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Abstract

In this paper, we consider the problem of approximate solutions of set-valued stochastic differential
equations. We firstly prove an inequality of set-valued Itô integrals, which is related to classical Itô isome-
try, and an inequality of set-valued Lebesgue integrals. Both of the inequalities play an important role to
discuss set-valued stochastic differential equations. Then we mainly state the Carathodory’s approximate
method and the Euler-Maruyama’s approximate method for set-valued stochastic differential equations.
We also investigate the errors between approximate solutions and accurate solutions.
c©2013 World Academic Press, UK. All rights reserved.
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1 Introduction

It is well-known that the theory of classical stochastic differential equations has been developed deeply with
wide applications in many fields (e.g. [3, 7, 13]). A stochastic differential equation can be written as

dx(t) = f(t, x(t))dt+ g(t, x(t))dB(t), (1.1)

or its integral form

x(t) = x(0) +

∫ t

0

f(s, x(s))ds+

∫ t

0

g(s, x(s))dB(s),

where f : [0, T ] × Rd → Rd and g : [0, T ] × Rd → Rd×m are drift and diffusion coefficients respectively,
{B(t) : 0 ≤ t ≤ T} is an m-dimensional Brownian motion.

Recently, the discussion of set-valued stochastic differential equations is becoming one of important top-
ics since the measurements of various uncertainties arise not only from the randomness but also from the
impreciseness in some situations. For example, a general option pricing model can be written as

dS(t) = µ(t)S(t)dt+ σ(t)S(t)dB(t)

with S(0) = s0, S(t) is the stock price at time t, µ(t), σ(t) are given predictable processes, called expected
return rate and volatility of the stock price respectively. However, both of µ(t) and σ(t) are difficult to obtain
since the factors of affecting the market are too complex. But it is relatively easy to estimate their lower and
upper bounds. So we have to discuss the set-valued model

dS(t) = US(t)dt+ V S(t)dB(t),

where µ(t) ∈ [a, b] := U , σ(t) ∈ [c, d] := V (cf. [15]). This leads us consider the following general set-valued
stochastic differential equation

dX(t) = F (t,X(t))dt+G(t,X(t))dB(t),

∗Corresponding author. Email: lisma@bjut.edu.cn (S. Li).



4 J. Zhang and S. Li: Approximate Solutions of Set-Valued Stochastic Differential Equations

or set-valued stochastic integral equation

X(t) = X(0) +

∫ t

0

F (s,X(s))ds+

∫ t

0

G(s,X(s))dB(s), (1.2)

where X(t), F (t,X(t)), G(t,X(t)) are set-valued stochastic processes.
In the set-valued stochastic integral equation (1.2), there are two kinds of integrals. The first one is the

set-valued Lebesgue integral of a set-valued stochastic process with respect to time t. For the definitions and
properties of set-valued Lebesgue integrals of set-valued stochastic processes, readers may refer to [8, 10, 18]
and the references therein. The second integral is the set-valued Itô integral of a set-valued process with
respect to a Brownian motion. Kisielewicz [4] first introduced the concept of set-valued stochastic integral by
using selection method in 1993. It is generalized concept of the classical stochastic Itô integral. Following his
work, there are some results on set-valued differential inclusions and their applications in stochastic control
and mathematical economics (e.g. [5, 6, 15]).

However, Kisielewicz’s definition of set-valued stochastic integrals is not very satisfactory to discuss set-
valued stochastic differential equations, because one can not prove that the set-valued stochastic integral
ξ(t, ω) =:

∫ t

0
G(s, ω)dB(s) is an adapted set-valued stochastic process even when {G(t)} is a predictable set-

valued stochastic process. Jung and Kim [2] modified Kisielewicz’s definition and solved the above problem
when the basic space is R. Moreover, Zhang et. al [17] slightly modified the definition of [2] again when the
basic space is a separable M-type 2 Banach space. In this paper, we shall give an inequality of set-valued
stochastic integral (cf. Theorem 1), which is related to classical Itô isometry, and prove an inequality of
set-valued Lebesgue integrals. Both of the inequalities play an important role to discuss set-valued stochastic
differential equations. This is the first aim of this paper.

Based on the definitions and properties of [9, 10, 18] and the assumptions of set-valued drift coefficient
and single-valued diffusion coefficient in (1.2), Li and Li [9], Li et al. [10] discussed set-valued Itô differential
(or integral) equations in the Euclidean space Rd and Zhang et al. [18] investigated set-valued stochastic
differential equations in the M-type 2 Banach space. By using the definitions of set-valued Lebesgue integrals
in [18] and set-valued Itô stochastic integrals in [17], we discussed the existence and uniqueness of solutions
of set-valued stochastic integral equations with set-valued drift and diffusion coefficients in [16].

We would like to metion that Malinowski and Michta [12] and Michta [14] did some work on set-valued
stochastic differential equations whose drift and diffusion coefficients are set-valued mappings, by using
Kisielewicz’s definition of set-valued Itô integral. But they could not prove that the solution of their set-
valued stochastic differential equation is adapted, which is a very important point as we have pointed out
before.

Ever for classical stochastic differential equations, however, there are only a few types having accurate
solutions. So it is necessary to consider numerical solutions of stochastic differential equations. Thus it is
important to seek various approximate methods in many models for practical uses (e.g. [13] and its references).
For the same reason, in order to develop applications of set-valued stochastic differential equations, we shall
investigate the approximate solutions of set-valued stochastic differential equations, which is the second aim
of this paper.

We organize our paper as follows: in Section 2, we shall prove an inequality of set-valued stochastic Itô
integrals and an inequality of set-valued Lebesgue integrals. Besides, we shall prove some other properties of
set-valued Itô integrals and set-valued Lebesgue integrals, and recall set-valued stochastic integral equations.
In Section 3, we shall introduce the Caratheodory’s approximate solutions and investigate how to seek the
size of iterative step and iterative times by the error (distance between approximate solution and accurate
solution in some sense). Besides, we shall provide with the Euler-Maruyama’s approximate solutions and have
a discussion similarly.

2 Set-Valued Stochastic Differential (or Integral) Equations

Throughout this paper, assume that R is the set of all real numbers and R+ = [0,∞), I = [0, T ], Rd is the
d-dimensional Euclidean space with usual norm ‖ ·‖, (X , ‖ ·‖X ) is a separable Banach space, B(E) is the Borel
field of the space E, λ is the Lebesgue measure on (I,B(I)).

Let (Ω,A, P ) be a complete probability space, A be separable respect to P , the σ-field filtration {At : t ∈ I}
satisfy the usual conditions (i.e. complete, non-decreasing and right continuous), {B(t) : t ∈ I} be a Brownian
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motion, Lp(Ω,A, P ; E) be the set of all E-valued random variables with finite p-order moments (p ≥ 1).
Assume that K(X ) is the family of all nonempty closed subsets of X , and Kb(c)(X ) is the family of all

nonempty bounded closed (convex) subsets of X . For any x ∈ X and A ∈ K(X ), the metric between x and
A is defined by

d(x,A) = inf
y∈A
‖x− y‖X .

For any A,B ∈ K(X ), Hausdorff metric between A and B is defined as

HX (A,B) = max{sup
a∈A

d(a,B), sup
b∈B

d(b, A)}.

In particular, denote ‖A‖K = HX (A, {0}). Then Kb(X ) and Kbc(X ) are complete spaces with respect to HX
(Theorem 1.1.2 of [11]).

From now on, we focus on the discussion in Rd, which is easy to extend to a separable Banach space or
an M-type 2 Banach space as authors have done in [1, 11, 17, 18] respectively.

A set-valued mapping F : Ω→ K(Rd) is called a set-valued random variable if

{ω ∈ Ω : F (ω) ∩O 6= ∅} ∈ A, for any open set O of Rd.

For the equivalent definitions of a set-valued random variable, readers may refer to Theorems 1.2.3 and 1.2.7
of [11].

An Rd-valued function f : Ω→ Rd is called an almost everywhere selection of F if f(ω) ∈ F (ω) for almost
everywhere ω ∈ Ω, and F is said to be Lp-integrably bounded, if ‖F‖K ∈ Lp(Ω,A, P ;R+).

LetM be a set of A-measurable mappings f : Ω→ Rd,M is called decomposable, if for every f1, f2 ∈M
and every A ∈ A such that f1IA + f2IΩ\A ∈ M. We have that the p-order integral selection set of an
Lp-integrably bounded set-valued random variable F

Sp
F = {f ∈ Lp(Ω,A, P ;Rd) : f(ω) ∈ F (ω) a.s. (P )}

is nonempty, decomposable with respect to A and closed in Lp(Ω,A, P ;Rd). Conversely, if a given nonempty
subset Γ ⊂ Lp(Ω,A, P ;Rd) is decomposable with respect to A and closed, can we find a set-valued random
variable F such that its selection set Sp

F = Γ? The answer is positive given by Hiai and Umegaki in [1].
Readers also may refer to Theorem 1.3.9 of [11].

Proposition 1 If Γ is a nonempty closed subset of Lp(Ω,A, P ;Rd), then there exists a set-valued random
variable F such that Γ = Sp

F if and only if Γ is decomposable with respect to A. Moreover, Γ is bounded in

Lp(Ω,A, P ;Rd) if and only if F is Lp-integrably bounded.

Let A0 be a sub-algebra of A. Then the p-order integral selection set of F with respect to A0 is denoted
as

Sp
F (A0) = {f ∈ Lp(Ω,A0, P ;Rd) : f(ω) ∈ F (ω) a.s.(P )},

where Lp(Ω,A0, P ;Rd) is the set of all Rd-valuedA0-measurable random variables with finite p-order moments.
Let N be the σ-algebra of the progressive events in I × Ω, i.e.

N = {A ⊂ I × Ω : A ∩ ([0, t]× Ω) ∈ B ×At, for every t ∈ I}.

A d-dimensional stochastic process f : I ×Ω→ Rd is called progressive measurable if f is N -measurable. Let
L2(Rd) = L2(I × Ω,N , λ× P ;Rd) be the set of all Rd-valued progressive processes f = {f(t)}t∈I with

E[

∫ T

0

‖f(t)‖2dt] <∞.

Next, we shall recall some definitions of set-valued stochastic processes and set-valued stochastic Itô
integrals.

The mapping F : I×Ω→ K(Rd) is called a set-valued stochastic process, if for any t ∈ I, F (t) : Ω→ K(Rd)
is a set-valued random variable. Similarly, we have the concepts of set-valued progressive stochastic processes
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and set-valued progressive Lp-integrably bounded stochastic processes, denoted by Lp(K(Rd)). If a process
F : I × Ω→ K(Rd) is progressive L2-integrably bounded, then its selection set

S2
F (N ) = {f ∈ L2(Rd) : f(t, ω) ∈ F (t, ω), a.s.(λ× P )}

is nonempty and closed. Then we can define

Γt = {
∫ t

0

f(s)dB(s) : f ∈ S2
F (N )}, t ∈ I.

We use L2 and L2
t briefly to denote L2(Ω,A, P ;Rd) and L2(Ω,At, P ;Rd) respectively. Let deΓt be the

decomposable closed hull of Γt with respect to At, where the closure is taken in L2
t . That is, for any g ∈ deΓt

and any given ε > 0, there exists a finite At-measurable partition A1, ..., Am of Ω and f1, ..., fm ∈ S2
F (N )

such that

||g −
m∑
i=1

IAi

∫ t

0

fi(s)dB(s)||L2 < ε.

By using Proposition 1, we can obtain the following result (cf. [17]).

Proposition 2 If F : I ×Ω→ K(Rd) is a progressive and L2-integrably bounded set-valued process, then for
any t ∈ I, there exists an At-measurable set-valued random variable It0(F ) such that S2

It
0(F )(At) = deΓt.

Based on Proposition 2, the following concept of set-valued Itô integral was introduced in [17].

Definition 1 For each t ∈ I, the element It0(F ) of K(Rd) is called Itô integral of the set-valued process
F = {Ft : t ∈ I} with respect to a Brownian motion {B(t) : t ∈ I}, if S2

It
0(F )(At) = deΓt, and denoted by

It0(F ) =
∫ t

0
F (s)dB(s). For 0 ≤ u < t ≤ T ,

∫ t

u
F (s)dB(s) =

∫ t

0
I[u,t]F (s)dB(s).

The following results of this section will play an important role in Section 3. Before showing them, we
state the Castaing Representation Theorem of set-valued Itô integrals.

Lemma 1 [17] For a progressive and L2-integrably bounded set-valued process F : I × Ω → K(Rd), there
exists a sequence {(f it )t∈I : i = 1, 2, . . .} ⊆ S2

F (N ) such that for each t ∈ I,

F (t, ω) = cl{f it (ω) : i = 1, 2, . . .} a.s.

and

It0(F )(ω) = cl

{∫ t

0

f is(ω)dBs(w) : i = 1, 2, . . .

}
a.s..

Theorem 1 If two set-valued stochastic processes F1, F2 ∈ L2(K(Rd)), then
(i) for every u, t ∈ I, u < t, the following inequality holds

HL2(J t
u(F1), J t

u(F2)) ≤
(∫

[u,t]×Ω

H2

Rd(F1(s, ω), F2(s, ω))ds× dP
)1/2

,

where HL2 is Hausdorff metric on K(L2);
(ii) for every u, s, t ∈ I, u ≤ s ≤ t, the following equality holds

Itu(F1) = cl{Isu(F1) + Its(F1)}, a.s.;

(iii) the mapping Itu(F1) : [u, T ]→ K(Rd) is continuous in t in the sense of L2 for the set-valued case.

Proof: (i) By Lemma 1, for j = 1, 2, there exists a sequence {(f jit )t∈I : i = 1, 2, . . .} ⊆ S2
F (N ) such that for

each u, t ∈ I, u < t, Fj(t, ω) = cl{(f jit (ω) : i = 1, 2, . . .} a.s. and

Itu(Fj)(ω) = cl{
∫ t

u

f jis (ω)dBs(w) : i = 1, 2, . . .} a.s..
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For fixed f1,i, we can choose a subsequence {f2ik : k ≥ 1} such that

d(f1i, f2ik)→ d(f1i, F2), a.s.(λ× P ), k →∞.

So we have d2(f1i, f2ik)→ d2(f1i, F2), a.s.(λ× P ), k →∞. Since

d2(f1i, f2ik) ≤ 2(‖F1‖2K + ‖F2‖2K), a.s.(λ× P ),

and F1, F2 is L2-integrably bounded, by using dominated convergence theorem, we obtain∫
[u,t]×Ω

d2(f1i(s), f2ik(s))ds× dP →
∫

[u,t]×Ω

d2(f1i(s), F2(s))ds× dP.

Thus,

inf
k≥1

∫
[u,t]×Ω

d2(f1i(s), f2ik(s))ds× dP ≤
∫

[u,t]×Ω

d2(f1i(s), F2(s))ds× dP.

Due to
∫ t

u
f1i
s (ω)dBs(ω) ∈ J t

u(F1), we have

d2
L2(
∫ t

u
f1i
s (ω)dBs(ω), J t

u(F2))

≤ infk≥1 d
2
L2(
∫ t

u
f1i
s (ω)dBs(ω),

∫ t

u
f2ik
s (ω)dBs(ω))

= infk≥1 ||
∫ t

u
(f1i

s (ω)− f2ik
s (ω))dBs(ω)||2L2

= infk≥1

∫
[u,t]×Ω

(f1i(s)− f2ik(s))2ds× dP
≤

∫
[u,t]×Ω

d2(f1i(s), F2(s))ds× dP.

So, we get

sup
i≥1

d2
L2(

∫ t

u

f1i
s (ω)dBs(ω), J t

u(F2)) ≤
∫

[u,t]×Ω

sup
i≥1

d2(f1i(s), F2(s))ds× dP.

Similarly, we can show that

sup
i≥1

d2
L2(

∫ t

u

f2i
s (ω)dBs(ω), J t

u(F1)) ≤
∫

[u,t]×Ω

sup
i≥1

d2(f2i(s), F1(s))ds× dP.

Hence, we have

H2
L2(J t

u(F1), J t
u(F2)) ≤

∫
[u,t]×Ω

H2

Rd(F1, F2)ds× dP.

(ii) By Lemma 1, there exists a sequence {(f it )t∈I : i = 1, 2, . . .} ⊆ S2
F (N ) such that for each u, s, t ∈

I, u ≤ s < t,

Itu(F )(ω) = cl

{∫ t

u

f ir(ω)dBr(w) : i = 1, 2, . . .

}
a.s.,

Isu(F )(ω) = cl

{∫ s

u

f ir(ω)dBr(w) : i = 1, 2, . . .

}
a.s.,

Its(F )(ω) = cl

{∫ t

s

f ir(ω)dBr(w) : i = 1, 2, . . .

}
a.s..

Thus
Itu(F ) ⊆ cl{Isu(F ) + Its(F )}, a.s..

Conversely, for any a ∈ Isu(F ) + Its(F ), it follows from that, for any ε > 0, there exists m(ε), n(ε) such that∥∥∥∥a− (

∫ s

u

fm(ε)
r (ω)dBr(w) +

∫ t

s

fn(ε)
r (ω)dBr(w))

∥∥∥∥
L2

< ε.

Or equivalently, ∥∥∥∥a− (∫ s

u

fm(ε)
r (ω)dBr(w) +

∫ t

s

fn(ε)
r (ω)dBr(w)

)∥∥∥∥
L2

=

∥∥∥∥a− (∫ t

u

(
I[u,s]f

m(ε)
r (ω) + I[s,t]f

n(ε)
r (ω)

)
dBr(w)

)∥∥∥∥
L2

< ε.
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Since

∫ t

u

(
I[u,s]f

m(ε)
r (ω) + I[s,t]f

n(ε)
r (ω)

)
dBr(w) ∈ Itu(F ) and Itu(F ) is closed, we have a ∈ Itu(F ). Hence

Itu(F ) = cl{Isu(F ) + Its(F )}, a.s..

(iii) Using (i) and (ii) we get that, for any s, t ∈ I, s ≤ t,

H2
L2(It0(F ), Is0(F )) = H2

L2(Its(F ) + Is0(F ), Is0(F ))
≤ H2

L2(Its(F ), {0})

≤
∫

[s,t]×Ω

‖F‖2Kds× dP.

Since F is L2-integrably bounded, H2
L2(It0(F ), Is0(F )) converges to 0 as t − s goes to 0, which yields the

continuity of Itu(F ). The proof is completed. �

Now we recall the definition of set-valued Lebesgue integral given in [18]. Take a set-valued progressive L2-

integrably bounded stochastic process F : I × Ω→ K(Rd), Lt
u(F ) :=

∫ t

u
F (s)ds is called set-valued Lebesgue

integral of F , if

S2
Lt

u(F )(At) = de

{∫ t

u

f(s)ds : f ∈ S2
F (N )

}
, u, t ∈ I, u < t.

Similar to Theorem 1 and its proof, we have the following results.

Theorem 2 If two set-valued stochastic processes F1, F2 ∈ L2(K(Rd)), then
(i) for every u, t ∈ I, u < t, the following inequality holds

H2
L2(Lt

u(F1), Lt
u(F2)) ≤ (t− u)

∫
[u,t]×Ω

H2
Rd(F1(s, ω), F2(s, ω)ds× dP ;

(ii) for every u, s, t ∈ I with u ≤ s ≤ t, it holds Lt
u(F1) = cl{Ls

u(F1) + Lt
s(F1)}, a.s.;

(iii) Lt
u(F1) is continuous in t in the sense of L2 for set-valued case.

In the following we state the existence and uniqueness of solutions of set-valued stochastic integral equa-
tions. Let F,G : I ×K(Rd) → K(Rd) be the elements of L2(K(Rd)). We consider the following set-valued
stochastic integral equation

X(t) = X0 + Lt
0(F (s,X(s))) + It0(G(s,X(s))), ∀ t ∈ I. (2.1)

Theorem 3 [16] Assume that F (t,X) and G(t,X) satisfy the following conditions:
(A1) Linear growth condition: for every X ∈ Kb(L

2), there exists constant K > 0 such that

E(H2
Rd(F (t,X), {0}) +H2

Rd(G(t,X), {0})) ≤ K(1 + ‖X‖2K), ∀ t ∈ I

where ‖X‖K = HL2(X, {0}).
(A2) Lipschitz continuous condition: for every X,Y ∈ Kb(L

2), there exists constant K > 0 such that

E(H2
Rd(F (t,X), F (t, Y )) +H2

Rd(G(t,X), G(t, Y ))) ≤ KH2
L2(X,Y ), ∀ t ∈ I.

Then for any X0 ∈ Kb(L
2
0), there exists a unique adapted set-valued solution {X(t)} of equation (2.1) and

{X(t)} is continuous in t in the sense of L2 for set-valued case.

3 Approximate Solutions

In the previous section we have established existence and uniqueness of solutions of set-valued stochastic
differential equations (2.1). However, in general, the solutions do not have explicit formulas. In practice, we
therefore seek the approximate solutions. We call constant ε > 0 is error, if the following inequality holds

sup
t∈I

H2
L2(Xn(t), X(t)) < ε,
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where H2
L2(Xn(t), X(t)) represents the L2 distance between the approximate solution Xn(t) and accurate

solution X(t).
In the proof of the existence and uniqueness of solutions for set-valued stochastic differential equations,

we use the Picard iterative in [16]. Hence, we can use it to find approximate solution Xn(t). But it has a
disadvantage that for any t, for each n, one has to compute all X0(t), X1(t), . . . , Xn−1(t) in order to compute
Xn(t), and it involves a lot of calculations. More efficient ways are the Caratheodory’s and the Euler-
Maruyama’s approximate methods because they do not need to compute all X1(t), . . . , Xn−1(t) but compute
Xn(t) directly by using the results of previous calculations before t. Now we will discuss them in the following.

3.1 The Caratheodory’s Approximate Solutions

Now we introduce the Caratheodory’s approximate solutions. For every integer n ≥ 1, define Xn(t) = X0 for
−1 ≤ t ≤ 0, and ∀ t ∈ (0, T ], let

Xn(t) = X0 +

∫ t

0

F (s,Xn(s− 1/n))ds+

∫ t

0

G(s,Xn(s− 1/n))dB(s). (3.1)

Note that for 0 ≤ t ≤ 1/n, Xn(t) can be computed by

Xn(t) = X0 +

∫ t

0

F (s,X0)ds+

∫ t

0

G(s,X0)dB(s),

then for 1/n < t ≤ 2/n,

Xn(t) = Xn(1/n) +

∫ t

1/n

F (s,Xn(s− 1/n))ds+

∫ t

1/n

G(s,Xn(s− 1/n))dB(s)

and so on. In other words, Xn(t) can be computed step-by-step on the intervals [0, 1/n], (1/n, 2/n], . . ..
In calculations, for any given ε > 0, how to decide at which step n we may stop the computations? That

is how to find the size of iterative steps and iterative times so that the L2-distance between the approximate
solution and accurate solution is less than any given ε > 0. Our main result will answer this question. Firstly,
we introduce two Lemmas in order to establish the main result.

Lemma 2 Assume that linear growth condition (A1) holds, then for all n ≥ 1, we have

sup
t∈I
‖Xn(t)‖2K ≤ C1 := (1 + 3‖X0‖2K)e3K(T+1)T . (3.2)

Proof: By using Theorems 1 and 2, and the fact that Xn(t) satisfies equation (3.1), we have

‖Xn(t)‖2K ≤ 3‖X0‖2K + 3
∥∥∥ ∫ t

0
F (s,Xn(s− 1/n))ds

∥∥∥2

K

+3
∥∥∥∫ t

0

G(s,Xn(s− 1/n))dB(s)
∥∥∥2

K

≤ 3‖X0‖2K + 3t

∫
[0,t]×Ω

H2
Rd(F (s,Xn(s− 1/n)), {0})ds× dP

+3

∫
[0,t]×Ω

H2
Rd(G(s,Xn(s− 1/n)), {0})ds× dP

≤ 3‖X0‖2K + 3K(t+ 1)

∫ t

0

(1 + ‖Xn(s− 1/n)‖2K)ds

≤ 3‖X0‖2K + 3K(T + 1)

∫ t

0

(1 + sup
r∈[0,s]

‖Xn(r)‖2K)ds

for all t ∈ I. Consequently, we have

1 + sup
r∈[0,t]

‖Xn(r)‖2K ≤ 1 + 3‖X0‖2K + 3K(T + 1)

∫ t

0

(1 + sup
r∈[0,s]

‖Xn(r)‖2K)ds.
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Then the Gronwall inequality (cf. Page 45 of [13]) implies

sup
r∈[0,t]

‖Xn(r)‖2K ≤ (1 + 3‖X0‖2K)e3K(T+1)t

for all t ∈ I. In particular, (3.2) follows when t = T . �

Lemma 3 Assume that linear growth condition (A1) holds, then for all n ≥ 1, and 0 ≤ s < t ≤ T with
t− s ≤ 1, we have

H2
L2(Xn(t), Xn(s)) ≤ C2(t− s),

where C2 = 4K(1 + C1) and C1 is defined in Lemma 2.

Proof: By virtue of Theorems 1 and 2 and inequality HX (A + B,C + D) ≤ HX (A,C) + HX (B,D), for
A,B,C,D ∈ K(X ) (cf. Lemma1.1.11 of [11]). we have

H2
L2(Xn(t), Xn(s)) ≤ 2H2

L2(

∫ t

0

F (r,Xn(r − 1/n))dr,

∫ s

0

F (r,Xn(r − 1/n))dr)

+2H2
L2(

∫ t

0

G(r,Xn(r − 1/n))dB(r),

∫ s

0

G(r,Xn(r − 1/n))dB(r))

≤ 2H2
L2(

∫ t

s

F (r,Xn(r − 1/n))dr, {0})

+2H2
L2(

∫ t

s

G(r,Xn(r − 1/n))dB(r), {0})

≤ 2(t− s)
∫

[s,t]×Ω

H2
Rd(F (s,Xn(s− 1/n)), {0})dr × dP

+2

∫
[s,t]×Ω

H2
Rd(G(s,Xn(s− 1/n)), {0})dr × dP

≤ 2K(t− s+ 1)

∫
[s,t]

(1 + ‖Xn(r − 1/n)‖2K)dr

≤ 4K(1 + C1)(t− s),

where in the last inequality we used the assumption t− s ≤ 1 and Lemma 2. The proof is completed. �

Theorem 4 Assume that the linear growth condition (A1) and the Lipschitz condition (A2) hold, X(t) is the
unique solution of equation (2.1). Then, for n ≥ 1,

sup
t∈I

H2
L2(Xn(t), X(t)) ≤ C3

n
,

where C3 = 4C2KT (T + 1) exp[4KT (T + 1)] and C2 is defined in Lemma 3.

Proof: By the Lipschitz condition (A2), Theorems 1 and 2, it is not difficult to obtain

H2
L2(Xn(t), X(t))

≤ 2(t+ 1)K

∫ t

0

H2
L2(Xn(r − 1/n), X(r))dr

≤ 4K(T + 1)

∫ t

0

(H2
L2(Xn(r − 1/n), Xn(r)) +H2

L2(Xn(r), X(r)))dr,

where in last inequality we used

HX (A,B) = HX (A+ C,C +B) ≤ HX (A,C) +HX (B,C)

for any A,B,C ∈ K(X ). Then using Lemma 3, we have H2
L2(Xn(r − 1/n), Xn(r)) ≤ C2/n if r ≥ 1/n,

otherwise if 0 ≤ r < 1/n, H2
L2(Xn(r − 1/n), Xn(r)) = H2

L2(Xn(0), Xn(r)) ≤ C2r ≤ C2/n. Hence, we have

supr∈[0,t]H
2
L2(Xn(r), X(r))

≤ (4/n)C2KT (T + 1) + 4K(T + 1)

∫ t

0

sup
r∈[0,s]

H2
L2(Xn(r), X(r))ds.
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Finally, by applying the Gronwall inequality, we have

sup
t∈I

H2
L2(Xn(t), X(t)) ≤ C3

n
,

and the proof is completed. �
Now we can make sure n, such that n is an integer larger than C3/ε. Then we can compute Xn(t) over the

intervals [0, 1/n], (1/n, 2/n], . . ., step by step. Theorem 4 can guarantee that the approximate solution Xn(t)
is closed enough to the accurate solution X(t) uniformly, that is

sup
t∈I

H2
L2(Xn(t), X(t)) < ε.

3.2 The Euler-Maruyama’s Approximate Solutions

The Euler-Maruyama’s approximate solution is defined as follows: for every integer n ≥ 1, define Xn(0) = X0,
and then for (k − 1)/n < t ≤ k/n ∧ T , k = 1, 2, . . .,

Xn(t) = Xn

(k − 1

n

)
+

∫ t

k−1
n

F
(
s,Xn

(k − 1

n

))
ds+

∫ t

k−1
n

G
(
s,Xn

(k − 1

n

))
dB(s).

Then define

X̂n(t) = X0I{0}(t) +
∑
k≥1

Xn

(k − 1

n

)
I((k−1)/n,k/n](t)

for t ∈ I, then we have

Xn(t) = Xn(0) +

∫ t

0

F (s, X̂n(s))ds+

∫ t

0

G(s, X̂n(s))dB(s), t ∈ I.

Similar to the Caratheodory’s approximate solutions, we now investigate how to make sure the size of
iterative step and iterative times. We have the following results.

Lemma 4 Assume that linear growth condition (A1) holds, then for all n ≥ 1, the Euler-Maruyama’s ap-
proximate solutions Xn(t) satisfy

sup
t∈I
‖Xn(t)‖K ≤ C4 := (1 + 3‖X0‖2K)e3K(T+1)T .

Lemma 5 Assume that linear growth condition (A1) holds, for all n ≥ 1, and 0 ≤ s < t ≤ T with t− s ≤ 1,
the Euler-Maruyama’s approximate solutions Xn(t) satisfy

H2
L2(Xn(t), Xn(s)) ≤ C5(t− s),

where C5 = 8K(1 + C4) and C4 is defined in Lemma 4.

Theorem 5 Assume that the linear growth condition (A1) and the Lipschitz condition (A2) hold, and X(t)
is the unique set-valued solution of equation (2.1). Then, for n ≥ 1, the Euler-Maruyama’s approximate
solutions Xn(t) satisfy

sup
t∈I

H2
L2(Xn(t), X(t)) ≤ C6

n
,

where C6 = 4C5KT (T + 1) exp[4KT (T + 1)] and C5 is defined in Lemma 5.

The proofs of above Lemmas 4 and 5 and Theorem 5 are omitted because of the similarity of the proofs
of Lemmas 2 and 3 and Theorem 4.
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4 Conclusions

It is necessary to consider set-valued differential (or integral) equations because the measurements of various
uncertainties arise not only from randomness but also from the impreciseness in many situations. In this paper,
we firstly prove an inequality of set-valued Itô integrals and an inequality of set-valued Lebesgue integrals.
Both of the inequalities play an important role to discuss set-valued stochastic differential equations. In order
to develop applications of set-valued stochastic differential equations, it is necessary to study approximate
solutions of set-valued stochastic differential equations. In our paper, we introduced the Caratheodory’s
approximate solutions and the Euler-Maruyama’s approximate solutions of set-valued stochastic differential
equations. Besides, we gave how to make sure their the size of iterative step and iterative times.
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