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Abstract 

 
While the usual assumptions in multiperiodic inventory control problems are that the orders are placed either at the 

beginning of each period (periodic review) or depending on the inventory level they can happen at any time 
(continuous review), in this paper we assume the periods between two replenishments of several products are identical 
and independent random variables. For the problem at hand, the order quantities (decision variables) are of integer-
type and there are two kinds of space and service level constraints for each product. A model of the problem is first 
developed in which a combination of backorder and emergency orders is considered for the shortages, and the costs 
are shortage, holding, purchasing, and transportation. Then, we show the model is of an integer-nonlinear-
programming type and to solve it, two meta-heuristic algorithms of genetic algorithm and simulated annealing are 
employed. At the end, a numerical example is given to demonstrate the applicability of the proposed methodology. 
© 2013 World Academic Press, UK. All rights reserved.  

Keywords: inventory control, stochastic replenishment, partial back-ordering, integer nonlinear programming, 
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1 Introduction and Literature Review 
 
While in multiperiodic inventory control models the continuous review and the periodic review are the two major 
policies, the underlying assumptions of the proposed models restrict their correct utilization in real-world 
environments. In continuous review policy, the user has the freedom to act at anytime and replenish orders based 
upon the available inventory level. However, in the periodic review, the user is allowed to replenish the orders only in 
predetermined times.  

Chiang [8] considered a periodic review model with discounts, in which the period was partly long and the costs 
were purchasing, holding, and fixed ordering. The important aspect of his study was to introduce emergency orders to 
prevent shortages. Bylka [5] investigated a model constrained on the amounts of orders and backorders, in which the 
lead-time was constant and demand was stochastic. By analyzing the changes in the lead-time and the ordering cost, 
they tried to derive the optimized ordering time. Ertogral and Rahim [10] analyzed a multiperiod inventory problem 
with independently and identically distributed (i.i.d.) replenishment intervals. In this closer to reality scheme, a 
supplier visits a retailer with random inter-arrival times and the retailer replenishes his inventories based on a 
replenish-up-to-level inventory control policy. They also assumed that only a certain fraction of the unmet demand 
was backordered and the rest was lost. In this setting under general distribution between replenishment epochs, they 
showed the concavity of the expected profit function and gave the condition that would hold for the optimal 
replenish-up-to-level. Later, Chiang [9] extended a periodic review inventory system in which the period length was 
not constant and followed a probability distribution. They assumed the supplier’s visit-intervals were i.i.d. random 
variables. 
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The periodic inventory control problems were investigated in depth in different research works. Chew at al. [7] 
extended a periodic review policy for a perishable product with a predetermined lifetime in which the price and the 
inventory allocation were jointly determined. They assumed a price-sensitive demand where the price would increase 
as the time goes on. Lee and Schwarz [20] developed a periodic inventory control system with one product and 
stochastic lead-time. They assumed the order would be delivered immediately or one period later.  

Recently, Annadurai and Uthayakumar [4] considered a periodic review system in which the decision variables 
were the period length, the maximum inventory level, and the fraction of the shortage that was lost. The aim of their 
research was to minimize the lost-sale rate. Further, Yun and Xiaobo [31] developed a periodic review inventory 
system serving multiple demand classes that were differentiated by a treatment for shortages. They assumed shortages 
of some classes were treated according to lost sales. The aim of their research was to determine both the inventory 
replenishment decisions and the allocation for all classes. Chen and Yang [6] considered a periodic-review single-
product inventory system with stochastic demand in which the pricing and the ordering decisions were made 
simultaneously over a finite horizon. Ray et al. [24] studied two periodic review inventory models that differed in 
terms of how backordering cost was charged. In the first model, the backordering cost was charged per unit 
backordered and was independent of the length of time. In the second model however, the backordering cost was 
charged based on the number of backorders that were time-dependent. Teunter et al. [30] proposed a new method for 
determining order-up-to levels of items in a periodic review system in which the lead-time demands followed a 
compound binomial pattern. Assuming the orders to be placed either none or at least as much as a minimum order 
quantity, Kiesmuller et al. [18] proposed a periodic review single-item single-stage inventory system with stochastic 
demand. Silver and Bischak [26] extended the periodic review base stock system under exact fill rate and normally 
stochastic demand. Taleizadeh et al. [27] developed a multiproduct multiconstraint stochastic inventory control model 
in which the period length was a random variable. Later, Taleizadeh et al. [28] extended their previous work by 
considering fuzzy cost factor and then fuzzy stochastic period length [29].       

This paper provides an extension of a model of inventory control introduced in Ertogral and Rahim [10] to 
multiple inventory items, integral decision variables, multiple constraints, and emergency orders. As the derived 
optimization models are highly nonlinear, we propose to use either simulated annealing or genetic algorithms to solve 
for a near optimal solution. 

Four main specifications of the proposed model of this research that makes it closer to real-life inventory 
environments and have led to its novelty are 1) to model both multiproducts and multiconstraints problems, 2) the fact 
that the decision variables are integer, 3) the existence of emergency orders, and 4) incorporating the transportation 
cost. By deploying these conditions simultaneously, the developed model is different from other models in the 
periodic review literature. Further, the model is helpful in situations in which a supplier visits a retailer with random 
inter-arrival times and the retailer replenishes his inventories based on a replenish-up-to-level inventory control policy. 
Moreover, due to some limitations on the production capacity, the supply of the raw materials, and the like, the period 
length may be uncertain and the goods may not be delivered on time. As an example, when demand increases and the 
production capacity is limited, in case of breakdowns or late receipts of imported raw materials (as they are delayed at 
customs) the lead-time and hence the cycle length are increased. The stochastic nature of these factors causes the 
period length to be stochastic.          

The rest of the paper is organized as follows. In Section 2, the problem along with its assumptions is defined. In 
Section 3, we model the defined problem of Section 2. To do this we first introduce the parameters and the variables 
of the problem. Then, a single product problem is modeled, and finally the multiproduct problem is formulated. In the 
fourth section of the paper, we explain the ways to solve the model at hand and analyze it under special conditions. 
Incorporating a numerical example, the solution methods are investigated in Section 5. The conclusion and 
recommendations for future research come in Section 6. 
 

2 Problem Definition 
 
Consider a periodic inventory control problem for one provider in which the times required to order several products 
are stochastic in nature. Let the time-periods between two replenishments of the products be identical and 
independent random variables. The demands of the products are constants and in case of shortage, a fraction is 
considered backorder and a fraction lost-sale. In this case, the percentage of the number of customers that wait to 
receive their orders is known. To avoid lost sales, emergency orders can be placed. While the purchasing cost per unit 
of an emergency order is more than the purchasing cost per unit of an ordinary order, it is less than the shortage cost 
per unit of lost sales. For ordinary orders, the system costs are holding, backorder, and purchase. However, a 
transportation cost is added to the purchasing cost of an emergency order. Further, there is no difference in the selling 
price per unit of both ordinary and emergency orders and the lead-times of the emergency orders are zero. While all 
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the purchased products are sold, the warehouse space and the service level of each product are considered constraints 
of the problem. Moreover, the decision variables are integers. We need to identify the inventory levels in each cycle 
such that the expected profit is maximized. 
 

3 Modeling 
 
For the problem at hand, since the time-periods between two replenishments are independent random variables, in 
order to maximize the expected profit of the planning horizon we need to consider only one period. Furthermore, 
since we assumed the costs associated with the inventory control system are holding and shortage (including 
emergency order and transportation costs), we need to calculate the expected inventory level and the expected 
required storage space in each period. Before modeling, we first define the parameters and the variables of the model. 
 
3.1 The Parameters and the Variables of the Model 
 
For 1, 2,...,i n , define the parameters and the variables of the model as 

ir : The maximum inventory level of the ith product 

iT : A random variable denoting the time-period between two replenishments (cycle length) of the ith product   

( )
iT if t : The Probability density function of iT  

ih : The holding cost per unit inventory of the ith product in each period 

i : The backorder cost per unit demand of the ith product 

ic : The purchasing cost per unit of the ith product 
E

ic : The purchasing cost per unit of an emergency order of the ith product 

ik : The transportation cost per unit of an order of the ith product 

iv : The selling price per unit of the ith product 

id : The constant demand rate of the ith product 

iDt : The time at which the inventory level of the ith product reaches zero 

i : The percentage of unsatisfied demands of the ith product that is backordered 

iI : The expected amount of the ith product inventory per cycle 

il : The expected amount of the ith product lost-sale in each cycle 

ib : The expected amount of the ith product backorder in each cycle 

iq : The expected amount of the ith product order in each cycle 
E

iq : The expected amount of the ith product emergency order in each cycle ( E
iq = iL ) 

i : The lower limit of the service level for the ith product 

if : The required warehouse space per unit of the ith product 

F : Total available warehouse space 
m : Number of shipments 
A : The constant cost of each shipment 

iCE : The expected purchase cost of an emergency order of the ith product 

iCH : The expected holding cost per cycle of the ith product 

iCB : The expected shortage cost in backorder state of the ith product 

iCL : The expected shortage cost in lost-sale state of the ith product 

iCP : The expected purchase cost of ordinary orders of the ith product 

iCT : The expected transportation cost of the ith product 

ER : The expected revenue obtained from sales 
Z : The expected profit obtained in each cycle 
For sake of simplicity, in Section 3.3 we first consider a single-product problem. Then, we extend the modeling 

to the multi-product modeling in Section 3.4. However, we first introduce the pictorial representation of the single-
product problem in Section 3.2. 
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3.2 Inventory Diagram 
 
According to Ertogral and Rahim [10] and considering the fact that the time-periods between replenishments are 
stochastic variables, two cases may occur. In the first case, the time-period between replenishments is less than the 
amount of time required for the inventory level to reach zero (see Figure 1). In the second case, it is greater (see 
Figure 2). Figure 3 depicts the shortages in both cases. 
 
3.3 Deriving the Costs and the Profit of a Single-Product Model  
 
In order to obtain the expected profit in each cycle, we need to evaluate all of the terms in Equation (1) [10]:  

( )i i i i i i i i i i i i i i i i iZ ER CP CH CB CL v q c q h I b v c l           .       (1) 

Based on Figure 3, the random lost sale quantity is (1 )( )i i i id T r  , where its expected value is obtained using 

Equation (2)  

(1 ) ( ) ( )       .
Maxi

i i i

Di

T

i i i i i T i i D i Max

t

l d T r f t dt t T T             (2) 

Further, the random backordered quantity is ( )i i i id T r  with an expected value of 

( ) ( )       .
Maxi

i i i

Di

T

i i i i i T i i D i Max

t

b d T r f t dt t T T            (3) 

Moreover, since the random inventory when the inventory level is positive is 2 2i i i irT d T , and 2 (2 )i ir d  during 

stock out periods, the expected inventory level is obtained using Equation (4) 

2 2

( ) ( ) .
2 2

D Maxi i

i i

Min Di i

t T

i i i
i i i T i i T i i

iT t

d T r
I rT f t dt f t dt

d

   
     

   
                                             (4) 

 

 
Figure 1: Presenting the inventory cycle when Min DT T t   

 

 
Figure 2: Presenting the inventory cycle when D Maxt T T   
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Figure 3: Presenting shortages in two cases of compact back order and lost sales 

 
In order to calculate the expected order quantity, one needs to determine the required quantities during both 

stock and stock-out periods. Since they are respectively i id T and  i i i i ir d T r  , the expected order quantity will be    

                               ( ) ( ) .
D Maxi i

i i

Min Di i

t T

i i i T i i i i i i i T i i

T t

q d T f t dt r d T r f t dt             (5) 

In this paper, to avoid lost sales of Equation (2) we put an emergency order of size E
i iq l . Since the purchasing 

cost per unit of an emergency order is E
ic and that the selling price per unit is iP , the cost of an emergency order is 

calculated as: 

       ( ) 1 ( ) ( )
Maxi

i
Di

TE E E E
i i i i i i i i i i i T i it

CE c q Pq c v d T r f t dt                        (6) 

where E
i ic v . 

The transportation cost is calculated based on Equation (7), in which i if q  is the required space to ship the order 

from the supplier. 
ˆ0

ˆ ˆ2 2

ˆ ˆ( 1)

i i i i

i i i i
i

i i i i

A k q f q f

A k q f f q f
CT

mA k q m f f q mf

   

   

 

    

 
    (7) 

By introducing binary variables , 1, 2,..., ,jY j m  the transportation cost can be incorporated with the 

mathematical model of the problem as 

1

m

i i i j
j

CT k q jAY


   

1
ˆ0 i if q fY   

2 2
ˆ ˆ2

         
i ifY f q fY 


        (8) 

ˆ ˆ( 1) m i i mm fY f q mfY    

1 2 1mY Y Y     
0,1.jY   

As the total available warehouse space is F , the space required for each unit of product i  is if , and the upper 

limit for the inventory is ir , the space constraint will be 

.i if r F          (9) 
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Since the shortages only occur when the cycle time is more than Dt  and that the lower limit for the service level 

is  , then  

( ) ( ) 1 .
Maxi

ii i

i

T

ri D T i i i
d

P T t f t dt            (10) 

In short, the complete mathematical model of the single product inventory is              

   

 

( ) ( ) ( ) ( )
i

Maxi
i

ii i
Mini

i

i i i i i i

r
T

d
ri i i i T i i i i i i i T i iT
d

Max Z ER CP CH CB CE CT

v c d T f t dt r d T r f t dt

     

 
     

  
 

                                     

                         

 

   
1

( ) ( ) ( ) 1 ( ) ( )

( ) ( ) ( )

Max Maxi i

i i
D Di i

i
Maxi

i
ii i

Mini
i

T TE
i i i i i T i i i i i i i i T i it t

r mT
d

ri i i T i i i i i i i T i i jT
jd

d T r f t dt c v d T r f t dt

k d T f t dt r d T r f t dt jAY

  




              
 

     
  

 

 
 

. .    i is t f r F                               (11) 

( ) 1
Maxi

i i

i

T

r T i i i
d

f t dt    

1

2 2

ˆ0

ˆ ˆ2

ˆ ˆ( 1)

i i

i i

m i i m

f q fY

fY f q fY

m fY f q mfY

 

 

  


 

1 2 1

0,1
m

j

Y Y Y

Y

   



 

                           0, .r Integer      

 
3.4 The Multiproduct Model 

         
The single-product inventory model of Section 3.3 can be easily extended to a multiple-product model as follows: 

1 1

 [( ) ( ) ]
n m

E E
i i i i i i i i i i i i j

i j

Max Z v c q h I b c v q k q jAY
 

          

                                          1

1
1

. .    

ˆ        0

n

i i
i

n

i i
i

s t f r F

f q fY







 




 

                                                  1

ˆ ˆ( 1) 2,3,...,

( ) 1 1, 2,...,
i

n

j i i j
i

i D i

j fY f q jfY j m

P T t i n


    

    


            (12) 

                                          
1

1

0,1 1, 2,...,

0, 1,2,..., .

m

j
j

j

i

Y

Y j m

r Integer i n





  

  


    

In what follows, we consider two probability density functions for iT  and hence we develop two models. 
 

3.4.1 iT  Follows a Uniform Distribution 
 
In this case the probability density function of iT  is max min( ) 1 ( )

i i iT if t t t  . Accordingly, (12) will change to 
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max3 2
2

1 1 max minmax min

( )(1 )
  

2 ( )6 ( )
i

i ii i

En n
i i i i i i ii

i i
i i ii

c c k h th
Max Z r r

d t td t t

  

 

       
    

      
   

 
2

max min max

1 max min

2( )(1 ) 2

2
i i i

i i

En
i i i i i i i

i
i

c c k t h t t
r

t t

  



     
 
  

  

3 2 2 2
min max min max

1 1max min

3( )( ) 3 ( ( )(1 ))

6( )
i i i i

i i

En m
i i i i i i i i i i i i i

j
i j

h t d v c k t t d t d c v
jAY

t t

   

 

         
  

  
   

1

. .
n

i i
i

s t f r F


                         (13) 

1 1, 2,...,
( )

i

i i

i Max i

i
i Max Min

d t r
i n

d t t



   


 

2 2 2 2

1
1

( 1) (2 (1 )) ( ) ˆ0 ( )
2 ( )

i i i

i i

n
i i i Max i i i Max Min i

i
i i Max Min

r d t r t t d
f fY

d t t

  



    
 

  

2 2 2 2

1

( 1) (2 (1 )) ( )ˆ ˆ( 1) ( ) , 2,3,...,
2 ( )

i i i

i i

n
i i i Max i i i Max Min i

j i j
i i Max Min

r d t r t t d
j fY f jfY j m

d t t

  



    
    

  

1

1
m

j
j

Y


  

0,1 1, 2,...,jY j m    

0, 1, 2,..., .i Integer i nr       

 
3.4.2 iT Follows an Exponential Distribution 
 
If iT  follows an exponential distribution with parameter i , then the probability density function of iT  will be 

( ) i it
i if t e   . In this case, the model becomes: 

  2
1

1 1
 [ (1 )( ) ] ( ) (1 )

i i
i i

i i

r r
n

d dE i i
i i i i i i i i i i i i i i

i i i i

h d
Max Z d c k c d e d v c k h r e

 

  
  

   
       
   



 
           
  

  

1

. .    
n

i i
i

s t f r F


  

        1 1, 2,...,
i

i
i

r

d
ie i n




 

  
       

        1
1

ˆ0 ( (( 1) 1))
i

i
i

r
n

di
i i

i i

d
f e fY






 
  
 



                                                                                                              (14) 

        
1

ˆ ˆ( 1) ( (( 1) 1)) 2,3,...,
i

i
i

r
n

di
j i i j

i i

d
j fY f e jfY j m






 
  
 



        

        
1

1
m

j
j

Y


  

        
0,1       1, 2,...,

0, 1, 2,..., .
j

i

Y j m

Integer i nr

  

 
 

In the next section, we will introduce two meta-heuristic algorithms to solve the problem. 
 

4 The Solution Algorithms 
 
Since the models in (13) and (14) are integer-nonlinear in nature, reaching an analytical solution (if any) is difficult 
[11]. Many researchers have used meta-heuristic algorithms to solve complicated optimization problems in many 
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fields of scientific and engineering disciplines. Some of these meta-heuristic algorithms are simulating annealing [27], 
Tabu search [15], genetic algorithms [22, 25], particle swarm optimization [23, 13 and 16], neural networks [2], 
harmony search [14, 17] and ant colony [3]. As a result, in this section two iterative-search algorithm of simulated 
annealing and population-base genetic algorithm are employed to solve the models.  
 
 4.1 Simulated Annealing 
 
To solve complex optimization problems, Aarts and Korst [1] proposed a local search algorithm named simulated 
annealing (SA) that was inspired by physical annealing processes. SA is an efficient and effective method that 
produces good suboptimal solutions and has been used in many combinatorial optimization problems of different 
areas of sciences [19]. An SA algorithm follows search directions that improve the objective function value. While 
exploring solution space, SA offers the possibility of accepting worse neighbor solutions in a controlled manner in 
order to escape from local minima. The main steps in a SA algorithm are: (1) generating neighbor, (2) evaluating the 
objective function, (3) assigning an initial temperature, (4) changing the temperature, (5) cooling scheme, and (6) 
stopping. 

The neighbor generation is an important component of SA. In this paper, the initial solutions are generated in 
two different ways. In the first way, they are randomly selected among a feasible solution space and in the second, 
they are generated using the best solutions obtained by the genetic algorithm described in Section 4.2.  

When a solution is generated, it should be evaluated by its objective function value. In the maximization models 
of this research, if the objective function of the new solution (j) becomes bigger than the objective function of the 
previous solution (i), then (i) will be replaced by (j). Otherwise, by generating a random number the better solution is 
selected. 

One of the important parameters of the SA algorithm is its initial temperature. The initial temperature has a 
significant effect on the possibility of selecting a bad solution. On the one hand, if a high value assumed for the initial 
temperature, a solution with a bad objective function value has a high chance of being accepted. On the other hand, 
low value of the initial temperature makes the probability of the solution to be a local optimum high. In this paper, 
different large values of 1000, 1500, and 2000 are chosen for the initial temperatures. 

The range of temperature changes in a SA algorithm is also one of the primary aspects of the annealing process. 
In this paper, we change the temperature of the SA algorithm based on a geometric function given in Equation (15) 
with   0.9, 0.95, and 0.99.   

1 ; 1,2,...n nT T n            0 1.       (15) 
Analyzing the equilibrium state after a couple of renitence in a specific temperature of a SA algorithm is 

important and necessary as well. This step should be performed to make sure if the annealing process needs to 
continue in its current temperature or it should be stopped and transferred to the next temperature. In this research, 
reaching to the pre-defined final temperature FT  is used as the stopping criterion. Furthermore, different values of 50, 

100, and 200 are employed for ( )N t  (number of iteration in each temperature).  

In short, the steps involved in the proposed SA algorithm are shown in Figure 4. 

 

 

 

 

 

 

 

 

Figure 4: The steps of the proposed SA algorithm 
 

1. Choosing an initial solution i  from the group of feasible solutions S 
2. Choosing the initial temperature 0 0T   

3. Selecting the number of iterations ( )N t at each temperature 

4. Selecting the final temperature FT  

5. Determining the process of the temperature reduction until it reaches FT  

6. Setting the temperature exchange counter n  to zero for each temperature 
7. Creating the j solution at the neighborhood of the i solution 
8. Evaluating the objective function at any temperature and calculate ( ) ( )z j z i    
9. Accepting the solution j, if 0  . Else, generating a random number ~ [0,1]RN U . 

 If 0TRN e
 
  
  then select solution j  

10. Setting 1n n  . If n  is equal to ( )N t then go to 12. Otherwise, go to 7 

11. Reducing the temperature. If it reaches FT  then stop. Otherwise, go to 6 
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4.2 Genetic Algorithm 
 
Holland [12] was the first who introduced the fundamental principal of genetic algorithms (GA). GA, as a population-
based meta-heuristic algorithm, was inspired by the concept of survival of the fittest chromosomes. A chromosome is 
a string of genes that are considered the coded figure of a possible solution. In an optimization application of the GA, 
a variable is considered a gene and a solution vector containing several gens is a chromosome. In this paper, the 
chromosomes are strings of the inventory levels of the products  ( jr ). 

A GA operates through a simple cycle of stages including 1) creation of a “population” of strings, 2) evaluation 
of the strings, 3) selection of the best strings, and 4) genetic manipulation to create new population of strings.  

A group of chromosomes is called population. One of the main characteristics of a GA is working on a set of 
chromosomes (solutions), instead of focusing on a single solution (or one chromosome). The number of population in 
a generation is the population size and is denoted by N . Creation of a population is usually performed by random 
generation over feasible or infeasible solution spaces of the on hand problem. Moreover, some hints on choosing a 
proper population size are given by Man et al. [21]. In this research, the feasible solution space is considered to 
generate populations of different sizes of 10, 100, and 1000.   

A solution is evaluated based on its objective function value. In the maximization problem of this research, the 
chromosomes with higher objective function values are accepted the best known. Further, the fitness proportional 
selection assigns a selection probability to each solution.     

At the end, the creation of the new population is performed by re-combinations of two types; mutation and 
crossover. The probabilities of the crossover ( cP ) and mutation ( mP ) are the parameters of the genetic algorithms. In 

this research, we test the single point, the two points, and the uniform crossovers shown in Figures 5 to 7 with the 
crossover probabilities of 0.85, 0.90, and 0.95, where jr  shows the chromosome containing the inventory levels of 

the products. Further, in the mutation operation of this research, we create a random number RN between (0,1) for 
each gene. If RN is less than a predetermined mutation probability mP , then the mutation, performed based on the 

uniform function over the specific range of the variable, occurs in the gene. Otherwise, the mutation operation is not 
performed in that gene. Figure 8 depicts a mutation operation in which mP  is chosen 0.1.  

jr  135 65 232 95 35 210 94 35 

jr  215 94 210 80 59 247 85 76 
 

jr  135 65 232 95 35 210 85 76 

jr  215 94 210 80 59 247 94 35 

Figure 5: The single-point crossover operation with M=7 
 

jr  135 65 232 95 35 210 94 35 

jr  105 75 210 80 59 247 85 76 
 

jr  135 65 210 80 59 247 94 35 

jr  105 75 232 95 35 210 85 76 

Figure 6: The two-points crossover operation with M=3 and 7 
 

jr  135 65 232 95 35 210 94 35 

jr  215 94 210 80 59 247 85 76 
 

jr  135 65 210 95 59 210 94 76 

Figure 7: The uniform crossover operation with M=3 and 7 
 

jr  135 65 232 95 35 210 94 90 

RN  0.623 0.245 0.325 0.845 0.256 0.354 0.012 0.756 
 

jr  135 65 232 95 35 210 94 84 

Figure 8: A sample of the mutation operation 
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In this paper, 0.078, 0.088, and 0.1 are employed as different values of the mP  parameter. Further, the steps of 

the GA used in this paper are shown in Figure 9. 

 

 

 

 

 

 
Figure 9: The steps of the GA 

In order to demonstrate the proposed SA and GA algorithms and to evaluate their performances, in the next 
section we bring a numerical example used in Ertogral and Rahim [10] with some modifications. In this example, two 
cases of the uniform and the exponential distributions for the time-period between two replenishments are 
investigated. 

 

5 Numerical Examples 
 
Consider a multiproduct inventory control problem involving eight products and general data given in Table (1). 
Tables (2) and (3) show the parameters of the uniform and the exponential distributions used for the time-period 
between two replenishments, respectively. The total available warehouse space is 18,000 and the available space for 
each shipment is 5,000 with a constant cost of 500 per shipment. Tables (4) and (5) show different values of the 
parameters of the SA and the GA methods, respectively. In this research all the possible combinations of the 
parameters in SA ( 0( ),  N t T and ) and GA ( ,  c mP P and N ) methods are employed and using the max(max) criterion 

the best combination of the parameters has been selected. Furthermore, the single-point crossover had better 
performances than both the two-points and uniform crossover operations. Table (6) shows the best result. The best 
combinations of the SA and the GA algorithms are shown in Tables (7) and (8), respectively. Moreover, the 
convergence paths of the objective function values of the SA algorithm in uniform and exponential distributions are 
shown in Figures 10 and 11. These graphs for the GA method are shown in Figures 12 and 13. From the results, we 
see that the best solution of the GA method is better than the one obtained by the SA algorithm. 

Table 1: General data 

Product 1 2 3 4 5 6 7 8 

ih  2 2 2 2 2 2 2 2 

i  5 5 5 5 5 5 5 5 

iv  100 100 100 100 150 150 150 150 

ic  65 65 65 65 70 70 70 70 
E

ic  105 105 105 105 155 155 155 155 

ik  3 3 3 3 3 3 3 3 

if  3 3 3 3 6 6 6 6 

id  10 10 10 10 10 10 10 10 

i  0.5 0.6 0.6 0.5 0.5 0.6 0.6 0.5 

i  0.5 0.9 0.9 0.5 0.5 0.9 0.9 0.5 

Table 2: Data for uniform distribution 

Product 1 2 3 4 5 6 7 8

iMint  20 20 50 50 20 20 50 50 

iMaxt  40 40 70 70 40 40 70 70 

 

1.  Setting the parameters cP , mP  and N  

2. Initializing the population randomly 
3. Evaluating the objective function for all chromosomes based on objective function 
4. Selecting individual for mating pool 
5. Applying the crossover operation for each pair of chromosomes with probability cP  

6. Applying mutation operation for each chromosome with probability mP  

7. Replacing the current population by the resulting mating pool 
8. Evaluating the objective function 
9. If stopping criterion is met, then stop. Otherwise, go to step 5 
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Table 3: Data for exponential distribution 

Product 1 2 3 4 5 6 7 8 

i  1/30 1/30 1/60 1/60 1/30 1/30 1/60 1/60 

Table 4: The parameters of the SA algorithm 

Table 5: The parameters of the GA method 

Table 6: The best result for ir  

Distribution Approach 
Product 

Z 
1 2 3 4 5 6 7 8 

Uniform 
GA 301 321 621 601 300 320 621 610 4243

SA 301 326 628 600 301 324 625 604 2307.7

Exponential 
GA 209 276 550 417 208 275 550 417 65760

SA 213 275 551 421 212 280 552 417 65123

Table 7: The best combination of the SA parameters 

Numerical Example with  N t 0T    

Uniform Distribution 200 2000 0.95 
Exponential Distribution 200 1000 0.99 

Table 8: The best combination of the GA parameters 

Numerical Example with cP  mP  N  

Uniform Distribution 0.9 0.078 1000 
Exponential Distribution 0.9 0.1 1000 

-1000 -500 0 500 1000 1500 2000 2500
0

20

40

60

80

100

120

140

160

180

200

Objective Function

It
er

at
io

n 
N

um
be

r

 
Figure 10: The convergence path of the best result in uniform example of SA  

 N t 0T    

50 1000 0.9 
100 1500 0.95 

200 2000 0.99 

cP  mP  N  

0.85 0.078 10 
0.90 0.088 100 

0.95 0.1 1000 



Journal of Uncertain Systems, Vol.7, No.1, pp.58-71, 2013                                                                                                           

 

 
 

69

6.34 6.36 6.38 6.4 6.42 6.44 6.46 6.48 6.5 6.52

x 10
4

0

20

40

60

80

100

120

140

160

180

200

Objective Function

It
er

at
io

n 
N

um
be

r

 
Figure 11: The Convergence path of the best result in exponential example of SA  
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Figure 12: The convergence paths of the best result in uniform example of GA 
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Figure 13: The convergence path of the best result in exponential example of GA 



A.A. Taleizadeh et al.: Optimizing Multiproduct Multiconstraint Inventory Control Systems 

 

 
 

70 

6 Conclusion and Recommendation for Future Research 
 

In this paper, a stochastic replenishment multiproduct inventory model with partial backordering and emergency 
order under the service level and space constraints was investigated. Two mathematical modeling for two cases of 
uniform and exponential distribution of the time between two replenishments have been developed and shown to be 
integer-nonlinear programming. Then, two meta-heuristic solution algorithms of SA and GA were proposed to solve 
the models. Finally, based upon the results of two numerical examples it was shown that the best solution of the GA 
algorithm was better than the one in the SA algorithm.  

Fuzzy parameters, some other probability distribution functions for the period length, and deterioration rate for 
the stock inventory can be considered in future works. 
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