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Abstract

Atanassov (1986) defined the notion of intuitionistic fuzzy sets, which is a generalization of the concept of fuzzy
sets, introduced by the Zadeh (1965). In this paper we introduce divergence (relative information) measure, a kind of a
discrimination measure, in the setting of intuitionistic fuzzy set theory. This measure is a generalized version of
intuitionistic fuzzy divergence proposed by Wei and Ye (2010), having a flexibility parameter. Some properties of this
measure and its applications bringing out the crucial role of the parameter in decision making problems under multi-
criteria are demonstrated.
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1 Introduction

In mathematics, while studying a set of objects, we like to associate various quantitative measures defined over the set.
Two basic such measures are — quantitative measure with each object and the difference or divergence between any
two objects. In Information theory Shannon [10] defined entropy with probability distribution in a set of probability
distributions. The measure of divergence, first introduced by Kullback and Leibler [3] is a measure of the extent to
which the assumed probability distribution deviates from the true one. There can be and exist other measures of
divergence on set of probabilities, with varied names like those of discrimination, distance etc. These find immense
applications in decision making and other studies. Paralleling the concept of probability theory is the theory of fuzzy
sets (FSs) proposed by Zadeh [15] in 1965. Fuzzy divergence introduced by Bhandari and Pal [2] gives a fuzzy

information measure for discrimination of a fuzzy set A relative to some other fuzzy setB . It has found wide
applications in many areas such as pattern recognition, fuzzy clustering, signal and image processing etc.

An intuitionistic fuzzy set proposed by Atanassov [1], a generalization of fuzzy set, is characterized by two
functions expressing the degree of membership and the degree of non-membership, respectively. However for being
critical in our considerations it is desirable to additionally take into consideration, what is termed as hesitation degree
[8, 9]. This brings us to ‘intuitionistic fuzzy sets’ and ‘information theoretic measures’ associated with them that are
more appropriate in critical decision making [13, 14], medical diagnosis [6, 11], and pattern recognition [4, 5, 11, 12].
In 2010, Wei and Ye [12] proposed an improved version of Vlachos and Sergiadis [11] intuitionistic fuzzy divergence
and studied its applications in pattern recognition. They used the mid-value of the membership, non-membership and
hesitation values of two sets to propose a measure. This measure proposed by them seems be rather ad-hoc in nature
and lacks the flexibility that it should have. In this paper, we use a flexible approach which provides further leverage
of choice to the user, and propose a generalized version of Wei and Ye [12] intuitionistic fuzzy divergence. It may be
remarked that the strength of a measure lies in its properties. The new measure has elegant properties, proved in the
paper, to enhance the employability of this measure. The strength of this generalization has been demonstrated by an
example of multi-criteria decision making.
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The paper is organized as follows: In Section 2 some basic definitions related to intuitionistic fuzzy set theory
are briefly given. In Section 3 a generalized intuitionistic fuzzy divergence is proposed and its particular cases
discussed. In Section 4 some properties of generalized intuitionistic fuzzy divergence are analyzed. In Section 5
finally, a numerical example is presented to illustrate the application of proposed measure to multi-criteria decision-
making and our brief conclusions are presented in Section 6.

2 Preliminaries

In this section we present some basic concepts related to intuitionistic fuzzy sets, which will be needed in the
following analysis.

Definition 1 Fuzzy Set [15]: A fuzzy set A in a finite universe of discourse X = {x1 Xy oens xn} is defined as

A={<X,,UA(X)>|XGX}, (1)
where z; (x} X — [0,1] is measure of belongingness or degree of membership of an element x e X to A.

In this definition, it may be noted that the measure of non-belongingness of xe X to A turns out to be
1- 15 (x).

To introduce additionally the vagueness feature of non-belongingness, Atanassov introduced following
generalization of fuzzy sets.

Definition 2 Intuitionistic Fuzzy Set [1]: An intuitionistic fuzzy set A in a finite universe of discourse
X ={X,%,,... X, } is defined as

ETRA™

A={<x, /JA(X),VA(X)>|X€X}, 2)
where s, X — [0,1] and v, X — [0,1] with the condition 0 < s, (X)+v,(x)<1.

The numbers yA(x) and vA(x) denote the degree of membership and degree of non-membership of x e X to A,
respectively.

Further, we call 7, (x)=1-,(x)-v,(X),xe X, the degree of hesitancy of xe X to A or the intuitionistic
index.

Obviously, when 7z, (x)=0, i.e,v,(x)=1-u,(x) V xeX, then the IFS set A reduces to Zadeh’s fuzzy set.
Thus, fuzzy sets are the special cases of IFSs.
Definition 3 Set Operations on IFSs [1]: Let IFS(X) denote the family of all IFSs in the universe X, and
let A,B eIFS(X) be two IFSs, given by

A={<x,yA(x),vA(x)>|XG X} , B ={<X,/JB(X),VB(X)>|X€ X} .
Then following set operations are defined on IFS(X):
(i)  AcBiff u, (X)<p(x)and v, (x)2vs (X) V xeX;
(i) A=Biff AcB and BC A;
(iii) AC={<X, vA(x),yA(x)>|XE X};
(iv) ANB= {(x,yA(x)/\yB(x),vA(x)va(x)>|xaX};
(v) AUB= {(x,yA(x)vyB(x),vA(x)/\vB(x)>|XGX}
where v, A stand respectively for max. and min. operators.

Definition 4 Intuitionistic Fuzzy Divergence (or Relative Information): Given A e IFS(X), from the definition of
intuitionistic fuzzy set, we have:
Ha (X )+Va(%)+ma (%) =1, 0<p, (%)va(X) ma(X%)<1 VX e€X.
This suggests that (1, (X ),v, (X ).7,(x)) may be regarded as probability distributions. Using this concept,
Wei and Ye [12] proposed the following version of intuitionistic fuzzy divergence (relative information) given by
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D(A[B)=
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As a critique of (3), it may be noted that ‘intuitionistic fuzzy divergence’ is an important concept and a tool for

many applications in decision making under vague phenomena. In equation (3) the choice of factor 1/2 with

each 1, (%), 15 (%) and others, is rather ad-hoc in nature, unrealistic and inflexible. A question naturally arises:
Can we choose a flexible way of combining z, (x,) and s (X, ), etc.? This is attempted in this paper.

In the next section, we propose a flexible and generalized intuitionistic fuzzy divergence measure and discuss
how other divergence measures studied by others arise as its particular cases.

3 A Generalized Measure of Intuitionistic Fuzzy Divergence

Definition 5 Generalized Intuitionistic Fuzzy Divergence: Let A and B be two intuitionistic fuzzy sets defined in
X ={X,%,,....%,} having the membership values u,(x),i=12,.,n and u;(x),i=12,..,n; non-membership

oy Ay

values v, (x ), 1=1,2,..,nand v (x),i=12,.,n respectively.
We define D, (A| B) , the measure of generalized intuitionistic fuzzy divergence between IFSs A and B, as
:uA(Xi)
AﬂA(Xi)—i_(l_i)/uB (Xi)
va(X)
+v,(x )log A , where 0< A <1. (4)
= A (%) vy (%) +(L1=2)vg (%)

74 (%)

+7,(x)log Amy (%) +(1=2) 75 (%)

#a (%) log

D,(A|B)=

S|
s

It may be noted that D, (A|B) is not symmetric, as is the case with Kullback-Leibler [3] measure. To imbue the
measure with symmetry, which is logically better suited for any kind of difference a symmetric generalized measure
of intuitionistic fuzzy divergence can now be defined as follows:

Definition 6: Given two sets A,B e IFS(X), we define the symmetric generalized intuitionistic fuzzy divergence
(relative information) between IFSs A and B, as
D,(A;B)=D,(A|B)+D,(B|A). (5)

Note: It can be easily verify that D, (A;B) and D, (A| B) satisfy the following properties:
1. D,(A|B),D,(A;B)>0;
2. Wheni=#1, D,(A;B)=0andD,(A[B)=0,ifandonlyifA=B;
3. Wheni=1, D,(A;B) and D, (A|B), always gives zero.

Some previously studied particular cases can be immediately noted below.
Particular cases:

i When A=1/2, measure (4) reduces to measure (3).

i When 2=1/2 and 7, (X)=7,(x)=0, measure (4) gives the measure of fuzzy divergence proposed by
Shang and Jiang in [7].

iii When 2=0 and 7, (x) =7, (x)=0, measure (4) reduces to fuzzy divergence defined by Bhandari and Pal
in [2].

The importance of the new measure lies in its elegant properties, which we study in next section, of D, (A ; B) ,
the symmetric generalized intuitionistic fuzzy divergence.
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For proofs of the properties, we will consider separation of X into two parts X, and X, , such that

X, ={x 1% eX, A(x)=B(x) }, (6)

X, ={x 1% eX, A(x)2B(x) }. @

And note that for all x, € X,

La (%)< g (%) and v (%)= vg ().
Asalso V x € X,,

Ha (%)= g5 (%) and v, (%) <vg ().

In the next section we will denote z, (%) by 4, and v, (x ) byv,.

4 Properties of Symmetric Generalized
(Relative Information)

Intuitionistic Fuzzy Divergence

Measure D, (A;B) , the symmetric generalized intuitionistic fuzzy divergence defined in (5), has the following
properties:

Theorem 1: For A Be IFS(X), D,(AUB;ANB)=D,(A;B).

Proof: To prove the result, we shall start with expressions for each of two terms on the left hand side of following
relation

D,(AUB;ANB)=D,(AUB|ANB)+D,(ANB|AUB).
So using definition in (4), we first have

' log _ ﬂLuB Vi log _ ijna .
vl Gt 10 Dp) T i (1 )i
D, (AUB|ANB)== P
" (L sy Vi )Iog (= n ~i0o)
AUB ANB i i i i
(ﬂ(l—ﬂkus _V;xna)"'(l_/l)(l_/u}\ﬂﬁ* ~Vaus ))
| i Hy i Ve _
Hs Iog(/% +(1_l)yk)+va |09(/1vé )
by (15 —v})

+(1—,uiB —viB)Iog(

A(1- g =)+ (1= 2) (1- iy —vh))

-7 . ®
\ o — A —+v,lo — - .
o g(zy;+(1—,1)y'5)+v“ g(,iv;+(1—z)v'5)
+ZX: (1- s —vi)

Next, again from definition in (4), we have

DA(AﬂB|AUB)=%i

i=1

:uiAﬂB |Og (

+(1= e —vLUB)Iog<

+(1—yL—v;)Iog(

i
Hans

A=y =)+ (1= 2) (21— —v3)) |

i
Vaus

ﬂvﬂkms + (1_ ﬂ)ﬂLUB )

i
+ Vs Iog(

(1‘ ﬂ/ims - ViAUB )

AVios +(1_/1)Vims)

/1(1_ Hans —Vhus )+ (1- /1)<1_ Hase = Vs ))
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So that finally:

D, (AUB;ANB)=

X

=D, (A|B)+D,(B|A)=

eXy
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This proves the theorem.
Theorem 2: For A, Be IFS(X),
(i) D,(A;AUB)=D,(B;ANB);
(i) D,(A;ANB)=D,(B;AUB).
Proof: We prove (i) only, (ii) can be proved analogously.
(i) From definition in (4), we have:

/u,IA |og i ol i +VL |Og 7 U ;
1Q (lﬂA‘F(l_’l)quuB) (ivAjL(l_/l)VA”B)
. (A]AUB) :_z P
nis +(1- - v} )log : ‘<l_ﬂA_VA) : :
(A0t~ + (1= 2) (158 ~vie )
i H | Va
O Gl 2d) )
24 (1-my—vi)

S|

o8 e A )

i ﬂL i VL
Hn Iog(/i,uL+(l—/1),uL)+vA Iog(ﬁv;+(1—z)v;)
+xie><2 (1_![':*_‘/:"\)

ARG ey ey |

©)
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o o8 )
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and

(AVis +(1=2)Vi)
(1—ﬂiAus _ViAnB)
1_/JLUB_V:mB)Jr(l_’l)(l_,UL_VL))
(Av +(1-2)v})
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Similarly, we get

(12)

and

Aty +(1=2) pay ) W

+(1—yL—vL)Iog(

Now from the definition of D, (A; AUB) in (5), we have
D, (A;AUB) =D, (A| AUB)+D, (AUB|A)
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Again, using definition in (_5), we have:

D,(B:ANB)=D, (B|ANB)+D, (ANB|B)

uy log o +v log |
3 " Al - 2)l) ® (l 1)/1)1/Ai
XieX i i 1—pup —vy
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This proves the theorem.
Corollary 1: For A,Be IFS(X), D,(A;AUB)+D,(A;ANB)=D, (A;B).
Proof: It follows straight forwardly from Theorem 2.
Corollary 2: For A,Be IFS(X), D,(B;AUB)+D,(B;ANB)=D,(A;B).
Proof: It also follows straight forwardly from Theorems 2.
Theorem 3: For A,B,C € IFS(X),

(i) D,(AUB;C)<D,(A;C)+D,(B;C);

(i) D,(ANB;C)<D,(A;C)+D,(B;C).

Proof: In the following, we prove only (i), (ii) can be proved analogously.
(i) Let us consider the expression

D, (A;C)+D,(B;C)-D, (AUB;C)
_ , A —+v} log ‘ Va .
Apty + (1= A) g ) (Avi+(@-2)ve)
(e v Vo (1- s —vi)
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Hi |09(

+/¢c|9(

e (1-pt =)
(1- st —ve)! g(i(l_#ic_Vg:)+(1—/1)(1—uL—VL))_

(14)

(15)
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This proves the theorem.
Theorem 4: For A,B,C € IFS(X), D,(AUB;C)+D,(ANB;C)=D,(A;C)+D,(B;C).
Proof: Using definition in (4), we first have:
) V'
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) e g(/lv'AﬂB +(1-2)v})
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After adding (16), (17), (i8), (19), we get the result.
This proves the theorem.

Theorem 5: For A,B e IFS(X),
(@) D,(A;B)=D,(A%;B);
(b) D,(A;B)=D,(A°;B);
(¢) D,(A;B)+D,(A%; B)=D,(A%B%)+D,(A;B%)
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where A® and B represent respectively the complements of intuitionistic fuzzy sets A and B.
Proof: (a) It simply follows from the relation of membership and non-membership of an element in a set and its

complement.
(b) Let us consider the expression
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This proves the result.

(c) It obviously follows (a) and (b).

5 Application to Multi-Criteria Decision Making Problem

Representation of imperfect phenomena is usually best done through IFSs. In this section, we present a method based
on proposed symmetric generalized intuitionistic fuzzy divergence, to solve multi-criteria decision making problems.

Let us consider a decision problem involving a set of optionsM ={M,M,,...,M_} to be considered under a set
of criteriaC ={C,,C,,....C,} . For decision making, characteristic sets for each option are determined as IFSs

assigning appropriate values to x— and v —functions. So let the characteristic-set of the option M, in terms of the
set of criteria C be an IFS:

M, ={(Cj.z,v)IC eC},  i=12..,mand j=12..,n,
where z; indicates the degree with which the option M satisfies the criterionC; and v; indicates the degree with
which the option M; does not satisfy the criterionC; .

Using the measure defined by (5), we introduce the following approach to solve the above multi-criteria
intuitionistic fuzzy decision making problem:;

Step 1: Find the ideal solution M ", given by:
M ' = {(/Jl*1V1*>’<#2*1V2*>1“"</’ln*1vn*>}’
where, for each j=1,2,...,n,
<,uj*,vj*> = <max My, min; > .
Step 2: Calculate D, (M, ;M") given by the following:

w: log ad +v; log i
Dy (= 2)m) T (A (-2
(2-p -vy)

+(1_,uij —vu‘)log (/1(1_#“ -V )+(1—/1)(1—ﬂj* _Vj*))

D,(M;,M") (20)
Hi.

A, +(1_/1)/1ij )

' +H;. Iog( +v,, log

(Av,. +(1-2)v;)
(1_“1* _VJ*)
ALy =y )+ (1= 2) (1= vy |

+(1—/1].* —vj*)log (

Step 3: Select the option M, with smallestD, (M,,M").

In order to demonstrate the applicability of the proposed method to multicriteria- decision making, we consider
below an investment company decision-making problem.

Example: Suppose that an investment company wants to invest a certain amount of money in the best option out of
five options: A car company M,, a food company M,, a computer company M,, an arms company M, and a TV
company M, . The investment company needs to take a decision according to the following four criteria: (1) G, , the
risk analysis; (2) G, , the growth analysis; (3) G,, the social-political impact analysis; and (4) G, , the environmental
impact analysis. For evaluating the five possible alternatives M, (i =1,2,...,5), the decision maker, on the basis of
available data, has formed IFSs as the following five characteristic sets:
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. =1{(G,,05,0.4),(G,,0.6,0.3),(G,,0.3,0.6),(G,,0.2,0.7
, ={(G,,0.7,0.3),(G,,0.7,0.2),(G,,0.7,0.2),(G,,0.4,0.5
={(G,,0.6,0.4),(G,,0.5,0.4),(G,,0.5,0.3) (G 0.6,0.3)
. ={(G,,0.8,0.1),(G,,0.6,0.3),(G,,0.3,0.4),(G,,0.2,0.6)
s ={(G,,0.6,0.2),(G,,0.4,0.3),(G,,0.7,0.1),(G,,0.5,0.3)} .

ix
)}
; )
iz

M
M
M
M
M

Step 1. We obtainM " :

={(G,,0.8,0.1),(G,,0.7,0.2),(G,,0.7,0.1),(G,,0.6,0.3)} .
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Step 2. We use formula (20) to measure D, (M;,M"}, taking4=0.2,4=04, 1=05,2=0.6 and 1=0.8

respectively, we get the following table:

Table 1: Values of D, (M

M*) forA=02,1=04,1=05,4=0.6 and 1=0.8

2=02 | A=04 | 4=05 | 1=06 2=08 Ranking
D, (M, M") 0.5758 0.3217 0.2271 0.0585 0.0417 5"
D, (M,,M") 0.1823 0.1027 0.0737 0.0500 0.0163 2
D, (M;,M") 0.2695 0.1514 0.1081 0.0728 0.0227 3
D,(M,,M") | 03445 0.1927 0.1353 0.0884 0.0238 4"
D,(M;,M") | 01230 0.0639 0.0419 0.0245 0.0030 1

Table 1 shows that the ranking order of alternatives is same, as long as A, takes the same value for all

alternatives, that is:
M, >~M, ~M; ~M, ~M,.

Thus M, is the most preferable alternative.

Change of Consideration: In the above consideration, same value of A4 for all alternatives was taken. But in
realistic situations it can be different for different alternatives. The value of 4 may then depend on an un-explicit (like

past experience) of the decision maker.
Let us next consider relative information measures D, (M

A=0.4 for M,,4=05 for M,,4=0.1 for M, and 1 =0.2 for M,.
Calculating D, (Mi M ) for different values of 4 we get the following table:

Table 2: Values of D, (M;,M") for different values of 1

Ranking
D, (M, M") 0.0880 1
D, 5. (M, M) 0.1027 2
D, 05(M;M") 0.2597 4t
D, (M, M) 0.4440 5
D,,,(Ms, M) 0.1766 3¢

The order of rankings is now
M, M, ~M;~M; ~M,.

M* ) for different values of A : taking 4 =0.7 forM,,

Next again taking A =0.2 forM;, 4=0.8 forM,,41=0.9 forM,,1=0.4 for M, and 4 =0.1 for M, the

corresponding table is
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Table 3: Values of D, (M;,M") for different values of 1

Ranking
Do, (M;,M") 0.5758 5
D, 5s(M,M") 0.0163 1
D, 05(Ms M) 0.0232 2nd
D, os(M,M") 0.1927 3¢
D,,:(Ms,M") 0.2044 4

The order of rankings has once again changed to
M, =M, =M, M, >M,.
We thus find the change in order of the rankings and this brings in the role of parameter 4 .

6 Conclusions

In this paper, we proposed a new divergence measure called generalized intuitionistic fuzzy divergence in the setting
of intuitionistic fuzzy set theory, introducing a parameter A . This measure generalizes intuitionistic fuzzy relative
information measure proposed by Wei and Ye [13]. The parameter introduced provides flexibility criteria for decision
making. Further study of this measure will be reported separately.
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