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Abstract

This study is concerned with the dynamic risk-analysis for finite state Markov decision processes.
As a measure of risk, we consider conditional value-at-risk(CVaR) for the real value of the discounted
total reward from a policy, under whose criterion risk optimal or deterministic policies are defined. The
risk problem is equivalently redefined as a non-linear optimization problem on the attainable set of the
distribution functions for the real values over all policies. Showing the weak-continuity of CVaR on the
space of attainable distribution functions, the mathematical existence theorem of optimal policies are
proved throughout the discussion of convex analysis and weak-compactness.
c©2013 World Academic Press, UK. All rights reserved.
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1 Introduction and Notation

In probabilistic methods in financial engineering [8], many risk measures have been generalized and analyzed
in economically motivated optimization problems, for example, value-at-risk (VaR), conditional value-at-risk
(CVaR) [19, 20], coherent risk of measure [1, 11, 12], convex risk of measure [7, 6] and its applications
[9, 21]. In particular, CVaR has good properties and easy to analyze such complex models as sequential
decision processes because it can be expressed by a remarkable minimization formula. As for sequential
decision processes, Markov decision processes (MDPs) have many applications in such wide fields as ecology,
economics and communications engineering [16]. So it is important to analyze the dynamic risk-model for
MDPs, whose studies are done by many authors [14, 23, 22], in which the real value of total reward from
a policy is evaluated by the target-percentile risk measure. The key feature of analysis is to characterize
the risk-optimal policy and its corresponding value functions by dynamic programming methods. Applying
the results of these studies, Boda and Filar [3] has considered the risk problem for MDPs using “Value-at-
Risk (VaR)” or “Conditional Value-at-Risk (CVaR)” as a measure of risk. Also, Mundt [13] has solved an
optimization problem for a risk-management model (dynamic portfolio optimization ) applying the theory
of MDPs. In this paper, we provide an alternative framework for the study of risk minimization problem
in finite state MDPs, which is solved based on convex analysis including continuity and compactness [4].
We consider CVaR for the real value of the discounted total reward from a policy, which is minimized over
all policies. Observing that CVaR of a random income variable is depending only on its distribution, the
problem to examined will be equivalently reformulated as non-linear optimization one on the attainable set
of distribution functions for the real values over all policies, which enables the discussion of convex analysis
and compactness. Showing the continuity of CVaR with respect to the distribution function, we will give the
existence theorem for risk-optimal or deterministic risk-optimal policies. In the remainder, we shall establish
notation that is used throughout the paper and define the problem to be considered.

Let R be the set of all real numbers. Let X be a random reward variable on some probability space
(Ω,B, P ), and FX(x) the distribution function, i.e., FX(x) = P (X ≤ x) (x ∈ R). The inverse function
F−1
X (p) (0 < p < 1) will be defined by F−1

X (p) = inf{x ∈ R|FX(x) ≥ p}. Then, the conditional value-at-risk
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for a level γ ∈ (0, 1) of X, CVaRγ(X), is defined [19, 20] by

CVaRγ(X) =
1

1− γ

∫ 1

γ

F−1
−X(p)dp. (1)

We need the following two propositions used in the sequel.

Proposition 1.1 (Fundamental minimization formula) [20] For any random variable X with E|X| < ∞,
CVaRγ(X) is finite for γ ∈ (0, 1) and it holds that

CVaRγ(X) = inf
b∈R

{
b+

1

1− γ
E[(−X − b)+]

}
. (2)

Moreover, the infimum is attained at b∗ = F−1
−X(γ).

For any Borel subset D of R, P (D) denotes the set of all probability measures on D.

Proposition 1.2 [2, 10, 17] Let G be a family of real-valued measurable function on a Borel set D of R.
Then, if G is uniformly bounded and equicontinuous at each x ∈ D, for any sequence {Pn} in P (D) which
converges weakly to P ∈ P (D), it holds that

sup
g∈G

∣∣∣∣∫ gdPn −
∫
gdP

∣∣∣∣→ 0 as n→∞.

We consider standard MDPs specified by (S,A, q, r), where both S and A are finite sets and denote the
sets of the state of the process and actions available at each state, respectively, and q = (qij(a)) is the matrix
of transition probabilities satisfying that

∑
j∈S qij(a) = 1 for all i ∈ S and a ∈ A, r(i, a) is an immediate

reward function defined on S × A. The sample space is the product space Ω = (S × A)∞ such that the
projection Xt,∆t on the t−th factor S,A describe the state and the action of t−time of the process (t ≥ 0).
Let Ωt = (S ×A)t × S (t ≥ 0). A policy π = (π0, π1, . . .) is a sequence of conditional probability πt such that
πt(A|ht) = 1 for all t ≥ 0 and ht = (x0, a0, x1, a1, . . . , xt) ∈ Ωt. The set of all policies is denoted by Π. Let
Ht = (X0,∆0, . . . ,∆t−1, Xt) ∈ Ωt for t ≥ 0.

We assume that for each π = (π0, π1, . . .) ∈ Π, Pπ(Xt+1 = j|Ht−1,∆t−1, Xt = i,∆t = a) = qij(a) for all
t ≥ 0, i, j ∈ S, a ∈ A. Then, for any initial probability measure ν ∈ P (S) and policy π ∈ Π, we can define the
probability measure P νπ on Ω in an obvious way. The expectation with respect to P νπ is denoted by Eνπ . Also,
the initial distribution degenerate at state i ∈ S is denoted simply by i. The real value of the discounted total
reward of the state-action processes {Xt,∆t : t = 0, 1, 2, . . . } under a policy π ∈ Π is defined by

ϕ̃νπ = lim
T→∞

ϕ̃ν,Tπ , (3)

where

ϕ̃ν,Tπ =

T∑
t=0

βtr(Xt,∆t). (4)

The problem is to minimize the conditional value-at-risk of ϕ̃π,CVaRγ(ϕ̃π), over all policies π ∈ Π. The
policy π∗ ∈ Π is said to be risk-optimal for ν ∈ P (S) if it holds that

CVaRγ(ϕ̃νπ∗) ≤ CVaRγ(ϕ̃νπ) for any π ∈ Π. (5)

For notational convenience, ν will be suppressed for P νπ , ϕ̃νπ, ϕ̃ν,Tπ and Eνπ here onwards.

In Section 2 by the discussion of continuity and compactness, the existence of a risk-optimal policy is
shown. In Section 3, a deterministic policy is considered through convex analysis.
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2 Continuity and Compactness

In this section, we give the existence theorem of risk-optimal policies. For a sequence of policies {πn : n =
1, 2, . . .} ⊂ Π with πn = (πn0 , π

n
1 , π

n
2 , . . .) and π = (π0, π1, π2, . . .) ∈ Π, we say that a sequence {πn} converges

to π if πnt (a|ht)→ πt(a|ht) as n→∞ for any a ∈ A, ht ∈ Ωt and t ≥ 0.

The following facts have been proved by Derman [5].

Lemma 2.1 [5] It holds that

(i) The class Π is compact,

(ii) P νπ (Ht = ht,∆t = at) is continuous in π ∈ Π for each ht ∈ Ωt , at ∈ A and t ≥ 0.

Let, for each ν ∈ P (S) and π ∈ Π,

F νπ (x) := P νπ (−ϕ̃π ≤ x),

Φ(ν) := {F νπ (·)|π ∈ Π}.

Since both S and A as finite sets, there exists a constant M such that |r(i, a)| ≤ M for all i ∈ S and a ∈ A.
Then, F ∈ Φ(ν) is a distribution function on [M,M ], where M := −M/(1− β) and M := M/(1− β).

We denote by C[M,M ] the set of all bounded and continuous functions on [M,M ].

Lemma 2.2 For any g ∈ C[M,M ], Eπg(ϕ̃π) is continuous in π ∈ Π.

Proof: By Lemma 2.1 (ii), Eνπg(ϕ̃π) is continuous in π ∈ Π. Since g is uniformly continuous on [M,M ], for any
ε > 0 there exist δ > 0 such that |g(x)−g(y)| < ε if |x−y| < δ. On the other hand, |ϕ̃Tπ−ϕ̃π| ≤ βT+1M/(1−β),
so that there exist T ∗ > 0 with |ϕ̃Tπ − ϕ̃π| ≤ δ for all T ≥ T ∗. Thus, it yields that

|Eπg(ϕ̃Tπ )− Eπg(ϕ̃π)| ≤ Eπ
(
|g(ϕ̃Tπ )− g(ϕ̃π)|

)
< ε for T ≥ T ∗,

which Eπg(ϕ̃Tπ ) uniformly converges to Eπg(ϕ̃π). This shows the continuity of Eνπg(ϕ̃π). 2

Lemma 2.3 It holds that

(i) For any ν ∈ P (S), Φ(ν) is weak-compact;

(ii) If a sequence {πn} ⊂ Π converges to π ∈ Π as n→∞, the corresponding sequence {Fπn} ⊂ Φ(ν) weakly
converges to Fπ ∈ Φ(ν).

Proof: For any sequence {Fπn : n = 1, 2, . . .} ⊂ Φ(ν), we prove that there exists a subsequence of {Fπn}
which weakly converges to some F ∈ Φ(ν). In fact, from Lemma 2.1(i), Π is compact, so that without loss of
generality we can assume that there exists a π ∈ Π such that {πn} converges to π. For any g ∈ C[M,M ],∫

g(x)dFπn = Eπng(ϕ̃πn) (n ≥ 1)

and ∫
g(x)dFπ = Eπg(ϕ̃π).

Therefore, by Lemma 2.2 the sequence {Fπn} weakly converges to Fπ.

From Lemma 2.2, (ii) follows easily. 2

The continuity of CVaRγ(ϕ̃π) is given in the following theorem.

Theorem 2.1 For any level γ with 0 < γ < 1, CVaRγ(ϕ̃π) is continuous in π ∈ Π.
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Proof: Since M ≤ ϕ̃π ≤ M a.s-Pπ, it holds that M ≤ F−1
−ϕ̃π (γ) ≤ M . So, restricting the range of the

infimum, from Proposition 1.1 in Section 1 we have

CVaRγ(ϕ̃π) = inf
M≤b≤M

{
b+

1

1− γ

∫
(x− b)+dFπ

}
. (6)

Here, we apply Proposition 1.2 in Section 1 to prove the theorem.
Let G := {gb(x) ∈ C[M,M ]|M ≤ b ≤M}, where

gb(x) := b+
1

1− γ
(x− b)+. (7)

Obviously, the class G is uniformly bounded and equicontinuous at each x ∈ [M,M ]. Writing the equation
(6) as CVaRγ(ϕ̃π) = infg∈G

∫
gb(x)dFπ, for any π, π′ ∈ Π, it yields that

|CVaRγ(ϕ̃π)− CVaRγ(ϕ̃π′)| ≤ sup
g∈G

∣∣∣∣∫ g(x)dFπ −
∫
g(x)dFπ′

∣∣∣∣ . (8)

Applying Proposition 1.2 in Section 1 together with Lemma 2.3 (ii), the right hand in (8) converges to 0 as
π → π′, which implies the continuity of CVaRγ(ϕ̃π). This completes the proof. 2

Now we are ready to state the existence theorem of risk-optimal policies.

Theorem 2.2 For any ν ∈ P (S), there exists a π∗ ∈ Π which is risk-optimal for ν.

Proof: By Theorem 2.1, CVaRγ(ϕ̃π) is continuous in π ∈ Π. From Lemma 2.1(i), the class Π is compact.
Thus, it follows that there exists a π∗ ∈ Π, for which CVaRγ(ϕ̃π) is minimized over all π ∈ Π. This means
that π∗ is risk-optimal for ν. 2

Corollary 2.1 There exists a π∗ which is risk-optimal for each initial state i ∈ S.

Proof: Theorem 2.2 shows that for each i ∈ S there is a π(i) which is risk-optimal for i. Here, we define the
new policy π∗ ∈ Π by

π∗ = π(i) if X0 = i (i ∈ S).

Obviously, π∗ is risk-optimal for each i ∈ S. 2

3 Further Results

In this section, the convex analysis for our optimization problem are given, for which the existence of risk-
optimal and deterministic policies will be shown.

Lemma 3.1 Φ(ν) is convex.

Proof: For any π = (π0, π1, . . .) ∈ Π, let π{n} := (π0, π1, . . . , πn−1) n ≥ 1. Observing that for any hn ∈ Ωn.
Pπ(Hn = hn) is depending on π{n}, it holds that Pπ(Hn = hn) = Pπ{n}(Hn = hn) and Pπ{n}(·) ∈ P (Ωn).
Let us prove that for any π1, π2 ∈ Π and 0 ≤ α ≤ 1, there exists π ∈ Π such that

Pπ = αPπ1 + (1− α)Pπ2 (9)

which implies that
Fπ = αFπ1 + (1− α)Fπ2 . (10)

We note that by Kolmogorov extension theorem, for (9) to holds it is sufficient to show that the following
equation holds:

Pπ{n} = αPπ1{n} + (1− α)Pπ2{n} for n ≥ 1. (11)

The construction of π{n} satisfying the above equation proceeds inductively.
For n = 0, (11) is obviously true.
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For the inductive step, assume that (11) hold for n. For hn ∈ Ωn, let Hn+1 = (hn, a, j) ∈ Ωn+1. Here, we
define Q ∈ P (Ωn) by

Q(Hn = hn,∆n = an, Xn+1 = j) :=αPπ1{n}(Hn = hn)qxnj(a)π1(a|hn)

+ (1− α)Pπ2{n}(Hn = hn)qxnj(a)π2(a|hn)
(12)

for hn ∈ Ωn, a ∈ A, j ∈ S. Then, from the inductive hypothesis, we have

Q(Hn = hn) :=
∑

a∈A,j∈S
Q(Hn = hn,∆n = a,Xn+1 = j)

= αPπ1{n}(Hn = hn) + (1− α)Pπ2{n}(Hn = hn)

= Pπ{n}(Hn = hn),

(13)

Q(Hn =hn,∆n = a) :=
∑
j∈S

Q(Hn = hn,∆n = a,Xn+1 = j)

= αPπ1{n}(Hn = hn)π1(a|hn) + (1− α)Pπ2{n}(Hn = hn)π2(a|hn).

(14)

Here, we define πn(·|hn) as follows: For each a ∈ A,

πn(a|hn) =

{
Q(Hn=hn,∆n=a)

Q(Hn=hn) , if Q(Hn = hn) > 0

η(a), otherwise
(15)

where η(·) ∈ P (A) is a arbitrarily given probability.
We put π{n+ 1} = (π{n}, πn) = (π0, π1, . . . , πn−1, πn). Then, for hn+1 = (hn, a, j) ∈ Ωn+1,

Pπ{n+1}(Hn+1 = hn+1) = Pπ{n}(Hn = hn)πn(a|hn)qxn,j(a)

= Q(Hn = hn)πn(a|hn)qxn,j(a) (from (13))

= Q(Hn = hn,∆n = a)qxn,j(a) (from (15))

= Q(Hn = hn,∆n = a,Xn+1 = j) (from (12) and (14))

= αPπ1{n+1}(Hn+1 = hn+1) + (1− α)Pπ2{n+1}(Hn+1 = hn+1),

which shows that (11) holds for n+ 1. This completes the proof. 2

By Lemma 2.3 and 3.1, Φ(ν) is convex and weak-compact. The set of extreme points of Φ(ν) will be
denoted by Ext Φ(ν). We say that the policy π = (π0, π1, . . .) ∈ Π is deterministic if π(·|hn) is a Dirac
measure on A for each hn ∈ Ωn and n ≥ 0. We denote by ΠD the set of deterministic policies. The set of
distribution functions of ϕ̃π corresponding to π ∈ ΠD is denoted by ΦD(ν), that is

ΦD(ν) := {Fπ|π ∈ ΠD} .

Lemma 3.2 ΦD(ν) ⊃ Ext Φ(ν).

Proof: Let π /∈ ΠD. To show Fπ /∈ Ext Φ(ν), we prove that there exists π1, π2 ∈ Π (π1 6= π2) with

Pπ =
1

2
Pπ1 +

1

2
Pπ2 . (16)

As π = (π0, π1, . . .) /∈ ΠD, there are n ≥ 1 and hn ∈ Ωn for which it holds that Pπ(Hn = hn) > 0 and πn(·|hn)
is not a Dirac measure. So, πn is represented as

πn(·|hn) =
1

2
ψ1(·) +

1

2
ψ2(·) (17)

for some ψ1, ψ2 ∈ P (A) with ψ1 6= ψ2. Here, using π = (π0, π1, . . .), ψ
1 and ψ2, we construct π1 =

(π1
0 , π

1
1 , π

1
2 , . . .), π

2 = (π2
0 , π

2
1 , π

2
2 , . . .) as follows:

πlt := πt if t 6= n, (t ≥ 0) (l = 1, 2, ) (18)
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and

π1
n(·|hn) =

{
ψ1(·) if hn = hn
πn(·|hn) otherwise,

π2
n(·|hn) =

{
ψ2(·) if hn = hn
πn(·|hn) otherwise.

(19)

Now, we prove that (16) holds for this π1 and π2. To this end, by the Kolmogorov extension theorem, it
suffices that

Pπ(Ht = ht) =
1

2
Pπ1(Ht = ht) +

1

2
Pπ2(Ht = ht) (20)

for all ht ∈ Ωt and t ≥ 0.
In case 0 ≤ t ≤ n− 1, by (18), (20) obviously holds.
In case t = n, by (19) it holds that

Pπ(∆n = a|Hn = hn) =

{
1
2π

1
n(a|hn) + 1

2π
2
n(a|hn) if hn = hn

π1
n(a|hn) = π2

n(a|hn) otherwise.

This shows that (20) holds for t = n.

In case t ≥ n + 1, we rewrite ht ∈ Ωt as ht = (h
(n)
t , an, h

(t|n)
t ), where h

(n)
t = (x0, a0, . . . , xn), h

(t|n)
t =

(xn+1, an+1, . . . , xt). Similarly, we put H
(n)
t = (X0,∆0, . . . , Xn), and H

(t|n)
t = (Xn+1,∆n+1, . . . , Xt). Let

ht ∈ Ωt. When h
(n)
t = hn, we have

Pπ(Ht = ht) = Pπ(H
(n)
t = hn)Pπ(∆n = an|H(n)

t = hn)

× Pπ(H
(t|n)
t = h

(t|n)
t |H(n)

t = h
(n)
t ,∆n = an)

= Pπ(H
(n)
t = hn)(

1

2
ψ1(an) +

1

2
ψ2(an))

× Pπ(H
(t|n)
t = h

(t|n)
t |H(n)

t = h
(n)
t ,∆n = an)

=
1

2
Pπ1(H

(n)
t = hn)Pπ1(∆n = an|H(n)

t = hn)

× Pπ1(H
(t|n)
t = h

(t|n)
t |H(n)

t = h
(n)
t ,∆n = an)

+
1

2
Pπ2(H

(n)
t = hn)Pπ2(∆n = an|H(n)

t = hn)

× Pπ2(H
(t|n)
t = h

(t|n)
t |H(n)

t = h
(n)
t ,∆n = an)

=
1

2
Pπ1(Ht = ht) +

1

2
Pπ2(Ht = ht).

When h
(n)
t 6= hn, by (18) and (19) we have

Pπ(Ht = ht) = Pπ1(Ht = ht) = Pπ2(Ht = ht).

From the above the proof is complete. 2

We need the following lemma, which is obtained by an application of Choquet’s theorem (Theorem (Cho-
quet) in [15], p.19-p.20).

Lemma 3.3 For any F̄ ∈ Φ(ν), there is a probability measure µ on Ext Φ(ν), such that∫
u(x)dF̄ =

∫
Ext Φ(ν)

dµ

∫
u(x)dF for all u ∈ C[M,M ].

Theorem 3.1 There exists a deterministic policy which is risk-optimal for ν, that is,

min
π∈Π

CVaRγ(ϕ̃νπ) = min
π∈ΠD

CVaRγ(ϕ̃νπ). (21)
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Proof: From Proposition 1.1 in Section 1, we have

K := min
π∈Π

CVaRγ(ϕ̃π)

= inf
F∈Φ(ν)

inf
M≤b≤M

∫
gb(x)dF (x)

= inf
M≤b≤M

inf
F∈Φ(ν)

∫
gb(x)dF (x)

(22)

where gb(x) is defined in (7). Applying Lemma 3.3, for any b ∈ [M,M ] there exists F b ∈ ΦD(ν) such that

min
F∈Φ(ν)

∫
gb(x)dF =

∫
gb(x)dF b.

By (22) there exists a sequence {F bk ⊂ ΦD(ν)} such that
∫
gbk(x)dF bk → K as k →∞. With the compactness

of Φ(ν) there is F ∗ ∈ Φ(ν) for which we can assume without loss of generality, that {F bk} weakly converges
to F ∗. Since F ∗ ∈ ΦD(ν), π∗ corresponding F ∗ is deterministic and risk-optimal for ν. This completes the
proof. 2

Similarly as Corollary 2.1 in Section 2, we can prove the following.

Corollary 3.1 There exists a deterministic policy which is risk-optimal for each initial state i ∈ S.

4 Concluding Remarks

In this paper, we have considered CVaR-minimization problem for finite state MDPs. Using the fact that
CVaR of a random income variable depends only on its distribution function, the problem is equivalently
redefined as a non-linear programming problem on the attainable set of the distribution functions over all
policies, by which the corresponding CVaR-minimization problem is successfully reduced to the one in the
area of convex analysis and weak-compactness. Optimal risk or deterministic policies are defined and their
existence theorem are proved. The results are purely mathematical. However, the existence theorem is im-
portant to develop an algorithm for finding an optimal policy, which will be in future works.
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[6] Föllmer, H., and I. Penner, Convex risk measures and the dynamics of their penalty functions, Statistics &
Decisions, vol.24, pp.61–96, 2006.
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