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Abstract

In fuzzy decision systems, we model insuring critical path problem by two-stage risk-aversion fuzzy
programming. For the proposed two-stage insuring critical path problem, we first define three solution
concepts, expected value solution, wait-and-see solution and here-and-now solution, then introduce the
value of perfect information of value-at-risk (VaRVPI) and the value of the fuzzy solution of value-at-risk
(VaRVFS). When activity duration times are continuous fuzzy variables, we adopt fuzzy simulation to
turn the original insuring critical path problem into its approximate optimization problem. After that,
we solve the approximate insuring critical path problem by hybrid algorithm, which combines dynamic
programming method and genetic algorithm (GA). Finally, we report some computational results to illus-
trate the credibility of the developed modeling idea and the effectiveness of the designed algorithm.
©2013 World Academic Press, UK. All rights reserved.
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1 Introduction

Due to the uncertainty involved in a complex decision system, the stochastic insuring critical paths problem
has been studied widely in the field of critical path management. For example, Moehring [I6] minimized
the costs that a project would be completed by a given deadline if the duration for each activity is under
uncertainty; Bowman [4] and Mitchell [[H] treated mass uncertain information by heuristic-based and Monte
Carlo simulation-based techniques, Shen [[8] considered a class of two-stage stochastic optimization problems
for insuring critical path and provided decomposition strategies to solve this problem, and Li et al. [g]
developed a new risk averse two-stage stochastic insuring critical path problem, in which the minimum risk
criterion was adopted in the first-stage objective function. On the other hand, Prade [I7] first used fuzzy set
theory to the project scheduling problem; Chen and Hsueh [5] developed a simple approach to critical path
analysis in a project network with activity times being fuzzy numbers; Zammori [20] took additional critical
fuzzy logic parameters into the factors for determining the critical path; Amiri and Golozari [l] introduced
an algorithm which considers not only time factor but also cost, risk, and quality criteria to determine the
critical path under fuzzy environment, and Zareei [21] gave a new approach for solving fuzzy critical path
problem considering fuzzy duration.

In the current development, we study the insuring critical path problem by two-stage fuzzy optimization
theory [7]. For this purpose, we develop a class of two-stage fuzzy insuring critical path models. In the
proposed model, the first constraint function of the first-stage imposes the credibility of fuzzy event is more
than the predetermined service level requirement. In the case that the uncertain activity duration times have
continuous possibility distributions, our insuring critical path problem above become difficult to solve. To
avoid this difficulty, we apply approximate approach (AA) [I0] to uncertain activity duration times. The
approximating insuring critical path problem is an integer programming problem with a number of logic
constraints, which belongs to the class of NP-hard problems. In addition, the analytical expression of first-
stage penalty function is unavailable, we cannot solve our insuring critical path problem by conventional
optimization method or general purpose software. To overcome this difficulty, we employ a hybrid GA to
compute critical path problem, and provide some numerical experiments to illustrate the efficiency of the
method.
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The rest of paper is organized as follows. In Section B, we present a new two-stage insuring critical path
problem. Section B defines two fuzzy measures VaRVPI and VaRVFS for the proposed insuring critical path
problem. In Section @, we transform the original problem into its approximate programming model. In
Section B, a hybrid GA can be used to solve the approximate problem, in which the dynamic programming
algorithm is used to find the critical path. In Section B, we provide some numerical experiments to illustrate
the efficiency of the designed algorithm. Finally, Section @ draws our conclusions.

2 Formulation of Fuzzy Insuring Critical Path Problem

Generally, a complex project can be described by a directed graph. Let G(N, A) be a directed graph repre-
senting a project, where N = {0,1,...,n} is the set of nodes in the network, A is the set of arcs representing
the activities of the project, and (4,7) € A is the arc from node 4 to node j.

For convenience, we denote fuzzy activity duration times vector in the project as & = (di;(7),9:5(7)),
where d;;(v) is fuzzy uninsured task duration time from node i to node j, and g;;(7) is fuzzy insured task
duration time from node ¢ to node j. In addition, we use F'S(i) = {j|(4,j) € A} and RS(i) = {j|(j,1) € A}
to represent the set of nodes adjacent from node ¢ and adjacent to node i, respectively. Z(i) jea CijTij is the
total cost of insuring arcs, where ¢;; is the cost of insuring arc (1, 7), and x;; is 1 if arc (4, 7) is insured, and 0
otherwise. ©(Q(z,&)) is the cost of penalizing, where © is the nondecreasing penalty function, Q(z,§) is the
critical path length, and z is a decision vector. The following constraint

Cr Z cijzij + O(Q(x,§(7)) <pp>1-a
(i,5)€EA

imposes the credibility of fuzzy event is more than the predetermined service level requirement.
Based on notations above, we construct the following two-stage fuzzy insuring critical path model

min ¢

s.t.: Cr{ > iz + O(Q(z,E(y))) < @} >1—« (1)
(i,5)€A
Ti5 € {07 1},V(2,]) €4,

where Q(z,£()) is the optimal value of the following programming model

max > (dij(y) = (dij(v) — 945 (V) i) yis
(1,j)€EA
S.t.: Z Yo; = 1
JEFS(0) ! @)
S oyii— > wi=0,Yie N\{0,n}
JEFS(2) leRS(i)
yi; € {0,1},Y(¢4,5) € A.

The objective of problem (B) is to maximize the sum of the insured task durations, where y;; is equal to 1 if
arc (1,7) is part of one identified critical path, and 0 otherwise. In addition, the first constraint imposes the
single-assignment rule; the second constraint enforces flow-balance for critical path contiguity, and the third
constraint bounds a binary decision variable.

Problem (W) is a two-stage purely integer programming. In addition, the analytical expression of © is
unavailable, so it is difficult to compute the credibility constraint function in the first-stage. On the other
hand, the second-stage problem (B) is a 0-1 integer programming, given first-stage decision x, we need to
solve the second-stage an infinite number of times. As a consequence, when activity duration times have
continuous possibility distribution, problem (@)—(2) becomes difficult to solve, we will employ the AA, dynamic
programming method and genetic algorithm to find the optimal solutions. This issue will be addressed in the
next section.
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3 The VaRVPI and VaRVFS for Insuring Critical Path Problems

The measures about the expected value of perfect information (EV PI) and the value of the fuzzy solution
(VFS) are based on the expected values, and they usually evaluate the risk-neutral fuzzy programming models
[9, 19]. These measures cannot directly argue whether it is worth to solve our two-stage fuzzy insuring critical
path problem. Therefore, we adapt these measures to risk-aversion fuzzy programming [I1], and define some
new measures to quantify the effect of fuzzy insuring critical path problem.

Let

fl@, ()= Y cymi; + OQx,€(7))).

(3,5)€EA

Then the wait-and-see solution is
VaRWS = min {w | Cr{min (. £0) < ¢} > 1 - a} 7

the here-and-now solution is

VaRRP = min{p | Cr{f(z,£(7)) < ¢} 21~ a},

and the expected value problem or mean value problem is

VaREV = min{¢ | Cr{f(2(£),£(7)) < ¢} > 1 —a},

where £ = E(£) denotes the expected value of fuzzy vector & and z(€) is an optimal solution of mi)r(l f(z,€).
rE

Based on the three solution concepts, two important indexes are introduced as follows.

Definition 1 The expected value of perfect information of value-at-risk is defined as the difference between
the wait-and-see and the here-and-now solution, namely,

VaRVPI =VaRRP — VaRWS.

The value VaRV PI measures the gain value-at-risk of perfect information based on the the credibility
function. Thus, it quantifies the value of information based on the specified risk preferences.

For practical purposes, finding the wait-and-see solution or equivalently solving the distribution problem
is still difficult to implement, so some people replace all fuzzy variables by their expected values.

Definition 2 The value of the fuzzy solution for problem (@)—(B) is defined as
VaRVFS =VaREV — VaRRP.

This quantity is the cost of ignoring information in choosing a decision. It measures the possible gain from
solving the fuzzy insuring critical path model. Note that the high values of VaRV F'S would indicate the
significant improvement in the solution quality by solving the two-stage fuzzy insuring critical path model.

In the following, we prove some basic relations between VaRW S, VaRRP and VaREV | and state them
in the following theorem.

Theorem 1 For any two-stage fuzzy insuring critical path programming problem (@)—(@), the following rela-

tions hold true
VaRWS < VaRRP < VaREYV.

Thus, VaRV PI > 0 and VaRV FS > 0.

Proof. For every realization £, we have the relation
. e '
min f(z,¢) < f(2,£), Ve
Taking the possibility of both sides yields the following inequalities

Pos{min f(z,¢) < ¢} > Pos{f(z,£) < v}, ¥z,
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Pos{min f(z,€) > ¢} < Pos{f(z,€) > ¢}, Vo

From the definition of credibility measure, we get
Crimin f(z,€) < ¢} 2 Cr{f(2,£) < ¢}, V2.

Furthermore, we obtain the first inequality

min { ¢ | Crlaiy /(2. €0)) < 9} > 1= a} < mig (o | Cr{f(z.€0)) < 0} > 1-a).

i.e.
VaRWS < VaRRP.

In addition, for every xz, T(£) is just a feasible solution of the two-stage fuzzy insuring critical path problem.
Therefore, the following inequality
VaRRP < VaREV

is true. The proof of the theorem is complete.

4 The Approximate Insuring Critical Path Model

In our problem, the fuzzy uninsured task duration times d;;(vy) are different for every arc (¢,7), but they
have some relations. The fuzzy insured task duration times g;;(y) are related with the parameter d;;(v).
The parameter d;;(7y) can be described by the fuzzy parameter v1, and 7o, i.e., di;(7) = 0ij71 + DijV2 + Gijs
where 05, pij, and ¢;; are real numbers and they can be seen as weather, risk, and quality, respectively. The
parameter g;;(7) can be written similarly as g;;(v) = rijy1 + Sij72 + tij-

Now all the fuzzy variables turn into the functions of (71, y2), we only need to deal with two fuzzy variables.
We denote the two variables as a fuzzy vector and v = (71, v2) has a triangular possibility distribution. When
they are mutually independent fuzzy variables, we employ the AA [IT] to approximate the original insuring
critical path problem and refer to a sequence {(,,} of discrete fuzzy vector as the discretization of the fuzzy
vector 7y as follows.

For each integer m, we define the discrete fuzzy vector (n = ((m,1,Cm,2) as follows

Cm = hm(y) = (hm,l(’yl)ahmﬂ(’ﬁ))v

where the fuzzy variables Grn1 = hm.1(71), $m,2 = hm,2(72),

R i(w) " ui € [ag, ai + 5],
m,i\U) =
sup{% k; € Z such that % <u}, wu; € [a; + %,bi],

and Z is the set of all integer.
Let vp,,1 and v,,,2 denote the possibility distribution of the fuzzy variable i ,,, and 72 ,,, respectively.

Then we have k i
’Um,l(il) = Pos{il < Tim <
m m

k k k 1
’Um’g(i) = Pos 52 < vom < 2+

ki +1

2
}.

When they are mutually independent triangular fuzzy variables, we can obtain the possibility distribution of
the fuzzy vector (,, as follows

m

3F
3E

1 1
) = Pos{’Ll <7m < kit 7% < vYom < @T—‘_}

= v (B) Avma(t2).

Now we deal with the following credibility level constraints

Um(

)

Cr Z cijri; + O(Q(x,£(7)) < p >1—a,Y(i,j) € A.
(1,7)€A
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First, assume (R, 1(71), hm,2(72)) has the following discrete possibility distribution

< (’S/ll,m’ ;721,m) (:Y%,m? ’Ayg,m) s (:)/117(”“ 'AY%,(m) >
1 2 K .
Vn, v, e Urn

Then possibility distribution of fuzzy vector & = (d;;, gi;), V(4, j) € A is as follows

71 -1 2 =2 JK AK
(dij,ma gij,m) (dij,m7 gij,m) e (dij,nw gij,m)
vl v, vE ’
where v* >0, and lg}ixvan =1L,k=12,...,K.

By introducing a “big enough” constant M, the credibility level constraints can be turned to

> cimi + 0Qx, (1) — M <o,k =1,2,...,K,V(i,j) € A.
(1,5)€A

In addition, we introduce a binary vector z whose components 2,k = 1,2,..., K, take 0 if the correspond-
ing set of constraints has to be satisfied and 1 otherwise.

According to the definition of credibility measure [I3], the credibility level constraints can be equivalently
rewritten as

> cimiy + 0(Qx,h () — Mz <,k =1,2,...,K,¥(i,j) € A,
(3,5)€A

k k
1 >1-20,k=1,2,... K
12}2{1(1)7"( %) 1I§I}fa§XKU’”zk o ok o Y ®)

e {01 k=1,2,..., K.¥(i,j) e A
If the credibility level 0 < 1 — « < 0.5, then inequality (B) is equivalent to

k
— ) >2(1 — =1,2,...
1I§I}€a§XKUm(1 zk) > 2(1—a),k=1,2,..., K,

If the credibility level 0.5 < 1 — o < 1, then inequality (8) can be turned to the following equivalent form

max v’n“lzk <20,k=12,...,K.
1<k<K

As a consequence, when 0.5 < 1 — a < 1, the original problem is approximated by the following program-
ming problem

min ¢
s.t.: E CijTi5 + @(Q(]}, Cjﬁl(’y))) — Mz, <p,k=1,2,....K
(i) €A
max vf 2z <20,k =1,2,... K, (4)
1<k<K
2 e{0,1},k=1,2,....K
Tij € {07 1},V(Z,]> € Aa

where Q(z, éfn (7)) is the optimal value of the following programming problem:

(i,7)€A
s.t.: Z yO = 1
JEFS(0) ! (5)
> oyii— > wui=0,Yie N\{0,n}
JEFS (i) leRS(4)
vij € {0,1},V(4,5) € A.

Now we turn the original infinite-dimensional optimization problem (M)—(2) into an approximating finite-
dimensional one. The convergence of the AA is stated in the following theorem.
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Theorem 2 Consider fuzzy insuring critical path problem (@)-(@). Suppose the activity times £ is a contin-
uwous and bounded fuzzy vector, and the sequence {(n} of fuzzy vector is the discretization of &, then for every
feasible solution x, we have

Tim_O(Q(z. () = O(Q(r.5).
Proof. Since for any feasible solution x and every realization £(7y) of the fuzzy activity times £, the functions
Q(z, &), which together with the suppositions of the theorem satisfy the condition of Theorem 2 in Ref. [I0],
which proves the assertion of the theorem.

The approximate problem (#)—(H) is an integer programming model with logic constraints, which belongs
to the class of NP-hard problems. In addition, the analytical expression of the first-stage penalty function
0(Q(z,Ck (v))) is unavailable, we cannot solve the two-stage problem by conventional optimization method
or general purpose software. In the next section, we will design a heuristic solution method to solve the
approximate problem (#)—(g).

5 Solution Method

5.1 Computing Critical Paths

To solve the approximate critical path model, it is required to compute critical path effectively. According to
the characteristics of network structure and the optimality principle of dynamic programming [3], we employ
the following calculation formula to update the longest path of the network

fG) = max {f(i) + (d[i][] — (d[l[j] — gle] 7DD} (6)

(4,5)€A
where f(j) represents the longest path of node j from the project starting point, f(i) represents the longest
path of node ¢ from the project starting point, d[i][j] represents an uninsured task duration of arc (3,j) € A,

gli][j] represents an insured task duration of arc (4,7) € A, and z[i][j] represents whether arc (i,j) is insured,
i.e., 1if arc (4,j) is insured, and 0 otherwise.

5.2 A Hybrid Genetic Algorithm

The GA was proposed by Holland [6] in 1975. Since the GA does not require the specific mathematical analysis
of optimization problems, it is more likely to find the global optimal solutions of complex optimization problem.
In recent years, the GA has been well developed and has led to some of the most successful applications in the
literature [, [@, [4]. We use the dynamic programming method to compute critical paths in the second-stage
programming, and embed the method into a GA to produce a hybrid solution method. For the sake of clarity,
we briefly discuss the solution representation, initialization, crossover process and mutation process in our
hybrid GA.

Solution Representation. In our algorithm, a solution « = (;)1xm is represented by the chromosome
C = (chij)1xm, where each gene ch;; is restricted in Os and 1s, where 1 represents that arc (,j) is insured,
and 0 represents that arc (4,j) is not insured. This representation indicates that infeasibility cannot occur,
and each new chromosome remains a feasible solution to problem ().

Initialization. For the first-stage of the approximate model (@), we randomly generate a point C =
(chij)1xm from the {0,1}™. If the point is feasible, then we take it as an initial chromosome. From the set
of arcs A, the InsuredArray is randomly generated for the initial population generation step. One number is
randomly generated from (0, 1), if it is bigger than 0.5 or equal to 0.5, then we set it to 1; otherwise, we set it
to 0. Using this method, we can obtain initial feasible chromosomes. Repeating this process pop_size times,
the pop_size feasible chromosomes C1, Ca, ..., Chop size can be produced.

Crossover Process. In crossover operation, a probability parameter P. for the selection of parents to
crossover is predetermined. We randomly generate a real number from (0,1), if it is less than P. at the kth
selection, then the chromosomes C} is selected as a parent. We apply single-point crossover operation on
InsuredArray of the input strings by considering the same crossover point selected at random. The offsprings
are generated by combining the left and the right parts.

Mutation Process. In mutation operator, we predetermine a parameter P, € (0,1) to represent the
probability of mutation for the InsuredArray. We randomly generate a number from (0, 1). If the number is
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bigger than P,,, then the operation is performed. Next we randomly generate an integer [ from (1, pop_size—1),
then the following three gene values from the lth gene value to the (I + 2)th gene value are changed, i.e., 0 is
replaced with 1, and 1 is replaced with 0.

Based on the discussion above, the process of the hybrid GA for solving the approximate critical path
problem (@)—(8) is as follows.
Algorithm 1 (Hybrid GA)

Step 0: Set parameters P. and P,,.

Step 1: Initialize pop_size feasible chromosomes.

Step 2: Solve the second-stage model (B) according to formula (B).

Step 3: Compute the fitness of each chromosome.

Step 4: Select the chromosomes by spinning the roulette wheel. The selection process is fitness-proportional.
Step 5: Update the chromosomes by crossover and mutation operations.

Step 6: Repeat Step 2 to Step 5 for a given number of cycles.

Step 7: Report the best chromosome as the approximate optimal solution.

6 Computational Results

In this section, we consider a project for fuzzy insuring critical path problem as shown in Figure M. The
triangular fuzzy uninsured task duration times and the triangular fuzzy insured task duration times are given
in Table M, where v; = (100, 200, 300), v2 = (79, 109, 139) are mutually independent triangular fuzzy variables.
We employ the AA with 1000 sample points. For each arc (i,5) € A, we generate the cost ¢;; to insure arc
(4,5) € A from a uniform distribution over the interval [80,100]. Finally, we round the values of ¢;; to the
nearest integer values. In addition, let M = 105, and we suppose that the penalty function in our model is

defined as
0, 0 <t <1000,

400 + v/t — 1000, 1000 < ¢ < 1150,
500 + (t — 1150), 1150 < t < 1250,
700 + (t — 1250)2, t > 1250.

o(t) =

Table 1: Fuzzy duration times of tasks

Arc dij 9ij Arc dij Gij

(0,1)  (100,200,300)  (80,180,280) (4,7) (25, 75,125) (30,70,110)

(0,2)  (200,400,600)  (180,380,580) (4,8)  (100,200,300)  (80,180,280)
(0,3)  (158,218,278)  (160,220,280) (58)  (129,209,289)  (80,180,280)
(1,4)  (160,360,560)  (155,355,555) (6,8) (79,109,139) (80,110,140)
(2,4)  (80,180,280)  (115,215,315) (6,9) ( 75,175,275) (80,180,280)
(2,5)  (50,100,150) (47,97,147) (7,10)  (179,309,439)  (178,308,438)
(2,6)  (75,140,215) (79,109,139) (8,10)  ( 75,150,225) (80,180,280)
(3,6)  (170,270,370)  (150,280,410) (9,10)  (158,218,278)  (130,190,250)

Our hybrid GA was coded in the C++ programming language. The numerical experiments were carried out
on a personal computer (Lenovo with Intel Pentium(R) Dual-Core E5700 3.00GHZ CPU and RAM 2.00GB),
using the Microsoft Windows 7 operating system. For different parameters population size pop_size, crossover
probability P,, mutation probability P,,, and the number of generation Gen, the computational results of the
total costs are reported in Table B. To compare the results of objective values, we define the relative error as
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//\\
NN

Figure 1: A project

(optimal value-actual value)/optimal value x100%. It can be seen from Table B that the relative errors do
not exceed 5% when we set different parameters, which implies that the hybrid GA is robust to parameters
and effective for solving problem (#)—(8).

Furthermore, for a = 0.8, we obtain the computational results VaRW S = 290, and VaREV = 900. Then
VaRV PI = 716 — 290 = 426, VaRV 'S = 900 — 716 = 184. That is, for our insuring critical path problem,
the value of perfect information is 426, and the gain from solving our insuring problem is 184.

Table 2: Computational results for numerical experiments(a = 0.8, Gen = 1000)

pop_size P, P, Objective value Relative error(%)

30 0.2 0.4 716 0

30 0.4 0.2 736 2.23%
35 0.1 0.4 749 4.61%
35 0.2 0.2 725 1.26%
40 0.1 0.2 725 1.26%
40 0.3 0.4 736 2.23%
45 0.3 0.3 736 2.23%
45 0.4 0.2 724 1.12%
50 0.3 0.3 748 4.47%
50 0.3 0.4 716 0

7 Conclusions

On the basis of two-stage fuzzy optimization theory, we have studied the insuring critical path problem. The
major new results of the paper are summarized as follows.

(i) We presented a two-stage fuzzy insuring critical path problem, in which we adopted the credibility crite-
rion and a penalty function in the objective of the first-stage, and the penalty function is nondecreasing
and may be convex or nonconvex. In addition, the task durations in the second-stage problem are
characterized by continuous fuzzy variables.

(ii) We introduced two fuzzy measures VaRVPI and VaRVFS for the proposed fuzzy insuring critical path
problem.

(iii) For general task duration distributions, we used the AA to transform the original fuzzy insuring critical
path problem into its approximate programming problem. Furthermore, we designed a hybrid GA to
solve the approximate critical path problem.

(iv) To demonstrate the developed modeling idea and the effectiveness of our hybrid GA, a number of
numerical experiments has been performed. The computational results showed that the designed solution
method is feasible and effective.
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