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Abstract

Uncertainty theory is a branch of mathematics for modeling human uncertainty. The first fundamental
concept in uncertainty theory is uncertain measure, which is defined by normality axiom, duality axiom
and subadditivity axiom. The second fundamental concept is the product uncertain measure, which is
defined by product axiom. This paper shows that the product uncertain measure is indeed an uncertain
measure, which also means that the product axiom is consistent with other axioms in uncertainty theory.
c⃝2012 World Academic Press, UK. All rights reserved.
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1 Introduction

Random phenomena have been well studied by probability theory. However, the sample size in practice is
often too small or there is even no-sample to estimate a probability distribution. Thus, we have to invite
some domain experts to evaluate their belief degree that each event will occur. Since human beings usually
overweight unlikely events, the probability theory may be not suitable for modeling belief degree any more.
Distinguished from probability measure, the theory of capacities was proposed by Choquet [2] In 1954. Twenty
years later, the fuzzy measure theory was proposed by Sugeno [12] and fuzzy set theory was initiated by Zadeh
[14]. For a long time, such belief degree was regarded as subjective probability or fuzzy concept. However,
both probability theory and fuzzy set theory may lead to counterintuitive results in some cases. Considering
some quantities like “around 25 ◦C”, “roughly 60kg”, “very tall”, and “long way”. For example, it is assumed
that the weight of a person is “roughly 60kg”. If “roughly 60kg” is regarded as a fuzzy concept and is modeled
by a fuzzy set, then we may obtain the weight of the person is “exactly 60kg” with belief degree 1 in possibility
measure by the property of membership function. However, it is doubtless that the degree of “roughly 60kg”
is almost zero. Anyone with common sense will be not so naive to expect that “exactly 60kg” is the true
weight of the person. On the other hand, “exactly 60kg” and “not 60kg” have the same belief degree in
possibility measure. Thus we have to regard them “equally likely”. It seems that nobody can accept this
conclusion. This paradox shows that those imprecise quantities like “roughly 60kg” cannot be quantified by
possibility measure and then they are not fuzzy concepts.

In order to model such phenomena, uncertainty theory was founded by Liu [6] in 2007, refined by Liu [11]
in 2010, and became a branch of mathematics based on the normality axiom, duality axiom, subadditivity
axiom, and product axiom. The first fundamental concept in uncertainty theory is uncertain measure, used
to indicate the belief degree that an uncertain event may occur. Some scholars studied the properties of
an uncertain measure. Gao [3] gave some mathematical properties of continuous uncertain measure. You
[13] proved some convergence theorems of uncertain sequences. Another fundamental concept is product
uncertain measure, defined by the fourth axiom called product axiom, which is proposed by Liu [7] in 2009,
thus producing the operational law for uncertain variables. Based on uncertainty theory, some significant and
theoretical work of uncertainty theory such as uncertain programming [8], uncertain process [4], uncertain
calculus [7], uncertain differential equation [1] [7], uncertain logic [5], uncertain risk analysis [9] have been
established. For exploring the recent developments of uncertainty theory, the readers may consult Liu [11].

In this paper, it is proved that product uncertain measure is indeed an uncertain measure, which means the
product axiom is consistent with the other axioms in uncertainty theory. The rest of this paper is organized
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as follows. Some basic concepts of uncertainty theory are recalled in Section 2. The main proof is presented
in Section 3. At the end, a brief summary is given in Section 4.

2 Preliminaries

In this paper, we recall some basic concepts in uncertainty theory.
Definition 2.1 [6] Let Γ be a nonempty set. A collection  L of subsets of Γ is a σ-algebra. Each element Λ in
the σ-algebra  L is called an event. In order to present an axiomatic definition of uncertainty, it is necessary
to assign to each event Λ a number M{Λ} indicating the belief degree that the event Λ will occur. Whenever
the function M from  L to [0, 1] satisfies the following three axioms, it is called an uncertain measure:
Axiom 1. (Normality Axiom) M{Γ} = 1 for the universal set Γ.
Axiom 2. (Duality Axiom) M{Λ}+ M{Λc} = 1 for any event Λ.
Axiom 3. (Subadditivity Axiom) For every countable sequence of events {Λk}, we have

M

{ ∞∪
k=1

Λk

}
≤

∞∑
k=1

M{Λk}.

The triple (Γ,  L,M) is called an uncertainty space. Product uncertain measure was defined by Liu [7] in
2009, thus producing the fourth axiom of uncertainty theory called product axiom.
Axiom 4.[7](Product Axiom) Let (Γk,  Lk,Mk) be uncertainty spaces for k = 1, 2, . . .. Write

Γ = Γ1 × Γ2 × · · · ,  L =  L1 ×  L2 × · · · .

Then the product uncertain measure M is an uncertain measure satisfying

M

{ ∞∪
k=1

Λk

}
=

∞∧
k=1

Mk{Λk} (1)

where Λk are arbitrarily chosen events from  Lk for k = 1, 2, . . . , respectively.
For any other event Λ ∈  L, we have

M{Λ} =


sup

Λ1×Λ2×···⊆Λ
min

1≤k<∞
Mk{Λk}, if sup

Λ1×Λ2×···⊆Λ
min

1≤k<∞
Mk{Λk} > 0.5

1− sup
Λ1×Λ2×···⊆Λc

min
1≤k<∞

Mk{Λk}, if sup
Λ1×Λ2×···⊆Λc

min
1≤k<∞

Mk{Λk} > 0.5

0.5, otherwise.

(2)

In Section 3, we will show that the product uncertain measure M defined on  L is indeed an uncertain
measure, which means the product uncertain measure M satisfies the normality axiom, duality axiom and
subadditivity axiom.

3 Some Properties of Product Uncertain Measure

In this section, we show that the product uncertain measure is an uncertain measure. Firstly, the product
uncertain measure M is proved to be well-defined by Equation (2), which means M is a single-valued function
on  L. That is, for any given event Λ ∈  L, there is one and only one number assigned to Λ by Equation (2).

Lemma 3.1 For any event Λ ∈  L, at most one of the following inequation holds,

sup
Λ1×Λ2×···⊆Λ

min
1≤k<∞

Mk{Λk} > 0.5 and sup
Λ1×Λ2×···⊆Λc

min
1≤k<∞

Mk{Λk} > 0.5.

Proof: For any Λ ∈  L, A1 ×A2 × · · · ⊆ Λ, and B1 ×B2 × · · · ⊆ Λc, we have

(A1 ×A2 × · · · ) ∩ (B1 ×B2 × · · · ) = ∅,
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which means that there is an index j satisfying Aj ∩ Bj = ∅. If not, we have Ai ∩ Bi ̸= ∅ for any index i,
which leads to (A1 ×A2 × · · · ) ∩ (B1 ×B2 × · · · ) ̸= ∅. Hence we have

min
1≤k<∞

Mk{Ak}+ min
1≤k<∞

Mk{Bk} ≤Mj{Aj}+ Mj{Bj} ≤ 1.

Because the inequation holds for all (A1 ×A2 × · · · ) ⊆ Λ, and B1 ×B2 × · · · ⊆ Λc, we have

sup
Λ1×Λ2×···⊆Λ

min
1≤k<∞

Mk{Λk}+ sup
Λ1×Λ2×···⊆Λc

min
1≤k<∞

Mk{Λk} ≤ 1, (3)

which means at most one of the following inequation holds,

sup
Λ1×Λ2×···⊆Λ

min
1≤k<∞

Mk{Λk} > 0.5 and sup
Λ1×Λ2×···⊆Λc

min
1≤k<∞

Mk{Λk} > 0.5.

The proposition is proved. The proposition shows that Equation (2) is reasonable, which means the set
function defined by (2) is a single-valued function.

Secondly, we are going to verify that M is an uncertain measure, which means that M satisfies normality
axiom, duality axiom and subadditivity axiom in uncertainty theory.

Theorem 3.1 (Product Uncertain Measure Theorem) Let (Γk,  Lk,Mk) be uncertainty spaces for k = 1, 2, . . ..
Then the product uncertain measure M defined by Equation (2) is an uncertain measure.

Proof: In order to prove that the product uncertain measure M is indeed an uncertain measure, we should
verify that the product uncertain measure satisfies the normality axiom, duality axiom and subadditivity
axiom.

Step 1: For the universal set Γ = Γ1 × Γ2 × · · · , we have M{Γ} = min
1≤k<∞

Mk{Γk} = 1. Hence the product

uncertain measure M satisfies the normality axiom.
Step 2: For any event Λ ∈  L, we are to show that M{Λ} + M{Λc} = 1. The argument breaks down into

three cases. Case 1: Assume
sup

Λ1×Λ2×···⊆Λ
min

1≤k<∞
Mk{Λk} > 0.5.

Then by Lemma 3.1, we have
sup

Λ1×Λ2×···⊆Λc

min
1≤k<∞

Mk{Λk} < 0.5.

It follows from Equation (2) that

M{Λ} = sup
Λ1×Λ2×···⊆Λ

min
1≤k<∞

Mk{Λk},

M{Λc} = 1− sup
Λ1×Λ2×···⊆(Λc)c

min
1≤k<∞

Mk{Λk} = 1−M{Λ}.

The duality is verified. Case 2: Assume

sup
Λ1×Λ2×···⊆Λc

min
1≤k<∞

Mk{Λk} > 0.5.

By a similar process as Case 1, we get

M{Λc} = sup
Λ1×Λ2×···⊆Λc

min
1≤k<∞

Mk{Λk},

M{Λ} = 1− sup
Λ1×Λ2×···⊆Λc

min
1≤k<∞

Mk{Λk} = 1−M{Λc}.

The duality is verified. Case 3: Assume

sup
Λ1×Λ2×···⊆Λc

min
1≤k<∞

Mk{Λk} ≤ 0.5 and sup
Λ1×Λ2×···⊆Λ

min
1≤k<∞

Mk{Λk} ≤ 0.5.

It follows from Equation (2) that M{Λ} = M{Λc} = 0.5, which verifies the duality axiom.
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Step 3: In order to prove the countable subadditivity of M, we firstly prove the monotonicity of M. That
is, for any events Λ and ∆ in  L with Λ ⊆ ∆, we have M{Λ} ≤M{∆}. The argument breaks down into three
cases. Case 1: Assume

sup
Λ1×Λ2×···⊆Λ

min
1≤k<∞

Mk{Λk} > 0.5.

From Λ ⊆ ∆ and the definition of the operation “sup”, we have

sup
∆1×∆2×···⊆∆

min
1≤k<∞

Mk{∆k} ≥ sup
Λ1×Λ2×···⊆Λ

min
1≤k<∞

Mk{Λk} > 0.5.

It follows from Equation (2) that

M{Λ} = sup
Λ1×Λ2×···⊆Λ

min
1≤k<∞

Mk{Λk} ≤ sup
∆1×∆2×···⊆∆

min
1≤k<∞

Mk{∆k} = M{∆}.

Case 2: Assume

sup
∆1×∆2×···⊆∆c

min
1≤k<∞

Mk{∆k} > 0.5.

Then

sup
Λ1×Λ2×···⊆Λc

min
1≤k<∞

Mk{Λk} ≥ sup
∆1×∆2×···⊆∆c

min
1≤k<∞

Mk{∆k} > 0.5.

Thus
M{Λ} = 1− sup

Λ1×Λ2×···⊆Λc

min
1≤k<∞

Mk{Λk}

≤ 1− sup
∆1×∆2×···⊆∆c

min
1≤k<∞

Mk{∆k} = M{∆}.

Case 3: Assume

sup
Λ1×Λ2×···⊆Λ

min
1≤k<∞

Mk{Λk} ≤ 0.5 and sup
∆1×∆2×···⊆∆c

min
1≤k<∞

Mk{∆k} ≤ 0.5.

Then by Equation (2), we have

M{Λ} ≤ 0.5 ≤ 1−M{∆c} = M{∆}.

Step 4: Finally, we are to show the countable subadditivity of M. That is, for any countable sequence of
events {Λi}, we have

M

{
+∞∪
i=1

Λi

}
≤

+∞∑
i=1

M{Λi}.

The argument breaks down into three cases. Case 1: Assume that for any event Λi ∈  L,M{Λi} < 0.5. For
any given ε > 0, we have

A1
i ×A2

i × · · · ⊆ Λc
i

such that

M{A1
i ×A2

i × · · · } ≥ 1−M{Λi} − ε/2i,

that is,

1−M{A1
i ×A2

i × · · · } ≤M{Λi}+ ε/2i

holds for all i ∈ N. Note that

+∞∩
i=1

A1
i ×

+∞∩
i=1

A2
i × · · · ×

+∞∩
i=1

An
i × · · · ⊆

+∞∩
i=1

Λc
i =

(
+∞∪
i=1

Λi

)c

.

It follows from Equation (1) and the monotonicity of M that

M

{
+∞∩
i=1

A1
i ×

+∞∩
i=1

A2
i × · · ·

}
= min

1≤k<∞
Mk

{
+∞∩
i=1

Ak
i

}
≤M

{(
+∞∪
i=1

Λi

)c}
.
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Thus

M

{
+∞∪
i=1

Λi

}
≤ 1− min

1≤k<∞
Mk

{
+∞∩
i=1

Ak
i

}
= max

1≤k<∞
Mk

{
+∞∪
i=1

(Ak
i )c
}

≤ max
1≤k<∞

+∞∑
i=1

Mk{(Ak
i )c}

≤
+∞∑
i=1

max
1≤k<∞

Mk{(Ak
i )c}

=
+∞∑
i=1

(
1− min

1≤k<∞
Mk{Ak

i }
)

=
+∞∑
i=1

(
1−M

{
A1

i ×A2
i × · · ·

})
≤

+∞∑
i=1

(
M{Λi}+ ε/2i

)
≤

+∞∑
i=1

M{Λi}+ ε.

That is

M

{
+∞∪
i=1

Λi

}
≤

+∞∑
i=1

M{Λi}+ ε.

Letting ε→ 0, we obtain

M

{
+∞∪
i=1

Λi

}
≤

+∞∑
i=1

M{Λi}.

Case 2: Assume that there is one and only one event Λi, say Λ1, such that M{Λ1} ≥ 0.5 and M{Λi} < 0.5,
for all i ≥ 2. Letting Λ = Λ1 ∪ Λ2 ∪ · · · , for the monotonicity of M, M{Λ} ≥ M{Λ1} ≥ 0.5. If M{Λ} = 0.5,
Then M{Λ} = 0.5 ≤ M{Λ1}, the subadditivity is proved. If M{Λ} > 0.5, then we have M{Λc} < 0.5. From
Case 1 and

Λc
1 ⊆ Λc ∪

+∞∪
i=2

Λi,

we get

M {Λc
1} ≤M {Λc}+

+∞∑
i=2

M {Λi} .

Thus

M {Λ} = 1−M {Λc} ≤ 1−M {Λc
1}+

+∞∑
i=2

M {Λi} = M{Λ1}+
+∞∑
i=2

M {Λi} =
+∞∑
i=1

M {Λi} .

The subadditivity of M is proved. Case 3: If there are at least two events Λi,Λj , i ̸= j,M{Λi},M{Λj} ≥ 0.5,

then the subadditivity follows from
+∞∑
i=1

M{Λi} ≥ 1. Now we have verified that M satisfies the normality axiom,

duality axiom and subadditivity axiom, which means M is an uncertain measure. The theorem is proved.
The following theorem shows that the uncertain measure M defined by Equation (2) also satisfies Equation

(1).

Theorem 3.2 For any event Λ = Λ1 × Λ2 × · · · , the uncertain measure M defined by Equation (2) satisfies
that

M

{ ∞∪
k=1

Λk

}
=

∞∧
k=1

Mk{Λk}.
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Proof: Assume M{Λ} is defined by Equation (2). The argument breaks down into three cases. Case 1:
Assume min

1≤k<∞
Mk{Λk} > 0.5. By Equation (2), we immediately have

M{Λ1 × Λ2 × · · · } = min
1≤k<∞

Mk{Λk}.

Case 2: Assume min
1≤k<∞

Mk{Λk} = 0.5, we have

sup
A1×A2×···⊆Λ1×Λ2×···

min
1≤k<∞

Mk{Ak} = 0.5.

By Equation (3), we have

sup
A1×A2×···⊆(Λ1×Λ2×··· )c

min
1≤k<∞

Mk{Ak} ≤ 1− min
1≤k<∞

Mk{Λk} ≤ 0.5.

It follows from Equation (2) that M{Λ1×Λ2×· · · } = 0.5 = min
1≤k<∞

Mk{Λk}. Case 3: Assume min
1≤k<∞

Mk{Λk} <

0.5. For any given small number ε > 0, for simplicity, assuming 0.5 > min
1≤k<∞

Mk{Λk}+ ε >M1{Λ1}, we have

(Γ1\Λ1)× Γ2 × · · · ⊆ (Λ1 × Λ2 × · · · )c

and
sup

A1×A2×···⊆(Γ1\Λ1)×Γ2×···
min

1≤k<∞
Mk{Ak} > 0.5.

By Equation (2) and the definition of the operation “sup”, we have

0.5 <M{(Γ1\Λ1)× Γ2 × · · · } ≤M{(Λ1 × Λ2 × · · · )c}.

Thus
1−M1{Λ1} ≤ 1−M{Λ1 × Λ2 × · · · }.

That is,
M{Λ1 × Λ2 × · · · } ≤M1{Λ1} ≤ min

1≤k<∞
Mk{Λk}+ ε.

Letting ε→ 0, we have
M{Λ1 × Λ2 × · · · } ≤ min

1≤k<∞
Mk{Λk}.

On the other hand, by Equation (3), we obtain

min
1≤k<∞

Mk{Λk} ≤ 1− sup
A1×A2×···⊆(Λ1×Λ2×··· )c

min
1≤k<∞

Mk{Ak} = M{Λ1 × Λ2 × · · · }.

Thus
M{Λ1 × Λ2 × · · · } = min

1≤k<∞
Mk{Λk}

holds. The theorem is proved.
By now, we showed that the product uncertain measure is an uncertain measure, which also means that

the product axiom is consistent with other axioms. The consistence among normality axiom, duality axiom
and subadditivity axiom is shown in [6]. Hence the axiomatic system of uncertainty theory is consistent.

4 Conclusion

In this paper, we showed that uncertain measure M defined by Liu [7] is an uncertain measure, which also
means that the product axiom is consistent with other axioms.
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