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Abstract

Many economic, financial, and engineering time series data exhibit long-term persistence. The autore-
gressive fractionally integrated moving average (ARFIMA) process is characterized by a slowly decaying
autocorrelation function and arises as a popular statistical tool for modeling long memory time series.
After years of development on the semiparametric two-stage direct estimation of ARFIMA, recently there
has been a considerable interest in the long-order autoregressive (AR) approximation, as it is observed to
be simple and effective. This paper proposes a sparse AR approximation to the ARFIMA process based
on the penalized conditional likelihood. Simulation study shows that the proposed method leads to better
model flexibility and prediction accuracy. Finally, we apply the method to analyze a foreign exchange rate
data and the results are very satisfactory.
c⃝2012 World Academic Press, UK. All rights reserved.
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1 Introduction

There has been a growing body of literature studying the property of long-term dependency in time series
data arising from many fields of science. See, for example, [3, 5, 6, 11, 12, 18, 25]. In particular, it has
been widely acknowledged that stochastic long memory exists in financial time series, especially in the foreign
exchange rates and future prices, although it may not be a typical feature of stock market returns of moderate
time intervals (e.g., daily returns). Long memory processes are characterized by a high-order correlation
structure, indicating a persistent dependence between distant observations. Short memory processes like
autoregressive moving average (ARMA) are unable to capture the dynamics of a long memory series. The
autoregressive fractionally integrated moving average (ARFIMA) process by Granger and Joyeux [17], allowing
the integration order of a series to take on fractional values, provides a useful tool for modeling and forecasting
time series with long-memory properties. Kokoszka and Taqqu [22] extended the ARFIMA model by allowing
for an infinite variance.

For decades, researchers have tended to make inferences of the ARFIMA model in two successive steps.
In the first step, a semi-parametric method is used to estimate the order of fractional integration. There
are various approaches proposed in the literature, for example, the rescaled range analysis (R/S) [21], the
modified R/S statistic [25], the de-trended fluctuation analysis (DFA) [27], and the local Whittle estimator
[29, 33]). In the second step, one applies the long-memory filter to the process and fits an ARMA model
to the resulting short-memory process. Or, alternatively, one can approximate the short-run component by
an autoregressive (AR) process [3]. Recently, there has been a trend to approximate both the long-memory
and short-memory structure by a high order linear autoregression, and evidences show that it works better
than the two-step approach. For instance, Baillie and Kapetanios [4] showed that the high order AR method
provides relatively good estimates of the impulse response weights of the ARFIMA model, while the local
Whittle two step estimators (LWTSE) generally have quite poor properties in the presence of moderately
persistent autocorrelation in the short run component. Poskitt [28] validated their “surprising” findings by
proving the autoregressive estimates from long autoregressions to be consistent. Specifically, he showed that
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the L2 norm of the difference between the vector of the high-order AR approximation coefficients and that of
the true autoregressive coefficients vanishes asymptotically.

One problem that arises with the long-order AR approximation method is the choice of the autoregression
order. Asymptotically, the autoregression order p is allowed to grow to infinity as the sample size T → ∞.

In [28], p is assumed to grow at the rate of o((T/ log T )
1
2−d

′

), where d
′

= max {0, d} and d is the order of
fractional integration. In finite sample problems, one has to decide on a specific value of p. Galbraith and
Zinde-Walsh [15] gave a rule of thumb, based on O(lnT ), that p = 8 + 3 ln(T/100) when T > 100, rounded to
the nearest integer. Or equivalently, p = 3 ln(T )− 6. This is a very small quantity compared to T .

In this paper, we propose a sparse long-order AR approximation to ARFIMA models based on the penalized
conditional likelihood. Being widely applied to independent data models, the penalty-based regularization
techniques effectively achieve concise and parsimonious parameter estimation. See, for example, [10, 13, 14,
20, 36]. Especially, when the penalty function is appropriately chosen, these techniques leads to a sparse
parameter estimation, and thereby simultaneously accomplishes model selection. Sun and Lin [35] extended
these methodologies to the time series context and developed the penalized conditional maximum likelihood
estimation (PCMLE) for a large class of stationary multivariate time series models. Sang and Sun [31] further
studied the PCMLE for AR processes, allowing heavy-tailed innovations. The sparse feature of the penalized
conditional maximum likelihood estimation is particularly useful in the long-order AR approximation in that
it enables automatic selections of significant lags within the order p. This facilitates the order selection in
the sense that redundant parameters are automatically eliminated from the model and increasing p does not
bring unnecessary noise into the estimation. We show in the simulation study that our method allows for a
much larger value of p compared to the aforementioned literature, and it performs consistently well over a
wide range of different p values. We further demonstrate the advantages of the proposed method through the
analysis of a foreign exchange data, which exhibits long-memory property.

The rest of the paper is organized as follows: in Section 2, we formally introduce the ARFIMA model and
its two-stage estimation procedure. We also give a detailed review of the AR approximation methodology.
Section 3 represents the penalty-based order selection framework for the autoregression order. The simulation
study is reported in Section 4, followed by a foreign exchange data analysis in Section 5. We give concluding
remarks in Section 6.

2 Review of the ARFIMA Model and Existing Estimation Meth-
ods

2.1 The ARFIMA Model

An ARFIMA time series Y = Y (k), k ∈ Z with white noise innovations is defined as the stationary solution
to the back-shift operator equation:

Φp(B)Y (k) = Θq(B)(1−B)−dZ(k), k ∈ Z, (1)

where the innovations Z(k) are iid random variables with variance σ2, B is the back-shift operator such that
BY (k) = Y (k − 1), and Φp(z), Θq(z) are real polynomials of degrees p, q, respectively, i.e.,

Φp(z) = 1− ϕ1z − ϕ2z2 − · · · − ϕpzp,
Θq(z) = 1−Θ1z −Θ2z

2 − · · · −Θqz
q,

(2)

with roots outside the unit disk. These conditions guarantee the existence and uniqueness of the solution Y
to (1). In addition, the fractional difference parameter d satisfies 0 < d < 1/2. This can be generalized to
−1/2 < d < 1, which includes both stationary and non-stationary ARFIMA processes. If d ≥ 1/2, then Y(k)
has infinite variance. See [17].

It has been shown that when −1 < d < 1/2, d ̸= 0, the autocorrelation function ρ(·) for the ARFIMA
model (1) is given by:

ρ(h) =
Γ(1− d)

Γ(d)

Γ(h+ d)

Γ(h+ 1− d)
. (3)

For large h, the above quantity is well approximated by Ch2d−1 for some constant C. Namely,

ρ(h) ∝ h2d−1, (4)
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asymptotically. Whereas for a stationary ARMA model, ρ(h) is asymptotically proportional to θh for some
θ such that |θ| < 1, which decays to zero much faster compared to (4). This illustrates the “long-memory”
aspect of the ARFIMA model. See, e.g., [30] for a comprehensive review of the literature on long-memory
time series.

2.2 The Two-Stage Semi-Parametric Estimation

There have been substantial contributions in literature to the estimation of the ARFIMA models, which are
mainly categorized into two ways. One considers a joint estimation of the fractional integration parameter d
and the ARMA parameters for the short-run dynamics [34, 37]. The other estimates d alone in the first stage
and leaves the ARMA parameters for a second stage. Either way, the estimation of the fractional integration
parameter d is required and crucial. Its value is also viewed as an important criterion for testing the long-
memory existence. A few most notable contributions on the estimation of d include [16, 19, 21, 24, 25, 29].
Below we give the formula of three popularly used estimators of the fractional integration parameter d: rescaled
range analysis (R/S), modified rescaled range analysis (MRS), and de-trended fluctuation analysis (DFA).

In the R/S analysis proposed by Hurst [21], the time period is divided into m sub-periods, each with
length n, and an R/S value is calculated for each sub-period by:

R/S =
max0≤k≤n

∑k
t=1(Yt − Ȳn)−min0≤k≤n

∑k
t=1(Yt − Ȳn)

S(n)
, (5)

where S(n) is the sample standard deviation for the sub-period. The R/S value for this division R/S(n) is
the average of R/S’s for the m sub-periods. Repeat the above calculation for a range of different integers n,
and the Hurst exponent H is the OLS slope of the regression:

log(R/S(n)) = a+H log(n). (6)

A value of H between 0 and 1 indicates long-memory of the time series. Finally, the fractional integration
order d is given by d = H − 0.5.

The R/S analysis was modified by Lo [25], resulting in an MRS analysis. It replaces the sample standard
deviation in (5) by the root of a modified sample variance, augmented by a weighted sample autocovariance
up to lag q:

σ2
n(q) = σ2

Y (q) +
2

n

q∑
j=1

wj(q)[
n∑

t=j+1

(Yt − Ȳn)(Yt−j − Ȳn)] (7)

with the weights

wj(q) = 1− j

q + 1
, q < n. (8)

The rest of the procedure is the same as R/S. The MRS statistic was later found to be too strong to indicate
a true long-memory process.

Peng et al. [27] proposed the de-trended fluctuation analysis (DFA), which aims at detecting the long-
range correlation embedded in a seemingly non-stationary time series. The algorithm first integrated the
times series in the following way:

X(k) =
k∑

t=1

[Y (k)− Ȳ ]. (9)

Then the integrated time series {X(k)} is divided into m non-overlapping sub-series of length n, and an OLS
line is fitted to each sub-series. This is the so-called “local trend” of the sub-series. Denoted by Xn(k) the y
coordinate of the line segments in all sub-series, the detrended and integrated time series is defined as:

X̃(k) = X(k)−Xn(k). (10)

Next, the root-mean-square fluctuation of X̃(k) is calculated by:

F (n) =

√√√√ 1

N

N∑
k=1

X̃2(k), (11)
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where N = m× n is the length of the time series. Repeat the above calculations for all time scales (different
values of integer n) and a characteristic value of the fluctuations is reflected by the scaling exponent α, which
is the slope of the regression line:

logF (n) = α log n+ β. (12)

An α value in (0.5,1) indicates persistent long-range correlations. In contrast, 0 < α < 0.5 indicates a different
type of long-term correlations that may be called “long-range negative dependence”, such that large and small
values of the time series are more likely to alternate. Similar to the R/S, d = α− 0.5.

2.3 Joint ARFIMA Parameters Estimations

For modeling long-memory processes in practice, researchers have tended more often to use the two-stage
estimator. This is probably because of the convenience to apply a traditional ARMA filter to the short-
run component in the second stage. An alternative strategy in the literature is to jointly estimate all the
parameters d, Φ, and Θ. The ML estimator [34] finds the maximizer of the exact likelihood function:

f(YT ,Σ) = (2π)−
T
2 |Σ|− 1

2 exp

{
−1

2
Y

′

t Σ−1Y
′

T

}
, (13)

where YT = [y1, y2, . . . , yT ]′ ∼ NT (0,Σ), and Σ is determined exclusively by the parameters d, Φ, and Θ. The
computational cost of the ML method, which involves iterative inversions of the T × T covariance matrix,
prohibits the use of even mildly large samples.

Another alternative is to fit a high-order AR(p) process to the ARFIMA process, and obtain estimation
of the ARFIMA parameters from the estimated AR coefficients. For any linear process {Yt} that is invertible
of {Zt}, there exists constants {πj} such that

∑∞
j=0 |πj | <∞ and

Zt =
∞∑
j=0

πjYt−j , (14)

for all t. Based on this observation, there has been a long history on the use of long-order AR processes, which
dates back to the early work of Yule [38] and later Akaike [1, 2] and Parzen [26]. For invertible processes,
the AR approximation works very well, provided that the autoregression order is allowed to go to infinity
as the sample size grows. Therefore, it has become a standard procedure to analyze empirical time series
using AR models. Poskitt [28] extended the theory of AR approximation to non-standard situations when the
process is fractionally integrated and non-invertible. His work verified a conjecture of Beran [7] concerning
the predictive optimality of AIC due to Shibata [32] to fractionally integrated and non-invertible processes.
His major results show an L2 norm convergence of the difference vector between the least squares and the
true autoregressive coefficients, assuming the autoregression order

pT = o

{
(
T

lnT
)0.5−d

′
}
, (15)

where d
′

= max {0, d}, and d is the fractional integration order. Empirical studies on the AR approximation
to long-memory processes include [8, 9, 23], among others.

The estimators for ARFIMA parameters based on autoregressive approximation [15] minimizes the dis-
tance:

D = (ã− δ(d,Φ,Θ))
′
Ω(ã− δ(d,Φ,Θ)), (16)

where ã is a preliminary estimates for the coefficients of the AR(∞) representation up to order k, and the
weight matrix Ω is the inverse of the estimated covariance matrix of ã. The theoretical values of the AR
coefficients are represented explicitly by the ARFIMA parameters d, Φ, and Θ:

δk = −bk +

q∑
i=1

θiak−i +

p∑
i=1

ϕibk−i, (17)

where the bk’s are the coefficients satisfying
∑∞

j=0 bjL
j = (1 − L)d. More precisely, b0 = 1, b1 = −d,

b2 = d(d− 1)/2, bj = bj−1(j− 1− d)/j, j ≥ 3. The order k is chosen to be 3 ln(T )− 6, rounded to the nearest
integer.
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3 Sparse AR Approximation to ARFIMA Based on Penalized Con-
ditional Likelihood

Theoretically, the more lags one includes in the approximating AR model, the better the result would be.
Including too many parameters in the model, unfortunately, brings unnecessary noise and harms the estimation
accuracy. A consevative way is not to include many lags and a rule of thumb in the literature is to set the
AR order p = 3 ln(T )− 6, rounded to the nearest integer, where T is sample size. We propose to approximate
ARFIMA models by sparse AR models, whose coefficient profiles have sparse structures, and to set the order
p to be much larger than O(ln(T )). The sparse structure of the AR coefficients is realized by the penalized
conditional maximum likelihood estimation [31], which excludes insignificant lags from the model and removes
unnecessary noise in a data-driven way.

One question arises naturally as to why the estimation for the ARFIMA parameters is needed at all, if
our goal is to predict the future based on past observations. Apparently, a more straightforward way is to
carry out prediction directly based on the estimated high-order AR(p) representation, which can be viewed
as a truncation of the infinite order autoregressive expansion of the ARFIMA model in (1):

Yt =

∞∑
j=1

ΦjYt−j + ϵt, (18)

where Φj = O(j−d−1) as j → ∞ [28]. Therefore, we also propose a direct forecasting of ARFIMA models
based on the estimated AR process.

4 Simulation

In this section, we compare the performances of the estimators for the ARFIMA(p,d,q) parameters based on
autoregressive approximation, sparse autoregressive approximation, and exact likelihood approaches.

4.1 An ARFIMA(0,d,0) Model

We compare the three methods for an ARFIMA(0,d,0) model where d = ±0.2,±0.3,±0.4. As discussed above,
the exact ML method only allows for data with up to 100 observations. So we first simulate 100 independent
ARFIMA time series, each having 100 observations. Inferences are drawn based on all the three methods and
the results are summarized in Table 1. For a small sample like this, the performances of the three methods
are comparable. The difference between the AR-based and the sparse AR-based estimators are not distinct
either. We continue the study with larger samples for which the exact ML method does not work anymore.
Apparently, a larger sample size brings in drastic improvements on the performances of the estimators based
on AR approximations, and this is unattainable by the small sample ML estimate. In addition, the sparse
AR-based estimator performs consistently better than the AR-based estimator.

Table 1: Average bias and RMSE of the exact ML estimates, the AR-based and sparse AR-based estimates
for the ARFIMA (0,d,0) parameter from 100 independent replications of 100 observations

bias RMSE

d dML dAR dspsAR dML dAR dspsAR

0.2 0.063 0.0673 0.0669 0.0921 0.09 0.0897
-0.2 0.0636 0.0624 0.0688 0.0789 0.0841 0.0869
0.3 0.0629 0.0864 0.0888 0.0813 0.1032 0.1025

-0.3 0.0674 0.0723 0.0987 0.0814 0.0898 0.1054
0.4 0.0686 0.0917 0.0827 0.0885 0.1118 0.108

-0.4 0.0717 0.0684 0.0673 0.09 0.0882 0.0832
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Table 2: Average bias and RMSE of the AR-based and sparse AR-based estimates for the ARFIMA (0,d,0)
parameter from 100 independent replications of 1000 observations

bias RMSE

d dAR dspsAR dAR dspsAR

0.2 0.0212 0.0207 0.0265 0.0258
-0.2 0.0225 0.0216 0.0279 0.0276
0.3 0.0293 0.0263 0.0377 0.0337

-0.3 0.0249 0.0243 0.0306 0.0293
0.4 0.0407 0.0347 0.0539 0.0464

-0.4 0.0346 0.0304 0.0407 0.0372

4.2 An ARFIMA(1,d,1) Model

We proceed to compare the three methods for an ARFIMA(1,d,1) model, where |d| = 0.2, |ϕ1| = 0.7,
and |θ1| = 0.3. We consider all the combinations of the parameter signs. Obviously large samples are more
advantageous than small ones. So we only compare the AR and sparse AR based estimators for a larger sample
size T = 1000. Table 3 and Table 4.2 report the average bias and RMSE of 100 independent replications,
respectively. Notice that both the average bias and RMSE reduce significantly by including more observations
in the sample and, consequently, more legs in the approximating AR model. What is more important, the
sparse AR-based estimator now shows consistently better estimation bias and efficiency over the regular
AR-based estimator.

Table 3: Average bias of the AR-based and sparse AR-based estimators for the ARFIMA (1,d,1) parameters
from 100 replications of 1000 observations each method

d ϕ1 θ1 dAR dsps ϕ1AR ϕ1sps θ1AR θ1sps

0.2 0.7 0.3 0.151 0.136 0.115 0.105 0.081 0.077
-0.2 0.7 0.3 0.158 0.122 0.143 0.123 0.116 0.010
0.2 -0.7 0.3 0.066 0.062 0.021 0.021 0.080 0.078

-0.2 -0.7 0.3 0.085 0.062 0.023 0.022 0.095 0.075
0.2 0.7 -0.3 0.119 0.109 0.104 0.094 0.034 0.035

-0.2 0.7 -0.3 0.111 0.102 0.090 0.082 0.041 0.040
0.2 -0.7 -0.3 0.040 0.038 0.042 0.042 0.072 0.070

-0.2 -0.7 -0.3 0.032 0.032 0.041 0.040 0.068 0.069

5 Analysis of a Foreign Exchange Rate Data

There has been evidence of long-memory in exchange rate data (see, e.g., [11]), and therefore, ARFIMA
models are considered the appropriate model to analyze such data. In this section we provide an analysis of
a weekend exchange rate data of Japanese yen versus US dollar using ARFIMA models. Historical prices are
quoted for the period from 1/2/1990 to 10/1/2010. Thursday prices are used when Friday quotations are not
available. The raw data consists of 1086 observations in total, and the input logarithm return data consists
of 1085 observations. The AR order p and MA order q are set to be p = 1, 2 and q = 1, 2 based on empirical
evidence, and the 4 combinations are all included in the analysis.

Considering the large sample size, the exact ML method is not used. We only use the AR-based and sparse
AR-based approximations to estimate the ARFIMA parameters. The first 1000 observations of the log return
data are used for in-sample estimation, and the last 85 are used for out-of-sample forecast. The estimated
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Table 4: RMSE’s of the AR-based and sparse AR-based estimators for the ARFIMA (1,d,1) parameters from
100 replications of 1000 observations each method

d ϕ1 θ1 dAR dsps ϕ1AR ϕ1sps θ1AR θ1sps

0.2 0.7 0.3 0.193 0.175 0.155 0.141 0.120 0.112
-0.2 0.7 0.3 0.206 0.162 0.247 0.228 0.189 0.171
0.2 -0.7 0.3 0.091 0.091 0.027 0.027 0.111 0.111

-0.2 -0.7 0.3 0.102 0.075 0.028 0.027 0.117 0.089
0.2 0.7 -0.3 0.144 0.131 0.128 0.117 0.045 0.045

-0.2 0.7 -0.3 0.135 0.125 0.107 0.101 0.053 0.051
0.2 -0.7 -0.3 0.049 0.045 0.058 0.057 0.095 0.093

-0.2 -0.7 -0.3 0.039 0.039 0.051 0.051 0.085 0.085
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Figure 1: Comparison of direct model fittings from the AR and sparse AR approximations

parameter values for the 4 models are reported in Table 5. Forecasts for the log return series are generated
from the truncated AR(∞) representation. In particular, at time t, the k-step-ahead forecast is given by

Ŷt+k =

k−1∑
j=1

ψj Ŷt+k−j +

100∑
j=k

ψjYt+k−j , (19)

where (1−ψ1L−ψ2L
2−· · · ) = Θ−1(L)Φ(L)(1−L)d. That is, the AR(∞) representation is truncated at order

100. Forecasts for the original exchange rate series are then constructed and evaluated by mean absolute error
(MAE) and root mean squared error (RMSE). The results are summarized in Table 6 for forecast horizons
1, 10, 20. The differences among the last three models are insignificant. Each one is considered as the optimal
model. For all of the four models considered, forecasts based on sparse AR approximation are consistently
better than those based on AR approximation. Finally, we compare model fittings from the estimated AR
processes directly. Figure 1 shows plots of the fitted values against the observed values for the log return
process (left) and the original exchange rate process (right), respectively, for a randomly chosen time period.
The fitted values are calculated as the 1-step-ahead predictions from the estimated AR models. The dotted
line denotes predictions from the fitted AR process, the dashed line denotes those from the fitted sparse AR
process, while the observed values are displayed by the solid line. It is clearly seen from these plots that
predictions from the sparse AR approximation capture more precisely the dynamics, while those from the AR
approximation show larger biases.
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Table 5: Estimated ARFIMA parameters based on AR and sparse AR approximations

Estimated Parameters

ARFIMA
Model d ϕ1 ϕ2 θ1 θ2

(1,d,1) AR 0.0885 -0.3177 - -0.1384 -
sps 0.0713 -0.3379 - -0.1745 -

(2,d,1) AR 0.0317 0.1856 0.115 0.3093 -
sps 0.0091 0.2377 0.1159 0.3398 -

(1,d,2) AR 0.0221 0.1986 - 0.3146 -0.122
sps 0.0087 0.2386 - 0.3404 -0.1153

(2,d,2) AR 0.0211 0.2082 -0.1011 0.3195 -0.2172
sps 0.008 0.2533 -0.0585 0.3526 -0.1714

6 Conclusion

We have introduced a new estimation method for ARFIMA processes based on the sparse AR approximation.
It has been shown, by simulations and real data applications, to be simpler and more effective than the
existing methods: 1) it corrects the bias of the two-stage semiparametric estimation; 2) it overcomes the
disadvantage of small sample size of the exact likelihood; 3) it improves on the estimation and prediction
accuracy of the (non-sparse) AR approximation. The sparse AR coefficients are realized by the penalized
conditional maximum likelihood estimation proposed by Sang and Sun [31]. It accounts for both Gaussian
and non-Gaussian cases, allowing the innovation process to be heavy-tailed. Therefore, our proposed method
is especially general and flexible in that it can accommodate both long-memory and heavy-tail simultaneously,
which are two common characteristics of time series data.
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Table 6: MAE and RMSE for the 8 combinations of models and methods

Forecast Evaluation
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