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Abstract

An approach for uncertainty distribution of function of an uncertain variable is established based
on uncertain measure. Then expected value of function of an uncertain variable is derived from the
distribution. To the sake of computation, uncertain simulations are introduced for approximating the
uncertainty distribution, optimistic value and expected value. The simulations are integrated to genetic
algorithm for solving uncertain expected value models and uncertain chance-constrained programming
models. The efficiency of the proposed methods is shown by some examples.
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1 Introduction

Uncertainty theory founded by Liu in 2007 [4] and refined in 2010 [6] is a branch of mathematics for dealing
with human uncertainty. There are three fundamental concepts in uncertainty theory. The first concept called
uncertain measure is introduced based on three axioms: normality axiom, duality axiom and subadditivity
axiom for presenting the degree that an uncertain event may occur. The second one called uncertain variable is
bringed in for showing quantities in uncertainty. The third one called uncertainty distribution (a real function)
is put forwarded for describing uncertain variables. In addition, there are three characters including expected
value, optimistic value and pessimistic value for an uncertain variable. These characters play essential roles
in uncertain programming [5] and uncertain optimal control [1, 2, 3, 9, 10].

It is known from [6] that the uncertainty distribution of f(ξ) may be provided with the uncertainty
distribution of the uncertain variable ξ if the measurable function f is monotone. Then the expected value
of f(ξ) may be obtained by the uncertainty distribution of ξ in [7]. However, if f is not monotone, then the
above results may be not true. This flaw results in great inconvenience for the use of uncertain expected value
in uncertain programming and uncertain optimal control. Now, we hope repair this flaw in the paper.

An uncertain variable is a measurable function from an uncertainty space to the set of real numbers. In
practice, e.g. uncertain programming and uncertain optimal control, related uncertain variables are provided
with their distributions regardless of the uncertainty spaces on which the uncertain variables are defined. Peng
and Iwamura [8] proved that for any uncertainty distribution Φ(x), there is an uncertain variable defined on
the set of real numbers such that its distribution is just Φ(x). We may call this type of uncertain variable to
be common. If we regard uncertain variables provided with uncertainty distributions as common ones, then
the distributions and expected values of functions of them may be easily obtained.

The organization of the paper is as follows. In Section 2, some concepts and useful theorems are reviewed.
In Section 3, an approach is proposed analytically to obtain the distribution of function of an uncertain
variable. In Section 4, the expected value of function of an uncertain variable is investigated. In Section 5,
uncertain simulations are introduced for the distribution, optimistic value and expected value of function of
an uncertain variable. In Section 6, two uncertain programming models including uncertain expected value
model and chance-constrained programming model are studied. Section 7 gives conclusions.
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2 Preliminary

In convenience, we give some notations and concepts. Let Γ be a nonempty set, and L a σ-algebra over
Γ. Each element Λ ∈ L is called an event. A set function M defined on the σ-algebra L is called an
uncertain measure if it satisfies that M{Γ} = 1 for the universal set Γ; M{Λ} + M{Λc} = 1 for any event
Λ; M{∪∞i=1Λi} ≤ Σ∞

i=1M{Λi} for Λi ∈ L. Then the triplet (Γ, L, M) is said to be an uncertainty space. An
uncertain variable is a measurable function ξ from an uncertainty space (Γ, L, M) to the set of real numbers,
i.e., for any Borel set of real numbers, the set {ξ ∈ B} = {γ ∈ Γ|ξ(γ) ∈ B} is an event. Let (Γk,Lk,Mk) be
uncertainty spaces for k = 1, 2, . . . , n. Then the product uncertain measure M is an uncertain measure on the
product σ-algebra L1 × L2 × · · · × Ln satisfying M {

∏n
k=1 Λk} = min1≤k≤n Mk{Λk}. That is, for each event

Λ ∈ L, we have

M{Λ} =


sup

Λ1×Λ2×···×Λn⊂Λ
min

1≤k≤n
Mk{Λk} if sup

Λ1×Λ2×···×Λn⊂Λ
min

1≤k≤n
Mk{Λk} > 0.5,

1− sup
Λ1×Λ2×···×Λn⊂Λc

min
1≤k≤n

Mk{Λk} if sup
Λ1×Λ2×···×Λn⊂Λc

min
1≤k≤n

Mk{Λk} > 0.5,

0.5, otherwise.

(1)

Suppose f is a measurable function on ℜn, and ξ1, ξ2, . . . , ξn are uncertain variables on (Γ,L,M). Then
ξ = f(ξ1, ξ2, . . . , ξn) is an uncertain variable defined as ξ(γ) = f(ξ1(γ), ξ2(γ), . . ., ξn(γ)) for γ ∈ Γ. The
uncertain variables ξ1, ξ2, . . . , ξm are said to be independent if M {∩mi=1{ξ ∈ Bi}} = min1≤i≤m M{ξ ∈ Bi} for
any Borel sets B1, B2, . . . , Bm of real numbers. The distribution Φ : R → [0, 1] of an uncertain variable ξ is

defined by Φ(x) = M{γ ∈ Γ | ξ(γ) ≤ x} for x ∈ R. The expected value of ξ is defined by E[ξ] =
∫ +∞
0

M{ξ ≥
r}dr −

∫ 0

−∞ M{ξ ≤ r}dr provided that at least one of the two integrals is finite. The variance of ξ is

V [ξ] = E[(ξ−E[ξ])2]. For α ∈ (0, 1], the α-optimistic value to ξ is defined by ξsup(α) = sup{r |M{ξ ≥ r} ≥ α},
and the α-pessimistic value to ξ is defined by ξinf(α) = inf{r |M{ξ ≤ r} ≥ α}.

Theorem 1 [8] A function Φ : ℜ → [0, 1] is an uncertainty distribution if and only if it is a monotone
increasing function except Φ(x) ≡ 0 and Φ(x) ≡ 1.

Given an increasing function Φ(x), Peng and Iwamura [8] introduced an uncertainty space (ℜ,B,M) as
follows. Let B be the Borel algebra over ℜ. Let C be the collection of all intervals of the form (−∞, a],
(b,+∞), ∅ and ℜ. The uncertain measure M is provided in such a way: first,

M{(−∞, a]} = Φ(a), M{(b,+∞)} = 1− Φ(b), M{∅} = 0, M{ℜ} = 1.

Second, for any B ∈ B, there exists a sequence {Ai} in C such that

B ⊂
∞∪
i=1

Ai.

Thus

M{B} =


inf

B⊂∪Ai

∞∑
i=1

M{Ai}, if inf
B⊂∪Ai

∞∑
i=1

M{Ai} < 0.5

1− inf
Bc⊂∪Ai

∞∑
i=1

M{Ai}, if inf
Bc⊂∪Ai

∞∑
i=1

M{Ai} < 0.5

0.5, otherwise.

(2)

The uncertain variable defined by ξ(γ) = γ from the uncertainty space (ℜ,B,M) to ℜ has the uncertainty
distribution Φ.

Note that for monotone increasing function Φ(x) except Φ(x) ≡ 0 and Φ(x) ≡ 1, there may be multiple
uncertain variables whose uncertainty distributions are just Φ(x). However, for any one ξ among them, the
uncertain measure of the event {ξ ∈ B} for Borel set B may be not analytically expressed by Φ(x). For any
two ξ and η among them, the uncertain measure of {ξ ∈ B}may differ from that of {η ∈ B}. These facts result
in inconvenience of use in practice. Which one among them should we choose for reasonable and convenient
use? Let us consider the uncertain variable ξ defined by ξ(γ) = γ on the uncertainty space (ℜ,B,M) with
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the uncertainty distribution Φ(x), where the uncertain measure M is defined by (2), and another uncertain
variable ξ1 on the uncertainty space (Γ1,L1,M1). For each A ∈ C, we have M{ξ ∈ A} = M1{ξ1 ∈ A}. For

any Borel set B ⊂ ℜ, if B ⊂ ∪∞i=1Ai with
∞∑
i=1

M{Ai} < 0.5, then

M1{ξ1 ∈ B} ≤M1

{ ∞∪
i=1

{ξ1 ∈ Ai}

}
≤

∞∑
i=1

M1{ξ1 ∈ Ai} =
∞∑
i=1

M{ξ ∈ Ai} < 0.5;

if Bc ⊂ ∪∞i=1Ai with
∞∑
i=1

M{Ai} < 0.5, then

M1{ξ1 ∈ B} = 1−M1{ξ1 ∈ Bc} ≥ 1−M1

{ ∞∪
i=1

{ξ1 ∈ Ai}

}
≥ 1−

∞∑
i=1

M1{ξ1 ∈ Ai} = 1−
∞∑
i=1

M{ξ ∈ Ai} > 0.5.

Thus

M1{ξ1 ∈ B} ≤M{ξ ∈ B} = inf
B⊂∪Ai

∞∑
i=1

M{Ai} < 0.5, if inf
B⊂∪Ai

∞∑
i=1

M{Ai} < 0.5,

M1{ξ1 ∈ B} ≥M{ξ ∈ B} = 1− inf
Bc⊂∪Ai

∞∑
i=1

M{Ai} > 0.5, if inf
Bc⊂∪Ai

∞∑
i=1

M{Ai} < 0.5.

In other cases, M{ξ ∈ B} = 0.5. Therefore, the uncertain measure of {ξ ∈ B} is closer to 0.5 than that of
{ξ1 ∈ B}. Based on the maximum uncertainty principle, we adopt uncertain variable ξ defined on (ℜ,B,M)
for use in our discussion if only the uncertainty distribution is provided.

Definition 1 An uncertain variable ξ with distribution Φ(x) is common if it is from the uncertainty space
(ℜ,B,M) to ℜ defined by ξ(γ) = γ, where B is the Borel algebra over ℜ and M is defined by (2).

Let Φ(x) be continuous. For uncertain measure M defined by (2), we know that M{(−∞, a)} = Φ(a) and
M{[b,+∞)} = 1− Φ(b).

Definition 2 An uncertain vector ξ = (ξ1, ξ2, . . . , ξn) is common if every uncertain variable ξi is common
for i = 1, 2, . . . , n.

3 Distribution of Function of Uncertain Variable

Let us discuss the distribution of f(ξ) for a common uncertain variable ξ or a common uncertain vector.
Assume C is the collection of all intervals of the form (−∞, a], (b,+∞), ∅ and ℜ. Each element Ai emerging
in the sequel is in C.

Theorem 2 (i) Let ξ be a common uncertain variable with the continuous distribution Φ(x) and f(x) a Borel
function. Then the distribution of the uncertain variable f(ξ) is

Ψ(x) = M{f(ξ) ≤ x}

=


inf

{f(ξ)≤x}⊂∪Ai

∞∑
i=1

M{Ai}, if inf
{f(ξ)≤x}⊂∪Ai

∞∑
i=1

M{Ai} < 0.5

1− inf
{f(ξ)>x}⊂∪Ai

∞∑
i=1

M{Ai}, if inf
{f(ξ)>x}⊂∪Ai

∞∑
i=1

M{Ai} < 0.5

0.5, otherwise.

(3)
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(ii) Let f : ℜn → ℜ be a Borel function, and ξ = (ξ1, ξ2, . . . , ξn) be a common uncertain vector. Then the
distribution of the uncertain variable f(ξ) is

Ψ(x) = M{f(ξ1, ξ2, . . . , ξn) ≤ x} = M{(ξ1, ξ2, . . . , ξn) ∈ f−1(−∞, x)}

=


sup

Λ1×Λ2×···×Λn⊂Λ
min

1≤k≤n
Mk{Λk} if sup

Λ1×Λ2×···×Λn⊂Λ
min

1≤k≤n
Mk{Λk} > 0.5,

1− sup
Λ1×Λ2×···×Λn⊂Λc

min
1≤k≤n

Mk{Λk} if sup
Λ1×Λ2×···×Λn⊂Λc

min
1≤k≤n

Mk{Λk} > 0.5,

0.5, otherwise

(4)

where Λ = f−1(−∞, x), and each Mk{Λk} is derived from (2).

Proof: The conclusions follow directly from (2) and (1), respectively.

Theorem 3 Let ξ be a common uncertain variable with the continuous distribution Φ(x). For real numbers
b and c, denote

x1 =
−b−

√
b2 − 4(c− x)

2
, x2 =

−b+
√
b2 − 4(c− x)

2

for x ≥ c− b2/4. Then the distribution of the uncertain variable ξ2 + bξ + c is

Ψ(x) =



0, if x < c− b2

4
Φ(x2) ∧ (1− Φ(x1)), if Φ(x2) ∧ (1− Φ(x1)) < 0.5

Φ(x2)− Φ(x1), if Φ(x2)− Φ(x1) > 0.5

0.5, otherwise.

(5)

Proof: For x < c− b2/4, we have

Ψ(x) = M{ξ2 + bξ + c ≤ x} = M{∅} = 0.

Let x ≥ c− b2/4 in the sequel. Then

Ψ(x) = M{ξ2 + bξ + c ≤ x} = M{x1 ≤ ξ ≤ x2} = M{[x1, x2]}.

The conclusion will be proved by (2). Since [x1, x2] ⊂ (−∞, x2] and [x1, x2] ⊂ [x1,+∞), and M{(−∞, x2]} =
Φ(x2) and M{[x1,+∞)} = 1−Φ(x1), we have Ψ(x) = Φ(x2)∧ (1−Φ(x1)) if Φ(x2)∧ (1−Φ(x1)) < 0.5. Since
[x1, x2]c = (−∞, x1) ∪ (x2,+∞), we have

Ψ(x) = 1− (Φ(x1) + 1− Φ(x2)) = Φ(x2)− Φ(x1)

if M{(−∞, x1)}+ M{(x2,+∞)} = Φ(x1) + 1− Φ(x2) < 0.5, or Φ(x2)− Φ(x1) > 0.5. Otherwise Ψ(x) = 0.5.
The proof of the theorem is completed.

4 Expected Value of Function of Uncertain Variable

If the expected value of uncertain variable ξ with uncertainty distribution Φ(x) exists, then E[ξ] =
∫ +∞
0

(1−
Φ(x))dx −

∫ 0

−∞ Φ(x)dx; or E[ξ] =
∫ 1

0
Φ−1(α)dα provided that Φ−1(α) exists and unique for each α ∈ (0, 1).

Thus, if we obtain the uncertainty distribution Ψ(x) of f(ξ), the expected value of f(ξ) is easily derived from

E[f(ξ)] =

∫ +∞

0

(1−Ψ(x))dx−
∫ 0

−∞
Ψ(x)dx. (6)

For a monotone function f(x), Liu and Ha [7] gave a formula to compute the expected value of f(ξ) with the
uncertainty distribution Φ(x) of ξ. However, we may generally not present a formula to compute the expected
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value of f(ξ) with Φ(x) for a nonmonotone function f(x) because the uncertainty distribution Ψ(x) of f(ξ)
may not be analytically expressed by Φ(x).

Now if we consider a common uncertain variable ξ, the uncertainty distribution Ψ(x) of f(ξ) may be
presented by (3), and then the expected value of f(ξ) can be obtained by (6). Next, we will give some
examples to show how to compute the expected value of f(ξ) for a common uncertain variable ξ no matter
whether f(x) is monotone.

Example 1: Let ξ be a common linear uncertain variable L(a, b) with the distribution (also see Fig.1)

Φ(x) =

 0, if x ≤ a
(x− a)/(b− a), if a ≤ x ≤ b

1, if x ≥ b.

-

6
1

0

0.5

a ba+b
2

x

Φ(x)

Figure 1: Linear uncertainty distribution

The expected value of ξ is e = (a+ b)/2. Now we consider the variance of ξ: V [ξ] = E[(ξ − e)2]. Let the
uncertainty distribution of (ξ − e)2 be Ψ(x). Let x ≥ 0, and x1 = e −

√
x, x2 = e +

√
x. If

√
x ≥ (b − a)/2,

then x2 ≥ b and x1 ≤ a. Thus Ψ(x) = Φ(x2)−Φ(x1) = 1. If
√
x ≤ (b−a)/2, then e ≤ x2 ≤ b and a ≤ x1 ≤ e.

Thus Φ(x2) ∧ (1 − Φ(x1)) > 0.5. When Φ(x2) − Φ(x1) = 2
√
x/(b − a) > 0.5, that is,

√
x > (b − a)/4,

Ψ(x) = Φ(x2)− Φ(x1) = 2
√
x/(b− a). Hence the uncertainty distribution of (ξ − e)2 (also see Fig.2) is

Ψ(x) =



0, if x < 0

0.5, if 0 ≤ x ≤ (b− a)2/16

2
√
x/(b− a), if (b− a)2/16 ≤ x ≤ (b− a)2/4

1, if x ≥ (b− a)2/4

by (5).

-

6
1

0

0.5

(b−a)2

16
(b−a)2

4

x

Ψ(x)

Figure 2: Uncertainty distribution of (ξ − e)2
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The variance of ξ is

V [ξ] = E[(ξ − e)2] =

∫ +∞

0

(1−Ψ(x))dx

=

∫ (b−a)2/16

0

0.5dx+

∫ (b−a)2/4

(b−a)2/16

(
1− 2

√
x

b− a

)
dx

=
7

96
(b− a)2.

Example 2: Let ξ be a common linear uncertain variable L(−1, 1) with the distribution

Φ(x) =

 0, if x ≤ −1
(x+ 1)/2, if − 1 ≤ x ≤ 1

1, if x ≥ 1.

We will consider the expected value E[ξ2 +bξ] for real number b. Let the uncertainty distribution of uncertain
variable η = ξ2 + bξ be Ψ(x). For x ≥ −b2/4, denote

x1 =
−b−

√
b2 + 4x

2
, x2 =

−b+
√
b2 + 4x

2
.

(I) If b = 0, then E[ξ2] = V [ξ] = 7/24 by Example 1.
(II) If b ≥ 2, then

Ψ(x) =

{
0, if x < 1− b

Φ(x2), if x ≥ 1− b
by (5). Note that x = x22 + bx2. Thus

E[ξ2 + bξ] =

∫ +∞

0

(1−Ψ(x))dx−
∫ 0

−∞
Ψ(x)dx

=

∫ 1+b

0

(1− Φ(x2))dx−
∫ 0

1−b

Φ(x2)dx

=

∫ 1

0

(
1− y + 1

2

)
(2y + b)dy −

∫ 0

−1

y + 1

2
(2y + b)dy

=
1

3
.

(III) If 1 ≤ b < 2, then

Ψ(x) =

{
0, if x < −b2/4

Φ(x2), if x ≥ −b2/4.
Thus

E[ξ2 + bξ] =

∫ +∞

0

(1−Ψ(x))dx−
∫ 0

−∞
Ψ(x)dx

=

∫ 1+b

0

(1− Φ(x2))dx−
∫ 0

−b2/4

Φ(x2)dx

=

∫ 1

0

(
1− y + 1

2

)
(2y + b)dy −

∫ 0

−b/2

y + 1

2
(2y + b)dy

=
1

48
(b3 − 6b2 + 12b+ 8).

(IV) If 0 < b < 1, then

Ψ(x) =


0, if x < −b2/4

Φ(x2), if − b2/4 ≤ x < 0
0.5, if 0 ≤ x ≤ (1− b2)/4

Φ(x2)− Φ(x1), if x > (1− b2)/4.
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Thus

E[ξ2 + bξ] =

∫ +∞

0

(1−Ψ(x))dx−
∫ 0

−∞
Ψ(x)dx

=

∫ (1−b2)/4

0

1

2
dx+

∫ 1−b

(1−b2)/4

(1− Φ(x2) + Φ(x1))dx+

∫ 1+b

1−b

(1− Φ(x2))dx

−
∫ 0

−b2/4

Φ(x2)dx

=
1− b2

8
+

∫ 1−b

(1−b)/2

(
1− y + 1

2
+
−y − b+ 1

2

)
(2y + b)dy

+

∫ 1

1−b

(
1− y + 1

2

)
(2y + b)dy −

∫ 0

−b/2

y + 1

2
(2y + b)dy

=
1

48
(b3 + 12b2 − 12b+ 14).

(V) If b ≤ −2, then

Ψ(x) =

{
0, if x < 1 + b

1− Φ(x1), if x ≥ 1 + b.

Also we have E[ξ2 + bξ] = 1/3.
(VI) If −2 < b ≤ −1, then

Ψ(x) =

{
0, if x < −b2/4

1− Φ(x1), if x ≥ −b2/4.

Thus

E[ξ2 + bξ] =
1

48
(−b3 − 6b2 − 12b+ 8).

(VII) If −1 < b < 0, then

Ψ(x) =


0, if x < −b2/4

1− Φ(x1), if − b2/4 ≤ x < 0
0.5, if 0 ≤ x ≤ (1− b2)/4

Φ(x2)− Φ(x1), if x > (1− b2)/4.

Thus

E[ξ2 + bξ] =

∫ +∞

0

(1−Ψ(x))dx−
∫ 0

−∞
Ψ(x)dx

=

∫ (1−b2)/4

0

1

2
dx+

∫ 1+b

(1−b2)/4

(1− Φ(x2) + Φ(x1))dx+

∫ 1−b

1+b

Φ(x1)dx

−
∫ 0

−b2/4

(1− Φ(x1))dx

=
1− b2

8
+

∫ 1

(1−b)/2

(
1− y + 1

2
+
−y − b+ 1

2

)
(2y + b)dy

+

∫ −1

(−1−b)/2

y + 1

2
(2y + b)dy −

∫ 0

−b/2

(
1− y + 1

2

)
(2y + b)dy

=
1

48
(−b3 + 12b2 + 12b+ 14)

Example 3: Let ξ be a common normal uncertain variable N(e, σ) with the distribution

Φ(x) =

(
1 + exp

(
π(e− x)√

3σ

))−1

,
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whose expected value is e. Then the uncertain distribution of (ξ − e)2 is

Ψ(x) =



0, if x < 0

0.5, if 0 ≤ x ≤ 3σ2(ln 3)2

π2

1− exp
(
−π

√
x√

3σ

)
1 + exp

(
−π

√
x√

3σ

) , if x >
3σ2(ln 3)2

π2

by (5). Hence the variance of ξ is

V [ξ] = E[(ξ − e)2] =

∫ +∞

0

(1−Ψ(x))dx

=

∫ 3σ2(ln 3)2

π2

0

1

2
dx+

∫ +∞

3σ2(ln 3)2

π2

2 exp
(
−π

√
x√

3σ

)
1 + exp

(
−π

√
x√

3σ

)dx

=
σ2

π2

(
3

2
(ln 3)2 − 12

∫ 1/3

0

ln z

1 + ln z
dz

)
≈ 0.9432σ2.

5 Uncertain Simulation

It follows from Theorem 3 and the examples in the above section that the uncertainty distribution Ψ(x) of
f(ξ) may be analytically expressed by (5) for a quadratic function f(x). But Ψ(x) may be hardly analyt-
ically expressed for other kinds of functions. Now we will introduce simulation approaches for uncertainty
distribution Ψ(x), optimistic value fsup and expected value E[f(ξ)] of f(ξ) based on (3) and (4).

(a) Let ξ = (ξ1, ξ2, . . . , ξn) be a common uncertain vector where ξi is a common uncertain variable with
continuous uncertainty distribution Φi(x) for i = 1, 2, . . . , n, and f : ℜn → ℜ be a Borel function. We will
simulate the following uncertain measure:

L = M{f(ξ) ≤ 0}.

Algorithm: 1 (Uncertain simulation for L)

Step 1. Set m1(i) = 0 and m2(i) = 0, i = 1, 2, . . . , n.

Step 2. Randomly generate uk = (γ
(1)
k , γ

(2)
k , . . . , γ

(n)
k ) with 0 < Φi(γ

(i)
k ) < 1, i = 1, 2, . . . , n, k =

1, 2, . . . , N .

Step 3. Rank γ
(i)
k from small to large as γ

(i)
1 ≤ γ

(i)
2 ≤ · · · ≤ γ

(i)
N , i = 1, 2, . . . , n.

Step 4. From k = 1 to k = N , if f(uk) ≤ 0, m1(i) = m1(i) + 1, denote x
(i)
m1(i)

= γ
(i)
k ; otherwise,

m2(i) = m2(i) + 1, denote y
(i)
m2(i)

= γ
(i)
k , i = 1, 2, . . . , n.

Step 5. Set a(i) = Φ(x
(i)
m1(i)

)∧(1−Φ(x
(i)
1 ))∧(Φ(x

(i)
1 )+1−Φ(x

(i)
2 ))∧· · ·∧(Φ(x

(i)
m1(i)−1)+1−Φ(x

(i)
m1(i)

));

b(i) = Φ(y
(i)
m2(i)

)∧ (1−Φ(y
(i)
1 ))∧ (Φ(y

(i)
1 ) + 1−Φ(y

(i)
2 ))∧ · · · ∧ (Φ(y

(i)
m2(i)−1) + 1−Φ(y

(i)
m2(i)

)),
i = 1, 2, . . . , n.

Step 6. If a(i) < 0.5, return L
(i)
1 = a(i), L

(i)
2 = 1−a(i); if b(i) < 0.5, return L

(i)
1 = 1− b(i), L(i)

2 = b(i);

otherwise, return L
(i)
1 = 0.5, L

(i)
2 = 0.5, i = 1, 2, . . . , n.

Step 7. If a = L
(1)
1 ∧ L

(2)
1 ∧ · · · ∧ L

(n)
1 > 0.5, then L = a; if b = L

(1)
2 ∧ L

(2)
2 ∧ · · · ∧ L

(n)
2 > 0.5, then

L = 1− b; otherwise, L = 0.5.

(b) Let ξ = (ξ1, ξ2, . . . , ξn) be a common uncertain vector where ξi is a common uncertain variable with
continuous uncertainty distribution Φi(x) for i = 1, 2, . . . , n, and f : ℜn → ℜ be a Borel function. The
following algorithm is used to simulate the optimistic value:

fsup = sup{r |M{f(ξ) ≥ r} ≥ α}
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where α ∈ (0, 1) is a predetermined confidence level.

Algorithm: 2 (Uncertain simulation for fsup)

Step 1. Randomly generate uk = (γ
(1)
k , γ

(2)
k , . . . , γ

(n)
k ) with 0 < Φi(γ

(i)
k ) < 1, i = 1, 2, . . . , n, k =

1, 2, . . . ,m.
Step 2. Set a = f(u1) ∧ f(u2) ∧ · · · ∧ f(um), b = f(u1) ∨ f(u2) ∨ · · · ∨ f(um).
Step 3. Set r = (a+ b)/2.
Step 4. If M{f(ξ) ≥ r} ≥ α, then a← r.
Step 5. If M{f(ξ) ≥ r} < α, then b← r.
Step 6. Repeat the third to fifth steps until b− a < ϵ for a sufficiently small number ϵ.
Step 7. fsup = (a+ b)/2.

(c) Let ξ = (ξ1, ξ2, . . . , ξn) be a common uncertain vector where ξi is a common uncertain variable with
continuous uncertainty distribution Φi(x) for i = 1, 2, . . . , n, and f : ℜn → ℜ be a Borel function. The
expected value E[f(ξ)] is approached by the following algorithm:

Algorithm: 3 (Uncertain simulation for E)

Step 1. Set E = 0.

Step 2. Randomly generate uk = (γ
(1)
k , γ

(2)
k , . . . , γ

(n)
k ) with 0 < Φi(γ

(i)
k ) < 1, i = 1, 2, . . . , n, k =

1, 2, . . . ,m.
Step 3. Set a = f(u1) ∧ f(u2) ∧ · · · ∧ f(um), b = f(u1) ∨ f(u2) ∨ · · · ∨ f(um).
Step 4. Randomly generate r from [a, b].
Step 5. If r ≥ 0, then E ← E + M{f(ξ) ≥ r}.
Step 6. If r < 0, then E ← E + M{f(ξ) ≤ r}.
Step 7. Repeat the fourth to sixth steps for N times.
Step 8. E[f(ξ)] = a ∨ 0 + b ∧ 0 + E · (b− a)/N .

6 Uncertain Programming

Uncertain Expected Value Model

Genetic algorithm (GA) integrated with the simulation method (Algorithm 3) introduced in the previous
section may be used to solve the following uncertain expected value model:

max
x

E [f(x, ξ)]

subject to:
E[gj(x, ξ)] ≤ 0, j = 1, 2, . . . , p

(7)

where x is a decision vector, ξ is a common uncertain vector, f(x, ξ) is the return function, and gj(x, ξ) is
the constraint function, j = 1, 2, . . . , p.

Example 4: Let ξ1 ∼ Z(−2, 1, 2), ξ2 ∼ Z(−1, 1, 3), ξ3 ∼ Z(1, 2, 3). Consider the following uncertain expected
value model: 

E ≡ max
x1,x2,x3

E
[√

(x1 − ξ1)2 + (x2 − ξ2)2 + (x3 − ξ3)2
]

subject to:
x21 + x22 + x23 ≤ 6.

Algorithm 3 is employed to approximate the objective function

(x1, x2, x3)→ E
[√

(x1 − ξ1)2 + (x2 − ξ2)2 + (x3 − ξ3)2
]
,

and GA is employed for providing the optimal solution

x = (x1, x2, x3) = (−0.6613,−0.9383,−2.1635), E = 4.8084.



Journal of Uncertain Systems, Vol.6, No.4, pp.278-288, 2012 287

Uncertain Chance-Constrained Programming Model

When we want to maximize the optimistic return, we have the following uncertain maximax CCP model:
max
x

max
f

f

subject to:

M{f(x, ξ) ≥ f} ≥ β
M{gj(x, ξ) ≤ 0, j = 1, 2, . . . , p} ≥ α

(8)

where α and β are the predetermined confidence levels, and max f is the β-optimistic return.
If we want to maximize the pessimistic return, then we have the following minimax CCP model:

max
x

min
f
f

subject to:

M{f(x, ξ) ≤ f} ≥ β
M{gj(x, ξ) ≤ 0, j = 1, 2, . . . , p} ≥ α

(9)

where min f is the β-pessimistic return.

Example 5: Let ξ1 ∼ L(−2, 0), ξ2 ∼ L(−1, 1), ξ3 ∼ L(1, 3). Consider the following CCP model:

f̂ ≡ max
x

max
f

f

subject to:

M{(x1 − ξ1)2 + (x2 − ξ2)2 + (x3 − ξ3)2 ≥ f} ≥ 0.95
M{|x1 − ξ1|+ |x2 − ξ2|+ |x3 − ξ3| ≤ 10} ≥ 0.90
x1, x2, x3 ≥ 0.

Algorithm 2 is employed to approximate the function

(x1, x2, x3)→ max{r |M{(x1 − ξ1)2 + (x2 − ξ2)2 + (x3 − ξ3)2 ≥ r} ≥ 0.95},

and Algorithm 1 is employed to approximate the function

(x1, x2, x3)→M{|x1 − ξ1|+ |x2 − ξ2|+ |x3 − ξ3| ≤ 10}.

Then GA is employed for providing the optimal solution

x = (x1, x2, x3) = (6.3223, 0.0174, 2.0090), f̂ = 40.3047.

7 Conclusion

Generally speaking, the uncertainty distribution of function f(ξ) of an uncertain vector ξ may be not derived
from the distribution of ξ except that the function f(x) is monotone. In this paper, a scheme is introduced
for establishing the uncertainty distribution of function f(ξ) directly from the distribution of ξ without the
monotonicity of f(x) for a common uncertain vector ξ. Then the expected value and optimistic value of f(ξ)
may be obtained also from the distribution of ξ. For the sake of numeric computation, uncertain simulation
schemes are presented for the uncertainty distribution, the expected value and optimistic value of f(ξ). Finally,
the uncertain simulation schemes are integrated to genetic algorithm (GA) for solving uncertain expected value
models and uncertain chance-constrained programming models. Examples show the efficiency of the methods.
It should be pointed out that uncertain simulations are time-consuming processes. Thus, in order to speed
up the solution process, neural network (NN) may be employed to approximate uncertain expected value and
optimistic value based on the data produced by uncertain simulations. Numerical experiments of uncertain
programming models by employing uncertain simulations, NN and GA remain for the interested readers.
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