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Abstract

The NORmal-To-Anything (NORTA) algorithm requires a correlation matrix of multivariate normal variables to
convert a multivariate normal vector to any other distribution. This paper presents a new simulation method that works
in combination with the NORTA algorithm yet avoids having to solve some complicated equations which need to be
solved to achieve this matrix. The performance of the proposed method is investigated in three examples and the
results indicate that the proposed method works well in terms of closeness of the correlation matrix calculated for
generated random vector with the desired input correlation matrix.
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1 Introduction and Literature Review

There are many areas that researchers, in their simulation studies, need to generate correlated multi-variate-attribute
random vectors including both continuous and discrete distributions. For instance, In order to undertake a simulation
study on human behavioral and physical characteristics, some of the variables and attribute characteristics are
correlated and needs to be generated as a correlated multi-variate-attribute vector. Similarly, in a simulation study on
monitoring quality of a product or service, one deals with some correlated continuous and discrete quality
characteristics. It this case, generation of correlated random variables including both continuous and discrete
distributions seems desirable.

There are some methods in multi-variate-attribute domains to generate random vectors with dependent
components and marginal distributions. Niaki and Abbasi [18] placed random vector generation methods that have
been proposed for multi-variate-attribute cases into three categories: Analytical approaches that employ conditional
distributions, Numerical procedures using acceptance/rejection methods, and Simulation approaches that apply
partially specified properties like a set of marginal distributions and a correlation matrix in transformation procedures
but not full joint distribution for the random vector.

Amongst the analytical approaches, Johnson’s [10] proposed method to generate a p-dimensional random vector
X :[xl,xz,...,xp }T by using a marginal distribution and a conditional distribution. He generates x, from cumulative
marginal distribution  # and afterward generates x,,p=2,..,p from the cumulative conditional distribution

F(xp |xl,x2,...,xp71) . This approach may be difficult to apply because cumulative conditional distributions usually

are not easy to derive and also the joint distribution of the random vectors is not often known [18]. Johnson [10] also
has developed a method for generating multivariate lognormal distributions. As a more general method, Johnson [10]
proposed a multivariate Johnson generation procedure but it was limited to a continuous multivariate random vector.
Moreover, if some of the empirical marginal distributions of the original data (or the corresponding underlying
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theoretical marginals) possess marked skewness, then the correlation matrix of the fitted multivariate Johnson
distribution will not match the sample correlation matrix of the original data set (Stanfield, [26]). Stanfield [26]
proposed a modified multivariate input modeling based on the Johnson model but the above-mentioned limitations
are also the case for his method. There are some other analytical methods that are limited to generating data for
specific bivariate or multivariate distributions. Moonan [17] proposed a method for generating normal random vectors
based on the linear transformation of a set of independent standard normal random variables. There have been a
couple of studies on multivariate Gamma distribution: Ronning [21], Schmeiser and Lal [22] and Lewis [12] have
proposed generation models for the nonnegative correlated multivariate gamma, bivariate gamma, and negatively
correlated multivariate gamma distributions, respectively. A multivariate log-normal distribution data generation
method has been proposed by Press [20] for when only positive random variables are required. Parrish [19] has
proposed another multivariate generation method; this one is restricted to Pearson distributions and is claimed to work
approximately with those non-Pearson multivariate distributions which have known joint moments.

Johnson [10] has also reported a numerical procedure that is similar to that of Devroye [3]. In this procedure, a
joint distribution is used to generate random vectors by the acceptance/rejection approach. In these methods, one of
the joint distributions that dominate the original joint probability density function is selected. Then a random vector is
generated based on the selected joint distribution. Finally, this random vector is accepted or rejected based on using a
distribution with uniform centre and exponential tails. It has been reported that, acceptance-rejection methods
typically become inefficient as the number of variables of the problem increases [26, 7, 8, 13] suggested a
transformed density rejection method to construct the dominating density function. Using a joint distribution as an
input for this problem is a major constraint for the proposed method in this category because it does not happen often
in practice [18].

Other than the above-mentioned limitations and difficulties of the aforementioned analytical and numerical
approaches, all of the proposed methods are only utilizable to generate random vectors whose variables have a similar
distribution and most of them have constraints on the size of the random vector that can be generated [18].

With the simulation approaches, full joint distribution for the random vector is not required but a set of marginal
distributions and a correlation matrix (as the partial specifications) are used to generate a multivariate random vector.
The NORmal-To Anything (NORTA) transformation detailed by Cairo and Nelson [1], which is based on work by
Marida [16] and Li and Hammond [14], is an example of the research in this category. The NORTA transformation
can be found in “partially specified” approaches to random vector generation [26]. Song and Hsiao [23] and Song et
al. [24] have applied a similar concept to generate time series random variables [18].

The NORTA approach has a number of desirable attributes; however, there are also some practical limitations to
the application of the algorithm. These issues are discussed in some detail in the next section.

In this paper, a new simulation method is presented that works in combination with the NORTA algorithm for
generating multi-variate-attribute random vectors, but overcomes the difficulties identified with the present
implementations of the algorithm. Section 2 discusses the existing literature concerning the past developments
involving the NORTA algorithm and refers all previous researches in this area. In Section 3, the new proposed
method is developed and its performance is evaluated in using three examples in the following section.

2 NORmal-To-Anything (NORTA) Literature Review and Algorithm

The NORTA transformation demonstrates that samples can be obtained from the partially specified distribution by
transforming the elements of a sample from a multivariate standard normal distribution according to the appropriate
desired marginal distribution, where the correlations of the elements of the deriving normally distributed random
vector are set to generate the desired correlations in the transformed random vector. Setting the correlation matrix
appropriately amounts to solving a number of one-dimensional root finding problems corresponding to each desired
pair-wise correlation value, each of which can be solved by bisection. Solving some complex nonlinear system of
equations is the most important problem in partially specified approaches.

In the NORTA algorithm, firstly a p-dimensional standard normal random vector is generated and then
transformed into a vector of uniform random vectors. After this, by the inverse transformation technique, the uniform
random vector is transformed back into a random vector with the target marginals. The initialization step in the
NORTA algorithm requires finding the correlation matrix of the normal random vector such that it guarantees the last
random vectors generated have a specific correlation matrix [10, 17, 11]. To reach this goal a number of one-
dimensional simultaneous equations must be solved, which usually is difficult to do analytically. Moreover, there are
two complications in NORTA algorithm. The first is that a desired pair-wise correlation may not be feasible; that is,
there may not exist a pair-wise correlation for the driving multivariate normal random vector such that the
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corresponding transformed elements have the desired correlation value. The second, and more serious restriction, is
that even if all desired correlation values are feasible, the full correlation matrix for the driving multivariate normal
random vector may not be positive. This becomes an issue where the dimensionality of the random vector
increases[18].

In order to determine when the first complication might arise, Ghosh and Henderson [6] developed a
computational approach for establishing whether a given covariance matrix is feasible for a given set of marginals in
the initialization step in the NORTA algorithm. They mentioned that in cases where NORTA cannot precisely match
a feasible covariance matrix, it is still possible to use NORTA to obtain the desired marginals exactly, but that the
desired covariance matrix is only approximated. In their proposed method a potentially large linear program (LP)
needs to be solved and it increases with the size of the problem. Later, they investigated the behavior of the NORTA
method in having more variables and proposed a procedure to modify NORTA that can be used more generally for
sampling uniformly from the space of all asymmetric positive definite matrices with the diagonal fixed at some
positive value. They proposed an augmented NORTA as a semi-definite program (SDP) to be solved in the generation
step of NORTA as a modification. They concluded that despite the feasibility problem, the NORTA method is a
viable method even in high-dimensional problems. Furthermore, computational results show that the SDP problem in
the SDP-augmented method is solved within a reasonable amount of time for dimensions less than 10.

In order to resolve the second issue, Lurie and Goldberg [15] proposed a method in which the correlation matrix
is first checked for mathematical consistency (positive semi-definiteness), and adjusted if necessary to have the
closest positive semi-definite correlation matrix. Then the correlated random vectors are generated using a
combination of Cholesky decomposition and Gauss-Newton iteration. However, solving this problem is potentially
computationally expensive; additionally, random vectors generated with the resulting NORTA transform will not
have the desired correlation structure [26].

Stanhope [26] developed a multivariate-to-anything transform in place of NORTA for partially specified random
vector generation and proposed several alternatives to the NORTA algorithm in some specific cases. As the first
alternative, he proposed bilateral bivariate Pareto-to-anything (BBPTA) transforms as a limited method for modeling
bivariate partial specifications. As another alternative, Dirichlet-to-anything (DIRTA) transform were proposed. One
unattractive aspect of using either the BBPTA or DIRTA transform for partially specified random vector generation is
that only partial specifications with correlation matrices having negative pair-wise correlation values can be modeled.
To loosen this restriction, he proposed a multivariate-t-to-anything (TTA) transformation. However, for the stated
goals of partially specified random number generation, a low value of n (degree of freedom) is useful in order to
maximize the difference between the TTA and NORTA transforms. So, a considerable difference between their
outcomes is not expected particularly in high dimension cases.

In following section, the NORTA algorithm is explained in detail with the same notation as used in Niaki and
Abbasi’s paper [18]. The goal of the NORTA algorithm is to generate a p-dimensional random vector

X :[xl,xz,...,prT with the following properties: x, ~ F, ,i=12,...,p , where F_ is an arbitrary cumulative
distribution function (cdf) and Corr[ X ] = Z, , where =, is given.
The vector X is generated by a transformation of a p-dimensional standard multivariate normal (MVN) vector

T . . . . . .
Z= [zl, zz,...,zp] with correlation matrix X, by using transformation equation (1).
_ -1 -1 -1 T (1)
X=(F [0())F [0,)], .. F [0,)])
where ® is the univariate standard normal cdf and F.*(u) = inf{x:F. (x) > u} denotes the inverse cdf. It is noted that
since the exact value of F*(®(z)) for each distribution (especially for discrete distributions) may not be known, the
infimum value of x that satisfies F_(x) > ®(z) is selected for x.

The transformation Fgl(m()) ensures that x, has the desired cumulative marginal distribution #, . To achieve

this, the general problem is to select the correlation matrix X, that gives the desired correlation matrix =, .Therefore,

in the NORTA transformation process, a multivariate normal vector Z is transformed into a multivariate uniform
vector U and then the multivariate uniform vector U into the desired vector X. So, the joint distribution of U is known
as a copula and any joint distribution has a representation as a transformation of a copula (Niaki and Abbasi, 2008).
The NORTA method is summarized in Figure 1.
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Problem definition:
Inputs: £y and Cumulative marginal distribution f.i=1...p
Desired output: multi-variate-attribute vector X = [x,, %, ..., :nc._D]T
Step 1 Corr(X). =—> Corr(Z).
Step 2 Generating multivariate standard normal random vector Z
Z~MVN(OQ, Corr{Z))
Step 3 Z =—> X

Figure 1: Generating a multi-variate-attribute random vector by using NORTA
Each elementof 2, , p.(i, /), i # j, shows the correlation between z, and z; . Similarly, p.(i, j), i # j, denotes
the correlation between x, and x; in X, . That is,
P, j) = Corr(x,,x,) = Corr{F, [®(z)], F, [@(z,)} i # j v

Since
E(x[lxj)_E(x[)E(x,')

JVar(x,Var(x;)

E(x;),E(x;) , Var(x;) and Var(x;) are fixed by F, and F, ; and (z,z,) follows a standard bivariate normal

)

Corr(x,,x;) =

distribution with correlation Corr(z,,z,) = p.(i, j) » E(x,,x;) inequation (3) can be calculated as,
E(xx,) = EEE0G)IE, 1o )= [ F0E)IE [0 )0, (,d. d, @)

where P 44, is the standard bivariate normal probability density function (pdf) with correlation p_ (i, j) . In
equation (4), summation is applied rather than integration for the discrete distributions.

From equation (4), it is clear that the correlation between x, and x; is a function of the correlation between
z;and z; . This function is denoted by C;[p. (i, /)] . In other words, p, (i, /) = C;[p.(i, /)]

So, in order to generate a p-dimensional random vector using the NORTA algorithm, equation (4) needs to be
solved for each pair of the variables. Hence, p(p —1)/2 complicated equations need to be solved that for many
cumulative marginal distributions are usually unsolvable by analytical methods.

Regarding having X, as one of the two inputs (in addition to the marginal distribution), X, is obtainable. To
generate X, from X, (step 1), Niaki and Abbasi [18] identified four generic approaches that might be followed.
Each of these approaches has its own area of application and drawbacks:

1) The analytical approach has been found to work for some special cases such as uniform random vectors. It is
difficult to apply because the joint distributions and consequently the conditional distributions are not easy to obtain
in most cases. Chen [2] and Hull [9] have applied conditional distribution (assumed known) to solve equation (4) for
multivariate normal distributions.

2) In the numerical approach, one employs numerical root finding methods to solve p(p —1)/2 equations. In this
approach, the double integral (summation for discrete distributions) function values of the form (4) are evaluated by
numerical integration methods (summation for discrete distributions). Li and Hammond [14] and Cario and Nelson[1]
used Newton’s method and Yen [27] applied the efficient Gaussian-Quadrature integration and Newton’s method. In
these methods, the computational time increases quadratically with p. Furthermore, the equispaced integration
methods may be inefficient, and the Gaussian quadrature methods may be inaccurate [2].



Journal of Uncertain Systems, Vol.7, No.2, pp.83-91, 2013 87

3) In the simulation approach, for any set of the root candidates, first the NORTA algorithm is applied to
generate m random vectors. Then, the correlations of the m generated observations are calculated and checked to
identify they have reached the required correlation matrix. Chen [2] employed this approach to solve the pp —1)/2
equations in (4) by treating it as a stochastic root-finding problem, solving equations using only the estimates of the
function values. Yen [27] mentioned that the disadvantage of this approach is that the computation time is usually
longer than the numerical approach.

4) In the most recent approach, Niaki and Abbasi [18], have proposed the concept of function fitting to generate
X, using artificial neural networks(ANN). In order to generate p_ (i, j) for each pair of random variables in matrix
X, they employed an ANN that first must be trained with marginal distributions of the random variables and then be
used to generate the p_(i, j) values between each pair of the variables. It needs to employ one network for each pair

of the variables that have different marginal distributions. In other words, similar to the number of equations (4) that
needs to be solved in the numerical method, in ANN p(p-1)/2 networks are required for a p-dimensional problem with
different marginal distributions. It is argued that it is not always easy to employ and train p(p-1)/2 networks. For
example, in a 5 dimensional random vectors with different marginal distributions, 10 separate networks are required.
Niaki and Abbasi showed that the ANN method works better than Newton’s method as applied by Cario and
Nelson[1] in terms of the sum of squared errors (SSE) of the difference between X _, the known input of the problem,

and Z_x calculated by the random vector generated by NORTA algorithm. However this slightly better result was not

considered sufficient to justify the use of this approach given its complexity and the general drawbacks in applying
ANN identified by Friedman et al. [4].

Five issues concerning ANN were identified, the first of which is the trial-and-error approach to building models
during the training phase. Another concern was that ANN techniques do not provide an understanding of how the
system works with only the inputs and outputs being observed. Over-fitting of the iterative model on the training
dataset is another issue. As another concern, model performance is not independent of the starting input values and
parameters. The fifth issue was that variable scaling can be considered as a limitation where the model fits better if all
variables are of a similar scale.

3 Proposed Method

In this method an initial starting matrix £°, could be calculated using the desired input correlation matrix X' and
starting random matrix D* D' is a random diagonal matrix with the same dimension as ', , in which all the elements
on the main diagonal are equal to zero and all other elements are random numbers between
(-1-p', (i, /). 1- ', (i, j)) where o' (i, j) are elements of =*, .

If the X°, matrix is not positive-definite, a new matrix D is generated and used, otherwise the X°, matrix is used

to generate the random vector X' =[x",x",, ...,xfp]T. X is the correlation matrix calculated based on the generated

X

random vector X°. In the other words, based on an iterative procedure, the generated X* =[x‘vl,x"2,...,x“'p]T and

calculated i are the starting random vector and correlation matrix for X, respectively.

Based on the value of the SSE which is set by the user, if the generated Z_X is close enough to the givenZ*,

target !
(SSE value less than SSE,, . ), the generated vector X* could be used as X, otherwise another %, is calculated by
using a different randomly generated D.
In order to have a clear view of the proposed method, a detailed step by step algorithm is shown in Figure 2.
There are three advantages in using this method over previous methods; namely,

The two general complications in NORTA algorithm have been resolved in this method. The first one is
concerned with there being sometimes infeasible solutions to equation (4). This is overcome by setting a =, as an

input by the user. It means that equation (4) does not need to be solved and consequently there is no possibility of not
having feasible pair-wise correlation matrixes. The second issue is in regards to having a non-positive definiteX, .

The algorithm checks for this condition and if found.
Programming is considerably easier and computation time is pleasingly less than other methods.
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The outcome is technically more appropriate than other methods in terms of closeness of generated X, and
input X, and also smaller SSE (as shown and discussed in the case studies below.

Inputs: Desired output:

Input correlation matrix E', and multivaniate-atiribute vector
) ) . e T

cumulative marginal distributions ::> X = [xx5 0, Xy]

i= al
¥k s mae
%; P

'y "

Generating £°; where £°, = E'_ + D®

v

Check 1f £°; 1s a positive definite matnix?

v

X

No .
P Is I, positive
definite?
DS
4, Yes
Generate X* = [x7,,x%,...x%p]7 by using F,i = 1,...,p and I%;

via NORTA Method

Estimate I, as f; by using method of moments from generated X

v

Compare I, with the given E', by calculating SSE

Is
SSE < 55E;gget?

r 3

Yes

X = X* with correlation matrix I,

Figure 2: Combined simulation method in using NORTA algorithm for generating
multi-variate-attribute random vector

4 Case Studies

Cario and Nelson [1] presented three numerical examples in which they obtained the correlation matrices needed for
the NORTA algorithm by numerically solving equation (4) using Newton’s Method. Niaki and Abbasi [18] compared
the estimated correlation matrices from their ANN method to the ones generated in those examples.

In these case studies, MATLAB software is applied to generate random vectors using the new proposed method
discussed above.



Journal of Uncertain Systems, Vol.7, No.2, pp.83-91, 2013 89

In order to do this, the correlation matrix of the normal random vector D", is calculated using the generated

matrix D°. Then, if it passes the positive-definite condition, to compare with the Newton and ANN methods in a
consistent manner, it is used to generate 5000 random vectors with the NORTA algorithm. Finally, the correlation
matrices are calculated and compared to results with the two other methods in terms of sum of squared error (SSE) to

evaluate closeness of the generated correlation matrix X, and the desired input correlation matrix =", .

Case 1: As a multivariate case, all of the random variables of a four-dimensional random vector come from a
Gamma distribution with parameters of « =14.4 and =0.03424, in which the input correlation matrix is

1 07 05 -09
07 1 07 -06
05 07 1 -03[
-09 -06 -03 1
The value of SSE,,,, is setas 0.00035.

The generated correlation matrix based on the generated random vector X and corresponding SSE using the
proposed method are

1 0.7020  0.4984 -0.8838
0.7020 1 0.7009 -0.5979
0.4984  0.7009 1 -0.3076
-0.8838 -0.5979 -0.3076 1
and 0.000332, respectively.

Case 2: As a multi-attribute case, three-dimensional random vectors are generated in which the variables all
share the same Binomial distribution with parameters » =3 and p =0.5and correlation matrix

1 02 -08
02 1 02|
-08 02 1

The value of SSE,,,, is set as 0.00006.

The generated correlation matrix based on the generated random vector X and corresponding SSE using the
proposed method are

1 0.1980 -0.7941
0.1980 1 0.2022
-0.7941 0.2022 1
and 0.000043, respectively.
Case 3: As a multivariate-attribute case, a mixed random vector is considered containing the discrete random
variable X, ~ U(1,10) and continuous random vector X, ~ Exponential(10) with the correlation matrix

1 05
05 1]
The value of SSE,,, Is setas 0.000003.
The generated correlation matrix based on the generated random vector X and corresponding SSE using the

proposed method are
1 —0.5001
-05001 1
and 0.000001, respectively.

Comparison of these results with those reported by Cario and Nelson [1] and Niaki and Abbasi [18] are shown
in Tables 1 and 2. In Table 1, the second and the third columns show the marginal probability distributions of the
variables in the random vectors and the input correlation matrices of the random vectors as desired correlation matrix,
respectively. The fourth, fifth and sixth columns show the generated correlation matrices using the Newton, ANN and
the proposed methods for implementing NORTA algorithm respectively. In Table 2, the second, third and fourth
columns show the estimated correlation matrix of 5000 random vectors generated by the NORTA algorithm using the
three methods. Finally, columns five to seven show the SSE value between the desired input correlation matrices and
the ones generated by the three methods.
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Table 1: Comparison of correlation matrices (based on Niaki and Abbasi [18])

o ]\Iargu.l:.ll it o Standard multivariate normal correlation matrix I; by ...
Probability Matrix &
Distribution o X Newton method ANN method Proposed method

1 0.7 05 =09 1 0.7040 05040 =0,9200 1 0.7008 05052 =0,9289 1 06534 0.4977 =0.8054
1| K~T(14.40034424) 07 1 07 -06|||07040 1 07040 -06160|||0.7008 1 07008 -06133|| [0.693¢ 1 0.6946 -06054
i=1234 05 07 1 -03|||05040 07040 1 -03040(||05052 07008 1 03016 | |04577 06%46 1 —0.3054
=09 =0.6 =0.3 1 =0,9200 =0.6160 =0.3040 1 =0,8289 =0.6133 =0.3016 1 =0.9054 =0.,6054 =0.3054 1

[

X;~Binomial(3.05):

0.2288 1 0.22288 0.2278 1 0.2226

1 0.2288 -0.890
0.2304 1 0.2304

l 1 0.2304 -0.8981] [ 1 0.2278 -0.8880

i=123 -0.8960 0.2288 1 -0.8981 0.2304 1 -0.8880 0.22226 1
3 | XyvDiscrete U(1,10) [1 =05 [ 1 -D‘STéD] [ 1 -0.5719] [ 1 -0.5710]
H~Exp.(10) 05 1 -0.5760 1 -0.5715 1 -05710 1
Table 2: Comparison of results (based on Niaki and Abbasi [18])
E; of 5000 data sets generated using £, in .... SSE
. _ Newton ANN Proposed
case Newton method ANN method Proposed method method | method method
1 0.7087 05175 =-08902]|[1 0.7005 05160 —0.9008] | [1 0.7020  0.4984 -0.8338

0.7087 1 0.7072 -0.6070 0.7005 1 0.7013 -06015 0.7020 1 0.7009 -05979
0.5175 0.7072 1 -0.3151 0.5160 0.7013 1 -03118 0.4984 07009 1 -0.3076
-0.8%902 -0.6070 -0.3151 1 —-0.9008 -0.6015 -0.3118 1 —-0.8838 -0.5979 -0.3076 1

0.000807 | 0.000400 0.000332

[}

0.2116 1 0.1964
—0.7959 0.1964 1

0.2061 1 0.1930
-0.8017 0.1930 1

0.1980 1 0.2022 0.000164 | 0.000080 0.000043

1 0.2116 -E'.?QSQI
—-0.7941 0.2022 1

i 1 0.2061 -O.BDI?J [ 1 0.1980 -0.7941

—0.5037 1 -0.502 —
1 E.ioui] 1 0-;}&4] [, O-im] 0.000013 | 0.000005 | 0.000001

3 [—0.503? —0.5024 —0.5001

5 Conclusion

As can be seen in Tables 1 and 2, the proposed method works better than the methods proposed by both Cario and
Nelson’s [1] and Niaki and Abbasi [18] for generating the standard multivariate normal correlation matrix Z, and

consequently using the NORTA algorithm for generating a multivariate-attribute random vector. In the proposed
method, the correlation matrix, which is calculated based on a generated random vector, is closer to the desired input
correlation matrix, as shown by the SSE value being less than for the other two methods.

In addition to the power of the proposed method in generating random vectors with the closest correlation matrix
to the desired input one, the proposed method, unlike the Newton method, does not need to solve p(p-1)/2
complicated double integral (summation) equations for each coefficient of the correlation matrix.

Furthermore, over and above avoiding the general disadvantages of ANN mentioned in section 3, the
requirement of designing p(p-1)/2 networks for each pair of variables that have different marginal distributions is not
required in the proposed method.

This paper has presented an accurate and robust means of generating multi-variate-attribute vectors for use in
subsequent analyses. It is believed that this proposed method is applicable to all forms of continuous and discrete
distributions.
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