Ө(1Ө

~ i

fif
F )(1Ө

~ i

fpf
F ) 

Step 2.  
~

1
i

fsF  Ө(1Ө
~ i

blcF )(1Ө
~ i

ifF )(1Ө
~ i

fsfF )                                                                      (7.2) 

Here we present numerical explanation of starting failure of the automobile using fault tree analysis with 
intuitionistic fuzzy failure rate. The components failure rates as TrIFN are given by 

 
~

0.02,0.05,0.06,0.07;0.01,0.05,0.06,0.08
i

lbfF  ,  
~

0.02,0.03,0.05,0.06;0.01,0.03,0.05,0.07
i

bisF  , 

 
~

0.03,0.04,0.05,0.07;0.01,0.04,0.05,0.09
i

whfF  ,  
~

0.02,0.04,0.06,0.08;0.01,0.04,0.06,0.09
i

spfF  , 

 
~

0.03,0.05,0.07,0.08;0.02,0.05,0.07,0.09
i

fifF   and  
~

0.04,0.06,0.07,0.08;0.03,0.06,0.07,0.09
i

fpfF  . 
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Figure 6: Fault-tree of failure to start of an automobile 

 
So in the step1 (using Eq.7.1) the results are as follows 

 
~

0.0396,0.0785,0.107,0.1258;0.0199,0.0785,0.107,0.1444
i

blcF  ,

 
~

0.0494,0.0784,0.107,0.144;0.0199,0.0784,0.107,0.1719
i

ifF  , 

 
~

0.0688,0.107,0.1351,0.1536;0.0494,0.107,0.1351,0.1719
i

fsfF  . 

In the step 2 (using Eq.7.2), we obtain the failure to start of the automobile. The fuzzy failure to start of an 
automobile (Fig.6) is represented by the following TrIFN 

 
~

0.149855,0.241615,0.310286,0.366922;0.086857,0.241615,0.310286,0.413272
i

fsF  . 

So the failure to start of the automobile is about an interval [0.241615, 0.310286] with tolerance level of 
acceptance is [0.149855, 0.366922] and tolerance level of rejection is [0.086857, 0.413272]. 

Here the left and right divergences are not significant since elements of these TrIFN are very small. Therefore, 
we consider TrIFN instead of trapezoidal shaped IFN to compute system failure. 
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Figure 7: TrIFN representing the system failure to start of an automobile 

 

8 Conclusion 
 

In this paper, we have proposed a definition of IFN according to the fuzzy number presentation approach. Also 
arithmetic operations of proposed TrIFN are evaluated based on intuitionistic fuzzy extension principle and (α, β)-
cuts method. The major advantage of using IFSs instead of fuzzy sets is that IFSs separate the positive and the 
negative evidence for the membership of an element in a set. We discuss the fault-tree of failure to start of an 
automobile with components having failure rates as trapezoidal intuitionistic fuzzy numbers. Finally, our approaches 
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and computational procedures are efficient and simple to implement for calculation in intuitionistic fuzzy 
environment for all field of engineering and sciences where vagueness is occur. 
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