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Abstract

Uncertainty theory is a branch of mathematics for modeling uncertainty in human reasoning, and
uncertain statistics is a methodology for collecting and interpreting experts’ experimental data by uncer-
tainty theory. In this paper, we will first discuss how to collect experts’ data. We apply this method to a
model for estimating the distance between Beijing and Tianjin. Based on the experts’ experimental data,
B-spline method is used to estimate the empirical uncertainty distribution. Finally, a numerical example
is given.

(©2012 World Academic Press, UK. All rights reserved.

Keywords: uncertainty theory, uncertainty distribution, uncertain statistics

1 Introduction

Classical mathematical statistics was proposed as a methodology for collecting and interpreting the test data
with correlative information in a system by probability theory. Statistical methods have been found useful in
many fields. It should be pointed out that classical statistics to a great extent depends on historical data. In
many cases, it is impossible to get historical data or the access to historical data is costly. On the other hand,
fuzzy statistics was introduced to deal with data using fuzzy set theory initiated by Zadeh [24]. Fuzzy statistics
is a mathematical model dealing with vague qualitative data, frequently generated from natural language.
Fuzzy statistics methods were studied such as fuzzy decision making [, fuzzy point estimation[d, 8], fuzzy
interval estimation [B], fuzzy hypotheses testing, fuzzy regression [IR, ], fuzzy Bayesian statistics by fuzzy
probability measure [[7], and fuzzy-Bayes decision rule [20].

It is undeniable that probability theory and fuzzy set theory are useful tools to deal with objective and
subjective uncertainty. However, in our real life, human natural language statements like “about 100km”,
“approximately 39°C”, “roughly 80kg”, “low speed”, “middle age”, and “big size” are typically used to express
the imprecise information and knowledge. Usually, such imprecise quantities were modeled by subjective
probability or fuzziness. However, many surveys showed that they are neither due to randomness nor to
fuzziness. For details of these contents, please see Liu [M6]. This fact provides a motivation for uncertainty
theory founded by Liu [d] as a branch of axiomatic mathematics for modeling human uncertainty based
on normality, duality, subadditivity and product axioms. As a model for dealing with human uncertainty,
this theory has been successfully applied to many fields: uncertain programming [[2], uncertain logic [I5],
uncertain control [I4] and uncertain finance [I0]. For exploring the recent developments of uncertainty theory,
the readers may consult Liu [T3].

In uncertainty theory, uncertainty distribution plays a central role. Uncertainty statistics was introduced
in [I3] to estimate experimental uncertainty distribution using linear interpolation method. In addition, the
method of moments was proposed by Wang and Peng [22] to estimate the parameters in uncertain distribution.
Considering the knowledge of more than one expert, the Delphi method [, Z1] was suggested to determine
uncertainty distributions. Uncertain statistics is based on experts’ experimental data rather than historical
data. In this paper, we will first describe how to get the experts’ data. Then we will study a specific model
to estimate the distance between “Beijing” and “Tianjin”. Based on the experts’ experimental data, B-spline
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method is proposed to estimate empirical uncertainty distribution. The rest of this paper is organized as
follows: the next section will introduce some basic concepts of uncertainty theory. The method of collecting
experts’ data and estimating uncertainty experimental distribution via linear interpolation method is included
in Section 3. B-spline method to estimate the distance between the two cities: “Beijing” and “Tianjin” is
established in Section 4. Finally, a brief summary is given in Section 5.

2 Preliminaries

Let I' be a nonempty set, and £ a o-algebra over I'. The uncertain measure M [U] is a set function defined
on £ satisfying the following four axioms:

Axiom 1. (Normality) M{T'} = 1;

Axiom 2. (Duality) M{A} + M{A°} =1 for any event A;

Axiom 3. (Subadditivity) For every countable sequence of events {A;}, we have
M{U AZ} <> M{A}
i=1 i=1

Axiom 4.(Product Axiom) Let (T'x, Lx, M}) be uncertainty spaces for k = 1,2,... The product uncertain
measure M is an uncertain measure satisfying

M{ﬁA} = KM{Ai}

i=1

where A, are arbitrarily chosen events from £ for k = 1,2,..., respectively.

An uncertain variable is a measurable function from an uncertainty space (I',£,M) to the set of real
numbers. The distribution of the uncertain variable £ is ®(x) = M{y € T'|¢(y) < z}. The expected value of
an uncertain variable £ was defined by Liu [9] as

“+o0 0
Bl = [ ez oo [ (¢ <atde
0 —o00
provided that at least one of the two integrals is finite. The variance of an uncertain variable £ is defined as
E [(¢ — E[€])?]. Some useful uncertainty distributions are shown in the following part.
Example 1. An uncertain variable ¢ is called linear if it has the following uncertainty distribution

0, ifr<a
®(z)=< (z—a)/(b—a), fa<z<Db

denoted by £(a,b) where a and b are real numbers with a < b.
Example 2. An uncertain variable ¢ is called zigzag if it has the following uncertainty distribution

0, ifr<a
(x —a)/2(b—a), ifa<ax<bd
(x4+c¢—2b)/2(c=0), ifb<z<c
1, ifx>c

O(x) =

denoted by Z(a, b, c) where a, b and ¢ are real numbers with a < b < ¢.
Example 3. An uncertain variable £ is called normal if it has the following uncertainty distribution

O(x) = <1+exp (W)) , —00 < x < 400, 0> 0.
o
denoted by N(e, o).
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Definition 1 [I3] Let £ be an uncertain variable with uncertainty distribution function ®. Then the inverse
function ®~1 is called the inverse uncertainty distribution of €.

It is obvious that the inverse functions of the linear uncertain variable L(a,b), zigzag uncertain variable
Z(a,b,c) and normal uncertain variable N(e, o) are

dHa)= (1 —a)a+ab,

d1(a) = (1 —2a)a + 2ab, if« <0.5
Y7L @2=2a)b+ (2a—1)e, ifa>05

and

o Ha)=e+ U—gln c
m

9

11—«

respectively. The expected value of an uncertain variable £ can also be expressed by its inverse uncertainty
distribution.

Theorem 1 [I3] Let £ be an uncertain variable with uncertainty distribution ®. If the expected value exists,
then

Note that the expected values of linear uncertain variable £(a,b), zigzag uncertain variable Z(a, b, c) and
normal uncertain variable N(e, o) are (a +b)/2, (a + 2b+ ¢)/2 and e, respectively.

3 Experts’ Data and Empirical Uncertainty Distribution

Different from classical statistics, uncertain statistics is based on experts’ experimental data rather than
historical data. The reason is simple. In many cases, it is impossible to get historical data or the access to
historical data is costly. Then the experts’ data becomes an effective alternative. For example, we want to
establish a model to get “how far from Beijing to Tianjin”. Assume that the real distance between them is
not exactly known to us. Thus we think the distance is an imprecise quantity. The consultation process of a
questionnaire survey for estimating the travel distance between Beijing and Tianjin is as follows
Q1: May I ask you how far is from Beijing to Tianjin? What do you think is the minimum distance?
A1l: 100km. (an experts experimental data (100, 0) is acquired)
Q2: What do you think is the maximum distance?
A2: 150km. (an experts experimental data (150, 1) is acquired)
Q3: What do you think is a likely distance?
A3: 130km.
Q4: What is the degree of belief that the real distance is less than this distance?
A4: 0.6. (an experts experimental data (130, 0.6) is acquired)
Q5: Is there another number this distance may be?
A5: 140km.
Q6: What is the degree of belief that the real distance is less than this distance?
A6: 0.9. (an experts experimental data (140, 0.9) is acquired)
QT7: Is there another number this distance may be?
AT7: 120km.
Q8: What is the degree of belief that the real distance is less than this distance?
AB8: 0.3. (an experts experimental data (120, 0.3) is acquired)
Q9: Is there another number this distance may be?
A9: No idea.
Then this 1st expert’s experimental data are

(100,0), (120,0.3), (130,0.6), (140,0.9), (150,1).
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Using the same consultation process, the 2nd expert’s and 3rd expert’s data are
(110,0), (120,0.3), (130,0.8), (140,1)

and
(100,0), (120,0.2), (130,0.9), (150,1),

respectively.
Based on the such experimental data, Liu [T3] introduced the linear interpolation method to obtain the
empirical uncertainty distribution
(z1,01), (T2, 02), ., (T, )

where (perhaps after arrangement)
T <2< <Ty, 0 Cag <+ < ay,.

The empirical uncertainty distribution

0, ifex<a
@(I) e o; + <ai+1 — al)(x — zi), if Ti+1 S x S €Z; (1)
Ti41 — X4
1, ifx > a,.

The three experts’ empirical uncertainty distributions are denoted by ®4(z), ®2(x) and P3(x), respectively.
The graphs of uncertainty distributions ®4(z), ®2(z), and ®3(x) are listed in Figure 1.

Figure 1: The uncertainty distributions ®1(z), ®2(z) and P3(x)

In order to combine the three domain experts’ data, we will use the method introduced in [I3] to aggregate
domain experts’ empirical uncertainty distribution

_ L

d(x) 3

(P1(z) + Pa(x) + P3(x)).
The aggregated uncertainty distribution is shown in Figure 2.
The empirical uncertainty distribution ® with the form (@) has an expected value

o+ o e — oy o + a
E[f] _ 1 5 2331 +Z i+1 5 1_11‘14— (1_ n—12 n)xn.
i=2

Through the above formula, we get the estimated distance from Beijing to Tianjin as 124km. The real
distance is 127km in google earth. The estimation error is 2.3%.

4 B-Spline Method

Besides Liu’s method, Gao [@] introduced other techniques like quadratic-spline interpolation, cubic-spline
interpolation, sin z-spline interpolation, etc. In this section, we will introduce a new method called B-spline
interpolation to fit a continuous uncertainty distribution. The reasons why we choose this method is that
the fitting distribution via B-spline interpolation needs minimal support with respect to a given degree,
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Figure 2: The figure of uncertainty distribution ®

smoothness, and domain partition. A B-spline is simply a generalization of a Bezier curve. The term B-spline
refers to a spline curve parameterized as a linear combination of B-splines. The uniform cubic B-spline is

0, ifze(—o0,z;)
(x— )3, if 2 € [z, 2i01),
h3 + 3h2<$ - a)‘i+1) + 3h(l‘ — .Ti+1)2

N3(£L') _ —3(1‘ — xi+1)3, ifz e [$i+1, $i+2),
¢ ]’L3 + 3h2($i+3 - I) + 3h($i+3 — SC)2
—3(ziys —2)%,  if = € [Tiy2, Tits)

(Tipa — )3, if 2 € [xi13,Tita)

0, ifzé€[r1q,+00).

We use the above uniform cubic B-spline to fit the uncertainty distribution of the collected three experts’
data

(100,0), (120,0.3), (130,0.6), (140,0.9), (150,1),
(110,0), (120,0.3), (130,0.8), (140,1)

and
(100,0), (120,0.2), (130,0.9), (150,1).

The fitting uncertainty distribution of
1

®(z) = 3(P1(2) + P2(2) + P3(2))-
is shown in Figure 3. Compared to the linear interpolation method, the uncertainty distribution is now
smoother. The expected value of the fitting distribution is 124.2km while the real distance is 127km in google
earth. The estimation error is 2.2%.
5 Conclusion
In this paper, a questionnaire survey for collecting experts’ data was proposed. Using the collected experts’
data, we applied uncertain statistics to estimate the distance between the two cities: Beijing and Tianjin.
Besides, the B-spline method was introduced to estimate empirical uncertainty distribution.
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Figure 3: B-spline interpolation
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