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Abstract

In any manufacturing system, the cost is considered to be the most significant factor and the reliability
of any industrial system is also an increasingly important issue. On the other hand the available informa-
tion about the constituent components of the system is most of the time imprecise, incomplete, vague and
conflicting and the management decisions are based on experience. So it is very difficult to analyze their
behavior and to predict their failure pattern. In such situations the decision making is difficult and the
presence of multi-objectives gives rise to multi-objective optimization problem which leads to Pareto opti-
mal solutions instead of single optimal solution. The objective of this paper is to quantify the uncertainties
that makes the decision more realistic, generic and extendable to application domain. This paper deals the
fuzzy multi-objective reliability optimization problem for synthesis unit of a complex configuration urea
fertilizer plant where reliability and cost of the system are involved as conflicting objectives. By taking
into account the DM/system expert preferences in the form of weights and the objectives’ membership
functions, the problem is formulated as a single objective optimization problem and then solved with the
particle swarm optimization.
c⃝2013 World Academic Press, UK. All rights reserved.
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1 Introduction

Reliability is one of the vital attributes of performance in arriving at the optimal design of a system because
it directly and significantly influences the system’s performance. Conventionally reliability is defined as the
probability that a component will not fail to perform within specified limits in a given time while working
in a stated environment. In traditional reliability analysis, the survivor probabilities of the components of
a system are considered as exact values. That is, that every probability involved is perfectly determinable.
But this precision is not true in the real system while there also exits some uncertainty in the value of
the survivor probabilities obtained from experiment. The main aspects of uncertainty are: randomness and
fuzziness. Uncertainty arising from variability or stochasticity is random whereas uncertainty due to lack
of information, ignorance and/or subjectivity is fuzzy. Probability theory deals with randomness whereas
possibility theory or fuzzy theory deals with ambiguity.

In a classical optimization model, the system and element lifetimes are assumed to be random variables and
the system performance such as system reliability is evaluated by using the probability theory. Unfortunately,
this assumption is not appropriate in a wide range of situations. In many practical cases, the probability
distribution function of the system and element lifetimes may be unknown or partially known. In fact,
from a practical viewpoint, the fuzziness and randomness of the element life times are often mixed up with
each other. In real life, the data cannot be recorded or collected precisely due to human errors or some
unexpected situations. So one may consider ambiguous situations like vague parameters, non-exact objectives
and constraint functions in the problem. Such problem may be classified as a non-stochastic imprecise model.
In such situations the traditional reliability theory, based on probabilistic and binary state assumptions, do
not always provide useful information to the practitioners due to the limitation of being able to handle only
quantitative information [2, 3, 12, 26]. The subjective information is not captured during analysis. The results
obtained are therefore not much practical. This is primarily due to the fact that there is significant impact
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of subjective information. It has therefore become inevitable to consider subjective information along with
quantitative databases to arrive at useful results in analysis.

The use of fuzzy set theory [28] is another way to handle the subjective information or uncertainties. Due
to incomplete and uncertain input information, mathematical models of such problems are developed in fuzzy
environment and the optimization problem under consideration becomes a fuzzy programming problem. Also
in the development of fuzzy programming, numerous approaches have been proposed in which both kinds
of uncertainties; vagueness and ambiguity. In these approaches the parameters (coefficients) involved are
treated as fuzzy parameters, since in practice they are often known to experts as fuzzy numerical data rather
than crisp data. Bellman and Zadeh [1] inspired the development of fuzzy optimization by providing the
aggregation operators, which combine the fuzzy goals and fuzzy decision space. After this pioneering work,
a great number of articles dealing with the fuzzy optimization problems have come out. The collection of
papers on fuzzy optimization edited by Delgado et al.[5] and Slowinski [25] gives the main stream of this topic.
Zimmermann [29] initiated the application of fuzzy theory to optimization by solving theoretical, fuzzy, linear
programming problems.

In reliability optimization problems, it is often required to minimize or maximize several objectives subject
to several constraints. For instance, a designer is required to minimize the system cost while simultaneously
maximizing the system reliability. Therefore, multiobjective functions become an important aspect in the
reliability design of the engineering systems. In practical, the problem of series system reliability may be
formed as a typical nonlinear programming problem with nonlinear cost-functions in fuzzy environment.
Some researchers applied the fuzzy set theory to reliability analysis. Park [19] used fuzzy in the reliability
apportionment problem for a two-component series system subject to single constraints and solved it by
fuzzy nonlinear programming technique. Sakawa [23] used the surrogate worth trade off method to a multi-
objective formulation of a reliability allocation problem to maximize the system reliability and minimize the
system cost. Ravi et al.[21, 22] implemented simulated annealing algorithm for several reliability optimization
problem. Huang [10] presented a fuzzy multi-objective optimization decision making method of reliability of
series system. Mahapatra and Roy [15] proposed a new fuzzy multi-objective optimization method to solve
reliability optimization problem having several conflicting objectives. Other important contributions to fuzzy
programming with fuzzy parameters have been found in [7, 9, 11, 16, 17, 18].

The present work is an extension of the work, earlier done by Garg and Sharma [8], in which the cost
factor was not considered in mathematical modeling. In this study, a conflicting multi-objective nonlinear
programming problem is considered in fuzzy environment where we maximize the reliability and minimize
the cost of the system. A conflicting nature between the objectives are resolved with the help of the fuzzy
numbers. Linear membership function has been used for fuzzification. Based on the choice of the DM/system
expert regarding the prioriy amongst the objectives and objectives’ membership functions, the problem is
converted to a single objective problem and robust global optimization technique, namely particle swarm
optimization (PSO) has been used to get the optimal or nearby optimal values of the objectives’.

2 Fuzzy Multi-objective Optimization Problem

A general multiobjective optimization problem consists in finding the design variables set x that optimizes a
vector of objective functions

f(x) = {f1(x), f2(x), . . . fn(x)}

over the feasible design space X. A mathematical formulation of the multiobjective optimization problem is:

Maximize f(x) = (f1(x), f2(x), . . . , fn(x))
T

s.t. x ∈ X = {x ∈ Rn|gj(x) ≤ 0, j = 1, 2, . . . ,m} (1)

xl
k ≤ xk ≤ xu

k k = 1, 2, . . . ,K

where n ≥ 2 is the number of distinct objectives in optimization problem; m is the total number of constraints,
x = (x1, x2, . . . , xK) is K dimensional decision variable from some universe X ⊆ Rn, objective functions
fi(x), i = 1, 2, . . . , n where, fi : X → R and the constrained functions gj(x) where, gj : X → R are all real
valued functions on X, f(x) is the multi-objective vector or criteria vector of objective functions. When all
f ′
is and g′js are linear, the problem is called a multi-objective linear programming problem. If at least one of
the f ′

is is nonlinear the problem is nonlinear multi-objective optimization problem.
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Some basic definitions on Pareto optimal solutions are introduced below.
Definition: (Complete optimal solution): x∗ is said to be complete optimal solution to the problem (1) if
and only if there exists x∗ ∈ X such that fr(x

∗) ≥ fr(x), for r = 1, 2, . . . , n and x ̸= x∗ ∈ X.
However, in general, such a complete optimal solution that simultaneously maximizes all the leader’ and

follower’s objective functions does not always exist. Instead of a complete optimal solution, a new solution
concept, called Pareto optimality, arises and it is defined as follows.
Definition: (Pareto-optimal solution): A vector x∗ ∈ X is a pareto optimal if there exists no feasible vector
x ∈ X such that for one objective function, say fi(x), fi(x) > fi(x

∗), and for all other fr(x) ≥ fr(x
∗), r =

1, 2, . . . , n; r ̸= i.
The set of all Pareto-optimal solution of a given multi–objective optimization problem is called the Pareto–

optimal set, i.e. P ∗ = {x ∈ X : x is a Pareto–optimal solution}.
Conventional optimization methods assume that all design information (parameters and goals) of an

optimization model are precisely known. But in the real world, we often encounter the situation that we
have to make a decision under uncertainty due to the presence of incomplete or imprecise or vagueness
in information. Thus, in practical sense, the expression of the objective functions and constraints in the
optimization problem (1) are not transparent. In order to make the model more flexible and adoptable to
human decision process, the optimization model (1) can be represented by fuzzy non-linear programming
problems with fuzzy numbers.

Therefore in fuzzy environment the optimization problem (1) becomes

Maximize f(x̃) = {f1(x̃), f2(x̃), . . . , fn(x̃)}
s.t. x̃ ∈ X = {x̃ ∈ Rn|gj(x̃) . 0, j = 1, 2, . . . ,m} (2)

where . represents the fuzzy version of ≤.
In a multi-objective optimization problem, an optimal solution which simultaneously optimizes all the

objectives, and that too when the problem is modeled in a fuzzy environment, is rarely possible. In such
situations one usually tries to search for the best possible solution in the presence of incomplete, vague or
imprecise information which is as close to the DM’s expectations as possible. Search of such a satisfying
solution requires solving the multi-objective fuzzy optimization problem iteratively in an interactive manner
wherein the DM is initially asked to specify his or her preferences and expectations. Based on these preferences,
the problem is solved and the DM is provided with a possible solution. If the DM is satisfied with this solution
the problem ends there, otherwise he or she is asked to modify his or her preferences in the light of the earlier
obtained results. This iterative procedure is continued till a satisfactory solution is achieved which is closed
to DM’s expectations. The detail of the technique is given in the following steps.

Step 1: Solve the multi–objective optimization problem (2) as a single objective non-linear problem n times for
each problem by taking one of the objective at a time and ignoring the others. The solutions obtained
after solving are known as ideal solutions. The solution to the above model is the ideal solution x∗

t of
each objective function, ft, and the corresponding objective function at the ideal solution may be given
by

f∗
t = ft(x

∗
t ), t = 1, 2, . . . , n.

The lower bound (mi) and upper bound (Mi) corresponding to each objective ft is calculated as

mt = min
1≤p≤n

ft(x
∗
p),

Mt = max
1≤p≤n

ft(x
∗
p).

Hence the membership function corresponding to the two constraints ft(x) ≤ mt (i.e. for minimization)
and ft(x) ≥ Mt (i.e. for maximization) is defined as follows:

For ft(x) ≤ mt (t = 1, 2, . . . , n),

µft(x) =


1, ft(x) ≤ mt
Mt−ft(x)
Mt−mt

, mt ≤ ft(x) ≤ Mt

0, ft(x) ≥ Mt.

(3)
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Here, µft(x) is strictly monotonically decreasing function of ft(x).

For ft(x) ≥ Mt (t = 1, 2, . . . , n),

µft(x) =


1, ft(x) ≥ Mt
ft(x)−mt

Mt−mt
, mt ≤ ft(x) ≤ Mt

0, ft(x) ≤ mt.

(4)

Here, µft(x) is strictly monotonically increasing function of ft(x).

Step 2: Using the achieved objectives’ membership functions and DM/system expert preferences in the form
of weights W = [w1w2 . . . wn], problem is formulated as a single objective optimization problem and is
given as:

Maximize

(
1 ∧ α1(x)

w1

)
∧
(
1 ∧ α2(x)

w2

)
∧ · · · ∧

(
1 ∧ αn(x)

wn

)
s.t. αt(x) = µft(x)

xl
k ≤ xk ≤ xu

k , k = 1, 2, . . . ,K (5)

wt ∈ [0, 1], t = 1, 2, . . . , n

where ∧ indicates the intersection or min operator, wt represents the tth objective weight suggested by
DM, αt is the degree of satisfaction of the tth objective, x is the vector of decision variables, xl

k and xu
k

are the lower and upper bounds of decision vector xk, respectively.

Since the problem is nonlinear in nature so it requires an efficient technique to solve this problem. Variety
of methods and algorithms exists for optimization of such problems and applied in various technological
fields during the last decades. Evolutionary algorithms are found to be very promising global optimizers.
PSO is one of the most popular evolutionary algorithms [13, 24] and has been applied effectively to many
different problems like system reliability/availability/redundancy allocation optimization [6, 7, 27]. More
specifically for application purpose, Fang et al. [6] also used PSO to adjust the membership functions
of a Mamadani-fuzzy controller in performing tacking control. Permana and Hashim [20] used PSO to
determine the membership function in a fuzzy system. Thus in the light of applicability, this paper
use PSO [4, 13, 24] as a tool to solve the optimization problem (5) whose pseudo code is described in
Algorithm 1.

Algorithm 1 Pseudo code of particle swarm optimization (PSO)

1: Objective function: f(x), x = (x1, x2, . . . , xK);
2: For each particle:

Initialize particle position and veclocity
3: Do:
4: For each particle:

(a) Calculate fitness value
(b) If the fitness value is better than the best fitness value (pbest) in history.
(c) Set current value as the new pbest.

5: End for
6: For each particle :

(a) Find in the particle neighborhood, the particle with the best fitness.
(b) Calculate particle velocity according to the velocity equation (6).
(c) Update particle position according to the position equation (7).
(d) Apply the position constriction.

7: End for
8: While maximum iterations or minimum error criteria is not attained

The velocity and position of particle i at iteration t+ 1 are respectively updated as follows

vi(t+ 1) = χ(vi(t) + c1 ∗ r1 ∗ (pbesti(t)− xi(t))

+c2 ∗ r2 ∗ (gbest(t)− xi(t))) (6)

xi(t+ 1) = xi(t) + vi(t+ 1) (7)
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where xi and vi represents the position and velocity of the each dimension, pbesti and gbest are
the personal best and global best position of the particle at iteration t. The factor χ, where χ =
2/|2− ϕ−

√
ϕ2 − 4ϕ| with ϕ = c1 + c2, ϕ > 4, is called the constriction factor.

To stop the optimization process maximum number of generations and change in population fitness value
are used. MATLAB 7.4 has been used for coding purpose.

3 Illustrative Example

To illustrate, a fertilizer plant situated in northern part of India and producing approximately 1500-2000
metric tons per day has been considered as a main system [14]. The fertilizer plant are large, complex and
repairable engineering unit which is combination of ammonia and urea plant. The urea plant is composed of
synthesis, decomposition, crystallization and prilling system, arranged in predetermined configuration.

System Description

The urea plant considered here is a complex engineering system where the units are arranged in a random
fashion and they run continuously for a longer period to produce the required quantity of urea [14]. The
plant is a combination of two dependent systems namely ammonia production system and the urea production
system. For the production of urea, liquid ammonia and Carbon dioxide are used as inputs which are obtained
from ammonia plant. Further, processed in a reactor at controlled pressure and temperature the reactants
(urea, ammonium carbonate, water and excess ammonia) are sent to decomposer for urea separation. In
the crystallizer, the crystals of urea are separated by centrifuge and conveyed pneumatically to the prilling
tower where they are melted, sprayed through distributors and finally fell down at the bottom of the tower,
from where it is collected. Among the various functional units in the plant such as urea synthesis, urea
decomposition, urea crystallization, urea prilling and urea recovery, urea synthesis is one of the most important
and vital functional processes which is the subject of our discussion.

In brief, the various subsystems and the components associated with them are defined as below [8]:

• Subsystem 1 has one unit CO2 booster compressor (A), a centrifugal type pump, which raise the pressure
of CO2 from 0.1 to 29.5 atm. Its failure causes complete failure of the system.

• Subsystem 2 has one unit CO2 high-pressure compressor (B), a reciprocating type pump, which raises
the pressure of CO2 from 29.5 to 250atm. Its failure causes complete failure of the system.

• Subsystem 3 contains the liquid ammonia feed pumps (E) which are of reciprocating type that raise the
ammonia pressure from 16.5 to 250atm. Two pumps are in operation simultaneously and two remain in
cold standby. The system fails when three pumps fail.

• Subsystem 4 has two ammonia pre-heaters (D) arranged in series. The first one raises the temperature
of gas upto 53.20C and the second heat the gas to 82.30C. Failure of either causes complete failure of
the system.

• Subsystem 5 has the recycle isolution feed pump (F), a multistage centrifugal pump, to raise the pressure
of ammonia carbonate from 17 to 250atm. It has one unit in standby. The system fails only when both
units fail.

The schematic diagram and the PetriNet model of this system are shown in Fig. 1, where “Top” in Fig. 1(b)
represents the system failure of the synthesis unit.

Mathematical Model of the System

In earlier, Garg and Sharma [8] were found the various reliability parameter such as failure rate, repair
time, MTBF, availability, reliability , maintainability and expected number of failures used for predicting
the system behavior at different level of uncertainities. The present work is an extension of the earlier work
done by [8, 14], in which the cost factor was not considered in mathematical modeling. Since the cost factor
plays a key role in reliability analysis and its improvement. Also, in addition to maximization of system
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Figure 1: (a) Systematic diagram and (b)PetriNet model of the synthesis unit

reliability, it is also oftenly required that the cost be minimized simultaneously. But, all these requires the
knowledge of precise numerical probabilities and component functional dependencies, the information which
is rather difficult to obtain because of incomplete or non-obtainable information. Even, if data is available, it
is often inaccurate and thus, subject to uncertainty i.e. historical records/data can only represents the past
behavior but may be unable to predict the future behavior of the equipment. If the data are used as such in
the calculations, the results will be highly uncertain. To handle the vagueness and uncertainity in data, the
crisp data related to failure rates (λ′

is) and repair times (τ ′is) are converted into fuzzy number/interval with
some support (spread) as suggested by decision makers/system analyst etc. Incorporating all these things,
the multiobjective reliability optimization problem for the concerned system as follows

Maximize Rs = exp(−λst)

Minimize Cs =
10∑
j=1

{
aj log

(
1

1− exp(−λjt)

)
+bj

}
s.t. (1− s)xk ≤ xk ≤ (1 + s)xk,

x = [λ1, λ2, . . . , λ10, τ1, τ2, . . . , τ10]
T ,

λ3 = λ4 = λ5 = λ6; λ7 = λ8;λ9 = λ10

τ3 = τ4 = τ5 = τ6; τ7 = τ8; τ9 = τ10

k = 1, 2, . . . , 20

s = 0.15(considered uncertainty level)

where Rs and Cs denote the total reliability and cost of the system, λi and τi are the failure rate and repair
time of the ith component while λs is the system failure rate whose expression is given by

λs = λ1 + λ2 + (λ3τ3 + λ4τ4)(λ5 + λ6) + (λ3 + λ4)(λ5τ5 + λ6τ6) + λ7 + λ8 + λ9λ10(τ9 + τ10).

The different values for the parameters aj(j = 1, 2, . . . , 10) are 14, 8, 7.14, 7.14, 7.14, 7.14, 3.33, 3.33, 24,
24 respectively and for bj(j = 1, 2, . . . , 10) are 80, 60, 50, 50, 50, 50, 30, 30, 100, 100 respectively are chosen
randomly. The input parameters defining the specific instances has the same values as that of [8] and are
tabulated in Table 1.

Table 1: Data for failure rate and repair time [8]

Subsystems→ A B E D F
i = 1 i = 2 i = 3, . . . , 6 i = 7, 8 i = 9, 10

Failure rate(λi × 10−3hrs−1) 3.873 5.395 2.759 4.475 6.691
Repair time(τi) (hrs) 4.564 2.838 4.736 3.727 4.384



Journal of Uncertain Systems, Vol.7, No.1, pp.13-21, 2013 19

4 Computational Results

Parameter Setting

The optimization method is implemented in Matlab (MathWorks) and the program has been run on a T6400
@ 2GHz Intel Core(TM) 2 Duo processor with 2GB of Random Access Memory(RAM). In order to eliminate
stochastic discrepancy, 25 independent runs are made involving 25 different initial trial solutions with popula-
tion size 100 and maximum number of generation as 300 along with c1 = c2 = 2.05. To stop the optimization
process maximum number of generations and change in population fitness value are used.

Results and Discussion

A fuzzy region of satisfaction corresponding to the objective functions are to be constructed by using (3)
and (4). Using these constructed membership functions and their weight vector as suggested by DM/system
experts corresponding to the two objective functions, the equivalent crisp optimization problem is formulated
as follow.

Maximize

(
1 ∧ α1(x)

w1

)
∧
(
1 ∧ α2(x)

w2

)
s.t. αt(x) = µf̃t

(x), t = 1, 2 (8)

x = [λ1, λ2, . . . , λ10, τ1, τ2, . . . , τ10]
T

λ3 = λ4 = λ5 = λ6; λ7 = λ8;λ9 = λ10

τ3 = τ4 = τ5 = τ6; τ7 = τ8; τ9 = τ10

s = 0.15(considered uncertainty level)

wt ∈ [0, 1].

For the solution of the optimization problem (8), PSO is used with the parameter given in section 4. The
results corresponding to weight sets W1 = [1, 1], W2 = [1, 0.5], W3 = [0.8, 0.2], W4 = [0.2, 0.8], W5 = [0.5, 1]
which are suggested by DMs/system experts (in order of their importance factor) are given in Table 2.

Table 2: Pareto results for different weight sets suggested by decision maker

Sub Decision W1 W2 W3 W4 W5
Components variables
A λi 0.004032 0.003292 0.003304 0.004355 0.004454
(i = 1) τi 5.248600 5.248600 4.134244 4.794343 5.248600
B λi 0.004586 0.004586 0.004804 0.005590 0.006204
(i = 2) τi 3.263700 2.412300 2.515186 3.121812 2.412300
D λi 0.003173 0.002703 0.002779 0.003126 0.003173
(i = 3, . . . , 6) τi 4.025600 4.025600 5.116085 4.215035 4.025600
E λi 0.003804 0.003804 0.003890 0.004884 0.003832
(i = 7, 8) τi 3.167950 3.167950 3.205497 3.745798 3.167950
F λi 0.007695 0.007202 0.005849 0.007515 0.007695
(i = 9, 10) τi 3.726400 3.726400 4.387996 4.203431 3.726400

System Rs 0.843740 0.851231 0.847863 0.814497 0.826239
System Cs 915.909555 926.269636 934.592675 913.187325 912.144580

α1 0.816717 0.965529 0.898612 0.235780 0.469040
α2 0.816717 0.482764 0.214475 0.904467 0.938079

In Case I (i.e W1, results shown in 3rd column of Table 2) where DM insists to have no biasness towards
any of the objectives (i.e. not to attain maximum reliability or minimum cost but biasness towards the
midways between both objectives). In Case II (i.e W2, where the reliability index importance is twice as
that of cost index, results shown in 4th column of Table 2), DM wants that the biasness/preference towards
maximizing reliability. Also DM does not care about the other objective (i.e. minimizing the cost). So, on
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solving, the Pareto-optimal will shift towards the maximizing reliability which was preference of the DM in
this case. Similarly in Case V (i.e W5, where the cost index importance is twice as that of reliability index,
result shown 7th column of Table 2) in which DM wants that the biasness/preference towards minimum cost
and also does not care about the other objective (i.e. maximizing the reliability). Hence the Pareto-optimal
will shift towards the minimum cost. Moreover, the optimal result of the different preferences can be easily
seen through the degrees of membership value i.e. α1 & α2. For instance, in Case I the degrees of membership
are equal because in that case DM insists no bianess towards any of the objectives while in Case II and Case
V, the degrees of membership value are in twice ratio according to the preferences towards the objective
funtions. Similarly effects have been observed in all other cases. Thus for different preferences suggested by
DMs, optimum values of systems’ reliability and cost are achieved. Since each objective function is optimized,
system performance under consideration is optimized automatically.

5 Conclusion

Due to growing complexity in the industrial systems, the design of a repairable series-parallel system is
insufficient if the analysis is done based on empirical methods. Also, the design cost for the system will
increases as it is very difficult to analyze the system behavior based on experience. Applying soft computing
techniques such as PSO to analyze and to optimize the design problems of repairable series-parallel systems,
appears to be very helpful in decision making of system parameter design. In the present study, an attempt
has been made to optimize the system reliability and cost of the synthesis unit of a fertilizer plant with
limited, imprecise and vague data. Due to complexity in the system configuration, the data obtained from
historical records, is imprecise and inaccurate. The development of fuzzy numbers from available data on
components and using fuzzy possibility theory to define the membership function can greatly increase the
relevance of the reliability study. The computed failure rates and repair times, may help the maintenance
engineer to determine the repair policy by taking into account optimal design and the company maintenance
policy. System reliability engineers/analysts may use these results to set the future targets of their interest.

In the nutshell, a structured framework has been developed that may help maintenance engineers to
analyze and predict system performance. Attempts have also been made:

• to deal with imprecise, uncertain dependent information related to system performance as the fuzzy
methodology provides a better, consistent and mathematically sound method for handling uncertainties
in data than conventional methods, such as Bayesian statistics;

• to model and deal with highly complex repairable series-parallel system (synthesis unit of a urea plant)
using fuzzy sets, as these sets can deal easily with approximation.
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