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Abstract 

 
Atanassov (1986) defined the notion of intuitionistic fuzzy sets, which is a generalization of the concept of fuzzy 

sets, introduced by the Zadeh (1965). In this paper we introduce divergence (relative information) measure, a kind of a 
discrimination measure, in the setting of intuitionistic fuzzy set theory. This measure is a generalized version of 
intuitionistic fuzzy divergence proposed by Wei and Ye (2010), having a flexibility parameter. Some properties of this 
measure and its applications bringing out the crucial role of the parameter in decision making problems under multi-
criteria are demonstrated. 
© 2012 World Academic Press, UK. All rights reserved.  
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1 Introduction 
 
In mathematics, while studying a set of objects, we like to associate various quantitative measures defined over the set. 
Two basic such measures are – quantitative measure with each object and the difference or divergence between any 
two objects. In Information theory Shannon [10] defined entropy with probability distribution in a set of probability 
distributions.  The measure of divergence, first introduced by Kullback and Leibler [3] is a measure of the extent to 
which the assumed probability distribution deviates from the true one. There can be and exist other measures of 
divergence on set of probabilities, with varied names like those of discrimination, distance etc. These find immense 
applications in decision making and other studies. Paralleling the concept of probability theory is the theory of fuzzy 
sets (FSs) proposed by Zadeh [15] in 1965. Fuzzy divergence introduced by Bhandari and Pal [2] gives a fuzzy 

information measure for discrimination of a fuzzy set A  relative to some other fuzzy set B . It has found wide 
applications in many areas such as pattern recognition, fuzzy clustering, signal and image processing etc.   

An intuitionistic fuzzy set proposed by Atanassov [1], a generalization of fuzzy set, is characterized by two 
functions expressing the degree of membership and the degree of non-membership, respectively. However for being 
critical in our considerations it is desirable to additionally take into consideration, what is termed as hesitation degree 
[8, 9]. This brings us to ‘intuitionistic fuzzy sets’ and ‘information theoretic measures’ associated with them that are 
more appropriate in critical decision making [13, 14], medical diagnosis [6, 11], and pattern recognition [4, 5, 11, 12]. 
In 2010, Wei and Ye [12] proposed an improved version of Vlachos and Sergiadis [11] intuitionistic fuzzy divergence 
and studied its applications in pattern recognition. They used the mid-value of the membership, non-membership and 
hesitation values of two sets to propose a measure. This measure proposed by them seems be rather ad-hoc in nature 
and lacks the flexibility that it should have. In this paper, we use a flexible approach which provides further leverage 
of choice to the user, and propose a generalized version of Wei and Ye [12] intuitionistic fuzzy divergence. It may be 
remarked that the strength of a measure lies in its properties. The new measure has elegant properties, proved in the 
paper, to enhance the employability of this measure. The strength of this generalization has been demonstrated by an 
example of multi-criteria decision making.  
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The paper is organized as follows: In Section 2 some basic definitions related to intuitionistic fuzzy set theory 
are briefly given. In Section 3 a generalized intuitionistic fuzzy divergence is proposed and its particular cases 
discussed. In Section 4 some properties of generalized intuitionistic fuzzy divergence are analyzed. In Section 5 
finally, a numerical example is presented to illustrate the application of proposed measure to multi-criteria decision-
making and our brief conclusions are presented in Section 6. 
 

2 Preliminaries 
 
In this section we present some basic concepts related to intuitionistic fuzzy sets, which will be needed in the 
following analysis. 

Definition 1 Fuzzy Set [15]: A fuzzy set A  in a finite universe of discourse  1 2, ,..., nX x x x  is defined as  

                                                     , ,
A

A x x x X 
                                                                          (1) 

where    : 0,1
A

x X    is measure of belongingness or degree of membership of an element x X to A .  

In this definition, it may be noted that the measure of non-belongingness of x X  to A  turns out to be 

 1 .
A

x    

To introduce additionally the vagueness feature of non-belongingness, Atanassov introduced following 
generalization of fuzzy sets. 

Definition 2 Intuitionistic Fuzzy Set [1]: An intuitionistic fuzzy set A  in a finite universe of discourse 

 1 2, ,..., nX x x x  is defined as 

                                                , , ,A AA x x x x X                                                                  (2) 

where  : 0,1A X   and  : 0,1A X   with the condition    0 1A Ax x    .  

The numbers  A x  and  A x  denote the degree of membership and degree of non-membership of x X to A , 

respectively. 
Further, we call      1 , ,A A Ax x x x X      the degree of hesitancy of x X to A  or the intuitionistic 

index.   
Obviously, when   0,A x  i.e.,    1A Ax x x X     , then the IFS set A  reduces to Zadeh’s fuzzy set. 

Thus, fuzzy sets are the special cases of IFSs. 

Definition 3 Set Operations on IFSs [1]: Let IFS(X) denote the family of all IFSs in the universe ,X  and 

let  ,A B IFS X  be two IFSs, given by  

     
    , , |A AA x x x x X   ,      , , |B BB x x x x X   . 

Then following set operations are defined on IFS(X): 
(i)        iff andA B A BA B x x x x x X        ; 

(ii) iff andA B A B B A   ; 

(iii)     , ,C
A AA x x x x X   ; 

(iv)         , , |A B A BA B x x x x x x X       ; 

(v)         , , |A B A BA B x x x x x x X        

where ,   stand respectively for max. and min. operators. 

Definition 4 Intuitionistic Fuzzy Divergence (or Relative Information): Given  A IFS X , from the definition of 

intuitionistic fuzzy set, we have: 

           1, 0 , , 1 .A i A i A i A i A i A i ix x x x x x x X             

This suggests that       , ,A i A i A ix x x    may be regarded as probability distributions. Using this concept, 

Wei and Ye [12] proposed the following version of intuitionistic fuzzy divergence (relative information) given by 
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  .       (3) 

As a critique of (3), it may be noted that ‘intuitionistic fuzzy divergence’ is an important concept and a tool for 
many applications in decision making under vague phenomena. In equation (3) the choice of factor 1/2 with 
each  A ix ,  B ix  and others, is rather ad-hoc in nature, unrealistic and inflexible. A question naturally arises: 

Can we choose a flexible way of combining  A ix  and  B ix , etc.? This is attempted in this paper. 

In the next section, we propose a flexible and generalized intuitionistic fuzzy divergence measure and discuss 
how other divergence measures studied by others arise as its particular cases. 
 

3 A Generalized Measure of Intuitionistic Fuzzy Divergence 
 
Definition 5 Generalized Intuitionistic Fuzzy Divergence: Let A  and B  be two intuitionistic fuzzy sets defined in 

 1 2, ,..., nX x x x  having the membership values   , 1, 2,...,A ix i n   and   , 1, 2,...,B ix i n  ; non-membership 
values   , 1,2,...,A ix i n  and   , 1, 2,...,B ix i n     respectively. 

We define  |D A B , the measure of generalized intuitionistic fuzzy divergence between IFSs A  and ,B  as 
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(4)

 

It may be noted that  |D A B  is not symmetric, as is the case with Kullback-Leibler [3] measure. To imbue the 

measure with symmetry, which is logically better suited for any kind of difference a symmetric generalized measure 
of intuitionistic fuzzy divergence can now be defined as follows: 

Definition 6: Given two sets  ,A B IFS X , we define the symmetric generalized intuitionistic fuzzy divergence 

(relative information) between IFSs A  and ,B  as  

                                                 ; | | .D A B D A B D B A                                                             (5) 

Note: It can be easily verify that    ; and |D A B D A B   satisfy the following properties: 

1.    | , ; 0D A B D A B   ; 

2. When 1  ,  ; 0D A B   and  | 0D A B  , if and only if A B ; 

3. When 1  ,  ;D A B  and  |D A B , always gives zero. 

Some previously studied particular cases can be immediately noted below. 

Particular cases: 
i When 1/ 2,   measure (4) reduces to measure (3). 

ii When 1/ 2   and     0,A Bx x    measure (4) gives the measure of fuzzy divergence proposed by 

Shang and Jiang in [7]. 

iii When 0   and     0,A Bx x     measure (4) reduces to fuzzy divergence defined by Bhandari and Pal 

in [2]. 
The importance of the new measure lies in its elegant properties, which we study in next section, of  ;D A B , 

the symmetric generalized intuitionistic fuzzy divergence. 
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For proofs of the properties, we will consider separation of X  into two parts 1X and 2X , such that 

                                            1 | ,  ,i i i iX x x X A x B x                                                             (6) 

                                            2 | ,  .i i i iX x x X A x B x                                                             (7) 

And note that for all 1,ix X   

             A i B i A i B ix x and x x     . 

As also  2 ,ix X   

       A i B i A i B ix x and x x     . 

In the next section we will denote  A ix  by i
A  and  A ix  by i

A . 

 

4 Properties of Symmetric Generalized Intuitionistic Fuzzy Divergence 
(Relative Information) 

 
Measure  ;D A B , the symmetric generalized intuitionistic fuzzy divergence defined in (5), has the following 

properties: 

Theorem 1: For  ,A B IFS X ,    ; ;D A B A B D A B   . 

Proof: To prove the result, we shall start with expressions for each of two terms on the left hand side of following 
relation  

     ; | |D A B A B D A B A B D A B A B         . 

So using definition in (4), we first have 
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Next, again from definition in (4), we have 
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So that finally: 

     ; | |D A B A B D A B A B D A B A B          
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This proves the theorem.  �  

Theorem 2: For  ,A B IFS X ,  

(i)    ; ;D A A B D B A B   ; 

(ii)    ; ; .D A A B D B A B    

Proof: We prove (i) only, (ii) can be proved analogously. 
(i)  From definition in (4), we have: 
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Similarly, we get 

 
     

   
     

1

log log
1 11

|
1

1 log
1 1 1

i

i i
i iB B
B Bi i i i

B A B A

i i
x X B Bi i

B B i i i i
B B A A

D B A B
n

 
 

     

 
 

     


 
 

    
  

            

                    (12) 

and 

 
     

   
     

1

log log
1 1

1
|

1
1 log

1 1 1

i

i i
i iA A
A Ai i i i

A B A B

i i
x X A Ai i

A A i i i i
A A B B

D A B B
n

 
 

     

 
 

     



 
 

    
  

            

                   (13) 

Now from the definition of  ;D A A B   in (5), we have 

     ; | |D A A B D A A B D A B A       
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Again, using definition in (5), we have: 

     ; | |D B A B D B A B D A B B       
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This proves the theorem. 
Corollary 1: For  ,A B IFS X ,      ; ; ;D A A B D A A B D A B     . 

Proof: It follows straight forwardly from Theorem 2.       

Corollary 2: For  ,A B IFS X ,      ; ; ;D B A B D B A B D A B     . 

Proof: It also follows straight forwardly from Theorems 2.    
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This proves the theorem.                                                                   

Theorem 4: For  , ,A B C IFS X ,        ; ; ; ;D A B C D A B C D A C D B C       . 

Proof: Using definition in (4), we first have: 
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Next, again from definition in (4), we have: 
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After adding (16), (17), (18), (19), we get the result.   
This proves the theorem.      �                                                                                                                         

Theorem 5: For  ,A B IFS X ,  

(a)    ; ;C CD A B D A B  ; 

(b)    ; ;C CD A B D A B  ; 

(c)        ; ; ; ;C C C CD A B D A B D A B D A B       

where CA and CB represent respectively the complements of intuitionistic fuzzy sets A and B. 
Proof: (a)  It simply follows from the relation of membership and non-membership of an element in a set and its 
complement.                                               

(b)  Let us consider the expression 
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This proves the result.  

(c)  It obviously follows (a) and (b).  
 

5 Application to Multi-Criteria Decision Making Problem 
 

Representation of imperfect phenomena is usually best done through IFSs. In this section, we present a method based 
on proposed symmetric generalized intuitionistic fuzzy divergence, to solve multi-criteria decision making problems. 

Let us consider a decision problem involving a set of options  1 2, ,..., mM M M M  to be considered under a set 

of criteria  1 2, ,..., nC C C C . For decision making, characteristic sets for each option are determined as IFSs 

assigning appropriate values to    and   functions. So let the characteristic-set of the option iM  in terms of the 

set of criteria C  be an IFS: 

 , , | , 1, 2,..., and 1,2,...,i j ij ij jM C C C i m j n     , 

where ij  indicates the degree with which the option iM satisfies the criterion jC  and ij  indicates the degree with 

which the option iM does not satisfy the criterion jC . 

Using the measure defined by (5), we introduce the following approach to solve the above multi-criteria 
intuitionistic fuzzy decision making problem: 

Step 1: Find the ideal solution ,M   given by: 

 1 1 2 2, , , ,..., , ,n nM      
       

where, for each 1,2,...,j n , 

, max ,minj j ij ij
i

      . 

Step 2: Calculate  ;iD M M
  given by the following: 
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 .                         (20)  

Step 3: Select the option kM  with smallest  ,kD M M
 . 

In order to demonstrate the applicability of the proposed method to multicriteria- decision making, we consider 
below an investment company decision-making problem. 

Example: Suppose that an investment company wants to invest a certain amount of money in the best option out of 
five options: A car company 1M , a food company 2M , a computer company 3M , an arms company 4M  and a TV 

company 5M . The investment company needs to take a decision according to the following four criteria: (1) 1G , the 

risk analysis; (2) 2G , the growth analysis; (3) 3G , the social-political impact analysis; and (4) 4G , the environmental 

impact analysis. For evaluating the five possible alternatives  1,2,...,5iM i  , the decision maker, on the basis of 

available data, has formed IFSs as the following five characteristic sets: 
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 1 1 2 3 4,0.5,0.4 , ,0.6,0.3 , ,0.3,0.6 , ,0.2,0.7M G G G G , 

 2 1 2 3 4,0.7,0.3 , ,0.7,0.2 , ,0.7,0.2 , ,0.4,0.5M G G G G , 

 3 1 2 3 4,0.6,0.4 , ,0.5,0.4 , ,0.5,0.3 , ,0.6,0.3M G G G G , 

 4 1 2 3 4,0.8,0.1 , ,0.6,0.3 , ,0.3,0.4 , ,0.2,0.6M G G G G , 

 5 1 2 3 4,0.6,0.2 , ,0.4,0.3 , ,0.7,0.1 , ,0.5,0.3M G G G G . 

Step 1.  We obtain M  : 

 1 2 3 4,0.8,0.1 , ,0.7,0.2 , ,0.7,0.1 , ,0.6,0.3M G G G G  . 

Step 2. We use formula (20) to measure  ,iD M M
 , taking 0.2  , 0.4  , 0.5  , 0.6   and 0.8   

respectively, we get the following table: 

Table 1: Values of  ,iD M M
  for 0.2  , 0.4  , 0.5  , 0.6   and 0.8   

 0.2   0.4   0.5   0.6   0.8   Ranking 

 1,D M M
  0.5758 0.3217 0.2271 0.0585 0.0417 5th 

 2 ,D M M
  0.1823 0.1027 0.0737 0.0500 0.0163 2nd 

 3 ,D M M
  0.2695 0.1514 0.1081 0.0728 0.0227 3rd 

 4 ,D M M
  0.3445 0.1927 0.1353 0.0884 0.0238 4th 

 5 ,D M M
  0.1230 0.0639 0.0419 0.0245 0.0030 1st 

 
Table 1 shows that the ranking order of alternatives is same, as long as  , takes the same value for all 

alternatives, that is: 

5 2 3 4 1M M M M M    . 

Thus 5M  is the most preferable alternative.  

Change of Consideration: In the above consideration, same value of   for all alternatives was taken. But in 
realistic situations it can be different for different alternatives. The value of  may then depend on an un-explicit (like 
past experience) of the decision maker. 

Let us next consider relative information measures  ,iD M M
 for different values of : taking 0.7   for 1M , 

0.4   for 2M , 0.5   for 3M , 0.1   for 4M  and 0.2   for 5M . 

Calculating  ,iD M M
  for different values of   we get the following table: 

Table 2: Values of  ,iD M M
  for different values of   

  Ranking 

 0.7 1,D M M


  0.0880 1st 

 0.4 2 ,D M M


  0.1027 2nd 

 0.5 3 ,D M M


  0.2597 4th 

 0.1 4 ,D M M


  0.4440 5th 

 0.2 5 ,D M M


  0.1766 3rd 

  
The order of rankings is now 

1 2 5 3 4M M M M M    . 

Next again taking 0.2   for 1M , 0.8   for 2M , 0.9   for 3M , 0.4   for 4M  and 0.1   for 5M , the 

corresponding table is  
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Table 3: Values of  ,iD M M
  for different values of  

  Ranking 

 0.2 1,D M M


  0.5758 5th 

 0.8 2 ,D M M


  0.0163 1st 

 0.9 3 ,D M M


  0.0232 2nd 

 0.4 4 ,D M M


  0.1927 3rd 

 0.1 5 ,D M M


  0.2044 4th 

 
The order of rankings has once again changed to 

2 3 4 5 1M M M M M    . 

We thus find the change in order of the rankings and this brings in the role of parameter . 
 

6 Conclusions 
 
In this paper, we proposed a new divergence measure called generalized intuitionistic fuzzy divergence in the setting 
of intuitionistic fuzzy set theory, introducing a parameter . This measure generalizes intuitionistic fuzzy relative 
information measure proposed by Wei and Ye [13]. The parameter introduced provides flexibility criteria for decision 
making. Further study of this measure will be reported separately. 
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